1
|
Lin X, Qureshi MZ, Tahir F, Yilmaz S, Romero MA, Attar R, Farooqi AA. Role of melatonin in carcinogenesis and metastasis: From mechanistic insights to intermeshed networks of noncoding RNAs. Cell Biochem Funct 2024; 42:e3995. [PMID: 38751103 DOI: 10.1002/cbf.3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 05/26/2024]
Abstract
In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.
Collapse
Affiliation(s)
- Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Muhammad Zahid Qureshi
- Department of Environment and Natural Resources, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Fatima Tahir
- Rashid Latif Medical University, Lahore, Pakistan
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mirna Azalea Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Acapulco, Guerrero, México
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
2
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
5
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
6
|
El-Khouly FE, Adil SM, Wiese M, Hulleman E, Hendrikse NH, Kaspers GJL, Kramm CM, Veldhuijzen van Zanten SEM, van Vuurden DG. Complementary and alternative medicine in children with diffuse intrinsic pontine glioma-A SIOPE DIPG Network and Registry study. Pediatr Blood Cancer 2021; 68:e29061. [PMID: 33942498 DOI: 10.1002/pbc.29061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/27/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is a rare and aggressive childhood brainstem malignancy with a 2-year survival rate of <10%. This international survey study aims to evaluate the use of complementary and alternative medicine (CAM) in this patient population. METHODS Parents and physicians of patients with DIPG were asked to participate in a retrospective online survey regarding CAM use during time of illness. RESULTS Between January and May 2020, 120 parents and 75 physicians contributed to the online survey. Most physicians estimated that <50% of their patients used CAM, whereas 69% of the parents reported using CAM to treat their child during time of illness. Cannabis was the most frequently used form of CAM, followed by vitamins and minerals, melatonin, curcumin, and boswellic acid. CAM was mainly used with the intention of direct antitumor effect. Other motivations were to treat side effects of chemotherapy or to increase comfort of the child. Children diagnosed from 2016 onwards were more likely to use CAM (χ2 = 6.08, p = .014). No significant difference was found between CAM users and nonusers based on ethnicity (χ2 = 4.18, p = .382) or country of residence (χ2 = 9.37, p = .154). Almost 50% of the physicians do not frequently ask their patients about possible CAM use. CONCLUSION This survey demonstrates that worldwide, a considerable number of patients with DIPG use CAM. Physicians should be more aware of potential CAM use and actively discuss the topic. In addition, more research is needed to gain knowledge about possible anticancer effects of CAM and (positive/negative) interactions with conventional therapies.
Collapse
Affiliation(s)
- Fatma E El-Khouly
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Syed M Adil
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Esther Hulleman
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Christof M Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Sophie E M Veldhuijzen van Zanten
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dannis G van Vuurden
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
7
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
8
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
10
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
11
|
New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence. Cancer Metastasis Rev 2020; 39:303-320. [PMID: 32086631 DOI: 10.1007/s10555-020-09845-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melatonin is an indole produced by the pineal gland at night under normal light or dark conditions, and its levels, which are higher in children than in adults, begin to decrease prior to the onset of puberty and continue to decline thereafter. Apart from circadian regulatory actions, melatonin has significant apoptotic, angiogenic, oncostatic, and antiproliferative effects on various cancer cells. Particularly, the ability of melatonin to inhibit skeletomuscular sarcoma, which most commonly affects children, teenagers, and young adults, is substantial. In the past few decades, the vast majority of references have focused on the concept of epithelial-mesenchymal transition involvement in invasion and migration to allow carcinoma cells to dissociate from each other and to degrade the extracellular matrix. Recently, researchers have applied this idea to sarcoma cells of mesenchymal origin, e.g., osteosarcoma and Ewing sarcoma, with their ability to initiate the invasion-metastasis cascade. Similarly, interest of the effects of melatonin has shifted from carcinomas to sarcomas. Herein, in this state-of-the-art review, we compiled the knowledge related to the molecular mechanism of antimetastatic actions of melatonin on skeletomuscular sarcoma as in childhood and during adolescence. Utilization of melatonin as an adjuvant with chemotherapeutic drugs for synergy and fortification of the antimetastatic effects for the reinforcement of therapeutic actions are considered.
Collapse
|
12
|
Rodríguez C, Puente-Moncada N, Reiter RJ, Sánchez-Sánchez AM, Herrera F, Rodríguez-Blanco J, Duarte-Olivenza C, Turos-Cabal M, Antolín I, Martín V. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration. J Cell Physiol 2020; 236:27-40. [PMID: 32725819 DOI: 10.1002/jcp.29886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022]
Abstract
Several oncogenic pathways plus local microenvironmental conditions, such as hypoxia, converge on the regulation of cancer cells metabolism. The major metabolic alteration consists of a shift from oxidative phosphorylation as the major glucose consumer to aerobic glycolysis, although most of cancer cells utilize both pathways to a greater or lesser extent. Aerobic glycolysis, together with the directly related metabolic pathways such as the tricarboxylic acid cycle, the pentose phosphate pathway, or gluconeogenesis are currently considered as therapeutic targets in cancer research. Melatonin has been reported to present numerous antitumor effects, which result in a reduced cell growth. This is achieved with both low and high concentrations with no relevant side effects. Indeed, high concentrations of this indolamine reduce proliferation of cancer types resistant to low concentrations and induce cell death in some types of tumors. Previous work suggest that regulation of glucose metabolism and other related pathways play an important role in the antitumoral effects of high concentration of melatonin. In the present review, we analyze recent work on the regulation by such concentrations of this indolamine on aerobic glycolysis, gluconeogenesis, the tricarboxylic acid cycle and the pentose phosphate pathways of cancer cells.
Collapse
Affiliation(s)
- Carmen Rodríguez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Noelia Puente-Moncada
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Ana M Sánchez-Sánchez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Federico Herrera
- Cell Structure and Dynamics Laboratory, Institute of Chemical and Biological Technology (ITQB-NOVA), Estação Agronómica Nacional, Oeiras, Portugal
| | - Jezabel Rodríguez-Blanco
- Molecular Oncology Program, Department of Surgery, The DeWitt Daughtry Family, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Cristina Duarte-Olivenza
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Turos-Cabal
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Isaac Antolín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Martín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
13
|
Maitra S, Bhattacharya D, Das S, Bhattacharya S. Melatonin and its anti-glioma functions: a comprehensive review. Rev Neurosci 2020; 30:527-541. [PMID: 30645197 DOI: 10.1515/revneuro-2018-0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a naturally synthesized hormone secreted from the pineal gland in a variety of animals and is primarily involved in the regulation of the circadian rhythm, which is the natural cycle controlling sleep in organisms. Melatonin acts on specific receptors and has an important role in overall energy metabolism. This review encompasses several aspects of melatonin activity, such as synthesis, source, structure, distribution, function, signaling and its role in normal physiology. The review highlights the cellular signaling and messenger systems involved in melatonin's action on the body and their wider implications, the distribution and diverse action of different melatonin receptors in specific areas of the brain, and the pharmacological agonists and antagonists that have specific action on these melatonin receptors. This review also incorporates the antitumor effects of melatonin in considerable detail, emphasizing on melatonin's role as an adjuvant therapeutic agent in glioma treatment. We conclude that the diminishing levels of melatonin have significant debilitating effects on normal physiology and can also be associated with malignant conditions such as glioma. Based on the review of the available evidence, our study provides a broad platform for a better understanding of the specific roles of melatonin and serves as a starting point for further investigation into the therapeutic effect of melatonin in glioma as an adjuvant therapeutic agent.
Collapse
Affiliation(s)
- Sayantan Maitra
- Department of Health and Family Welfare, Institute of Pharmacy, Jalpaiguri 735101, Govt. of West Bengal, India
| | - Debanjan Bhattacharya
- Department of Neurosurgery, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stabak Das
- Department of Health and Family Welfare, Institute of Pharmacy, Jalpaiguri 735101, Govt. of West Bengal, India
| | - Subhrajit Bhattacharya
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, 1510 Cliffton Rd. NE, Atlanta, GA 30303-3073, USA
| |
Collapse
|
14
|
Zhang J, Xie T, Zhong X, Jiang HL, Li R, Wang BY, Huang XT, Cen BH, Yuan YW. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020; 12:5423-5438. [PMID: 32203052 PMCID: PMC7138577 DOI: 10.18632/aging.102968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/16/2020] [Indexed: 01/12/2023]
Abstract
Cisplatin (DDP)-based concurrent chemo-radiotherapy is a standard approach to treat locoregionally advanced nasopharyngeal carcinoma (NPC). However, many patients eventually develop recurrence and/or distant metastasis due to chemoresistance. In this study, we aimed to elucidate the effects of melatonin on DDP chemoresistance in NPC cell lines in vitro and vivo, and we explored potential chemoresistance mechanisms. We found that DDP chemoresistance in NPC cells is mediated through the Wnt/β-catenin signaling pathway. Melatonin not only reversed DDP chemoresistance, but also enhanced DDP antitumor activity by suppressing the nuclear translocation of β-catenin, and reducing expression of Wnt/β-catenin response genes in NPC cells. In vivo, combined treatment with DDP and melatonin reduced tumor burden to a greater extent than single drug-treatments in an orthotopic xenograft mouse model. Our findings provide novel evidence that melatonin inhibits the Wnt/β-catenin pathway in NPC, and suggest that melatonin could be applied in combination with DDP to treat NPC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xi Zhong
- Department of Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Hua-Li Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, P.R. China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Bai-Yao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiao-Ting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Bo-Hong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
16
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
17
|
Gonzalez A. Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on. Neurochem Res 2020; 46:34-50. [PMID: 31989469 DOI: 10.1007/s11064-020-02972-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
This manuscript is a review focused onto the role of astrocytes in the protection of neurons against oxidative stress and how melatonin can contribute to the maintenance of brain homeostasis. The first part of the review is dedicated to the dependence of neurons on astrocytes by terms of survival under oxidative stress conditions. Additionally, the effects of melatonin against oxidative stress in the brain and its putative role in the protection against diseases affecting the brain are highlighted. The effects of melatonin on the physiology of neurons and astrocytes also are reviewed.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, 10003, Cáceres, Spain.
| |
Collapse
|
18
|
Zhu H, Chen Y, Bai LC, Cao XR, Xu R. Different Effects of Melatonin on X-Rays-Irradiated Cancer Cells in a Dose-Dependent Manner. Dose Response 2019; 17:1559325819877271. [PMID: 31579126 PMCID: PMC6759722 DOI: 10.1177/1559325819877271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/18/2018] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to investigate the effects of melatonin on the radiosensitivity of HeLa cells. Concentration from 10 to 1000 µM of melatonin was used on HeLa cells before X-rays irradiation (IR). The cellular inactivation effect was analyzed by clonogenic assay, and cell growth was measured by MTT assay at various concentrations. Ten micrometer melatonin promoted the cell-killing effects of IR, while 1000-µM melatonin prevented IR-induced cellular inactivation. Further analysis revealed that 1000-µM melatonin protected the cells from IR-induced reactive oxygen species damage, as the oxidative stress measured by fluorescent microscopy and fluorescence-activated cell sorting using 2,7-dichlorofluorescein diacetate staining. This is further confirmed by melatonin receptor agonist, which has no antioxidant capacity. A 10-µM melatonin, on the contrary, enhanced the cell-killing effects of IR by activating c-Jun NH2-terminal kinase (JNK) signaling. c-Jun NH2-terminal kinase signaling activation was indicated by Western blot of phosphorylated JNK. We used JNK inhibitor to further confirm the involvement of JNK signaling in the cell-killing enhancement of 10-µM melatonin administration. Our results suggest the importance of dose-dependent effects in melatonin application for radiotherapy.
Collapse
Affiliation(s)
- Hao Zhu
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Yong Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang-Cai Bai
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiang-Rong Cao
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Xu
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
19
|
Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH. Immunoregulatory role of melatonin in cancer. J Cell Physiol 2019; 235:745-757. [PMID: 31270813 DOI: 10.1002/jcp.29036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development and progression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.
Collapse
Affiliation(s)
- Fatemeh Moradkhani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Asghari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Heidar Heidari Khoei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
20
|
Martínez PN, Menéndez ST, Villaronga MDLÁ, Ubelaker DH, García-Pedrero JM, C Zapico S. "The big sleep: Elucidating the sequence of events in the first hours of death to determine the postmortem interval". Sci Justice 2019; 59:418-424. [PMID: 31256813 DOI: 10.1016/j.scijus.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
Recent developments on postmortem interval estimation (PMI) take an advantage of the autolysis process, pointing out to the analysis of the expression of apoptosis and autophagy genes towards this purpose. Oxidative stress plays a role in this signaling as a regulatory mechanism and/or as a consequence of cell death. Additionally, melatonin has been implicated on apoptosis and autophagy signaling, making melatonin a suitable target for PMI determination. The aim of this study was to investigate the early PMI through the analysis of the expression of autophagy genes as well as oxidative stress and melatonin receptor. Our results demonstrated a rapidly increased on the expression of autophagy genes according to the expected sequence of events, then a marked decrease in this expression, matched with the switch to the apoptosis signaling. These results revealed potential candidates to analyze the PMI in the first hours of death, helping to estimate the time-since-death.
Collapse
Affiliation(s)
- Paula Núñez Martínez
- Departamento de Biología Funcional (Área de Fisiología), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain
| | - Sofía T Menéndez
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - María de Los Ángeles Villaronga
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Douglas H Ubelaker
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA
| | - Juana M García-Pedrero
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Sara C Zapico
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA; Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
21
|
de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res 2019; 36:131. [PMID: 31263962 DOI: 10.1007/s11095-019-2662-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Intranasal administration has been extensively applied to deliver drugs to the brain. In spite of its unfavorable biopharmaceutic properties, melatonin (MLT) has demonstrated anticancer effects against glioblastoma. This study describes the nose-to-brain delivery of MLT-loaded polycaprolactone nanoparticles (MLT-NP) for the treatment of glioblastoma. METHODS MLT-NP were prepared by nanoprecipitation. Following intranasal administration in rats, brain targeting of the formulation was demonstrated by fluorescence tomography. Brain and plasma pharmacokinetic profiles were analyzed. Cytotoxicity against U87MG glioblastoma cells and MRC-5 non-tumor cells was evaluated. RESULTS MLT-NP increased the drug apparent water solubility ~35 fold. The formulation demonstrated strong activity against U87MG cells, resulting in IC50 ~2500 fold lower than that of the free drug. No cytotoxic effect was observed against non-tumor cells. Fluorescence tomography images evidenced the direct translocation of nanoparticles from nasal cavity to the brain. Intranasal administration of MLT-NP resulted in higher AUCbrain and drug targeting index compared to the free drug by either intranasal or oral route. CONCLUSIONS Nanoencapsulation of MLT was crucial for the selective antitumoral activity against U87MG. In vivo evaluation confirmed nose-to-brain delivery of MLT mediated by nanoparticles, highlighting the formulation as a suitable approach to improve glioblastoma therapy.
Collapse
Affiliation(s)
- Edilson Ribeiro de Oliveira Junior
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, FarmaTec - 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Thais Leite Nascimento
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, FarmaTec - 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Mariana Arraes Salomão
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, FarmaTec - 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Artur Christian Garcia da Silva
- Laboratório de Ensino e Pesquisa em Toxicologia in vitro, Tox-In, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Ensino e Pesquisa em Toxicologia in vitro, Tox-In, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, FarmaTec - 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil.
| |
Collapse
|
22
|
Chao YH, Wu KH, Yeh CM, Su SC, Reiter RJ, Yang SF. The potential utility of melatonin in the treatment of childhood cancer. J Cell Physiol 2019; 234:19158-19166. [PMID: 30945299 DOI: 10.1002/jcp.28566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Childhood cancer management has improved considerably, with the overall objective of preventing early-life cancers completely. However, cancer remains a major cause of death in children, with the survivors developing anticancer treatment-specific health problems. Therefore, the anticancer treatment needs further improvement. Melatonin is a effective antioxidant and circadian pacemaker. Through multiple mechanisms, melatonin has significant positive effects on multitude adult cancers by increasing survival and treatment response rates, and slowing disease progression. In addition, melatonin appears to be safe for children. As an appealing therapeutic agent, we herein address several key concerns regarding melatonin's potential for treating children with cancer.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology-Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Zemła A, Grzegorek I, Dzięgiel P, Jabłońska K. Melatonin Synergizes the Chemotherapeutic Effect of Cisplatin in Ovarian Cancer Cells Independently of MT1 Melatonin Receptors. ACTA ACUST UNITED AC 2018; 31:801-809. [PMID: 28882945 DOI: 10.21873/invivo.11133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIM Melatonin (MLT), through the interaction with membrane melatonin receptors MT1, can improve the effectiveness of cytostatic agents, including cisplatin (CP). The aim of this study was to examine the synergistic effect of MLT and CP in three cell lines: IOSE 364, SK-OV-3 and OVCAR-3, as well as to assess the role of MT1 receptors in this mechanism. MATERIALS AND METHODS Using the SRB assay we investigated the effect of different concentrations of CP and MLT on cell viability. Tests, using luzindole - MT1 inhibitor, allowed us to assess the potential involvement of MT1 in the mechanism of MLT action. RESULTS MLT at certain concentrations demonstrated a synergistic effect in combination with CP. The addition of luzindole did not affect the action of MLT in combination with CP. CONCLUSION In summary, the synergistic effect of MLT with CP seems to be independent of membrane MT1 receptors.
Collapse
Affiliation(s)
- Agata Zemła
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Irmina Grzegorek
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland .,Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| | - Karolina Jabłońska
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
24
|
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 2018; 196:143-155. [DOI: 10.1016/j.lfs.2018.01.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
25
|
Puente-Moncada N, Costales P, Antolín I, Núñez LE, Oro P, Hermosilla MA, Pérez-Escuredo J, Ríos-Lombardía N, Sanchez-Sanchez AM, Luño E, Rodríguez C, Martín V, Morís F. Inhibition of FLT3 and PIM Kinases by EC-70124 Exerts Potent Activity in Preclinical Models of Acute Myeloid Leukemia. Mol Cancer Ther 2018; 17:614-624. [DOI: 10.1158/1535-7163.mct-17-0530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
|
26
|
Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, Chen F, Reiter RJ, Yang Y. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol 2017; 175:3251-3262. [PMID: 28880375 DOI: 10.1111/bph.13966] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Melatonin, discovered in 1958 in the bovine pineal tissue, is an indoleamine that modulates circadian rhythms and has a wide variety of other functions. Haematological neoplasms are the leading cause of death in children and adolescents throughout the world. Research has demonstrated that melatonin is a low-toxicity protective molecule against experimental haematological neoplasms, but the mechanisms remain poorly defined. Here, we provide an introduction to haematological neoplasms and melatonin, especially as they relate to the actions of melatonin on haematological carcinogenesis. Secondly, we summarize what is known about the mechanisms of action of melatonin in the haematological system, including its pro-apoptotic, pro-oxidative, anti-proliferative and immunomodulatory actions. Thirdly, we discuss the advantages of melatonin in combination with other drugs against haematological malignancy, as well as its other benefits on the haematological system. Finally, we summarize the findings that are contrary to the suppressive effects of melatonin on cancers of haematological origin. We hope that this information will be helpful in the design of studies related to the therapeutic efficacy of melatonin in haematological neoplasms. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Pan H, Wang H, Jia Y, Wang Q, Li L, Wu Q, Chen L. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep 2017; 16:908-914. [PMID: 28560379 DOI: 10.3892/mmr.2017.6621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.
Collapse
Affiliation(s)
- Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Jia
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
28
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
29
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
30
|
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S, Wang L. Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv 2017. [DOI: 10.1039/c7ra02113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proposed model elucidating the role of MT in regulating the proliferation of hepatocellular carcinoma (HCC) cells treated with sorafenib.
Collapse
|
31
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res 2017; 62. [PMID: 27706852 DOI: 10.1111/jpi.12370] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin's actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1052] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
33
|
Quintana C, Cabrera J, Perdomo J, Estévez F, Loro JF, Reiter RJ, Quintana J. Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells. J Pineal Res 2016; 61:381-95. [PMID: 27465521 DOI: 10.1111/jpi.12356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.
Collapse
Affiliation(s)
- Carlos Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Cabrera
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Loro
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
34
|
Chen X, Hao A, Li X, Du Z, Li H, Wang H, Yang H, Fang Z. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J Pineal Res 2016; 61:208-17. [PMID: 27121240 DOI: 10.1111/jpi.12341] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Glioblastoma stem-like cells (GSCs) displaying self-renewing and tumor-propagating capacity play a particularly important role in maintaining tumor growth, therapeutic resistance, and tumor recurrence. Therefore, new therapeutic strategies focusing on impairing GSC maintenance are urgently needed. Here, we used GSCs isolated from surgical specimens from patients with glioblastoma multiforme (GBM) to study the roles and underlying mechanisms associated with melatonin in GSC biology. The results showed that melatonin directly targeted glioma tumor cells by altering GSC biology and inhibiting GSC proliferation. Additionally, melatonin altered profile of transcription factors to inhibit tumor initiation and propagation. Furthermore, EZH2 S21 phosphorylation and EZH2-STAT3 interaction in GSCs were impaired following melatonin treatment. These results suggested that melatonin attenuated multiple key signals involved in GSC self-renewal and survival, and further supported melatonin as a promising GBM therapeutic.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Aijun Hao
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xian Li
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaoxia Du
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Hao Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Haoran Yang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
35
|
Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci 2015; 135:147-57. [DOI: 10.1016/j.lfs.2015.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
|
36
|
Martín V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, Antolín I, Rodriguez C. Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res 2014; 57:308-16. [PMID: 25163989 DOI: 10.1111/jpi.12170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/22/2014] [Indexed: 12/28/2022]
Abstract
Glioblastoma-initiating cells (GICs) represent a stem cell-like subpopulation within malignant glioblastomas responsible for tumor development, progression, therapeutic resistance, and tumor relapse. Thus, eradication of this subpopulation is essential to achieve stable, long-lasting remission. We have previously reported that melatonin decreases cell proliferation of glioblastoma cells both in vitro and in vivo and synergistically increases effectiveness of drugs in glioblastoma cells and also in GICs. In this study, we evaluated the effect of the indolamine alone in GICs and found that melatonin treatment reduces GICs proliferation and induces a decrease in self-renewal and clonogenic ability accompanied by a reduction in the expression of stem cell markers. Moreover, our results also indicate that melatonin treatment, by modulating stem cell properties, induces cell death with ultrastructural features of autophagy. Thus, data reported here reinforce the therapeutic potential of melatonin as a treatment of malignant glioblastoma both by inhibiting tumor bulk proliferation or killing GICs, and simultaneously enhancing the effect of chemotherapy.
Collapse
Affiliation(s)
- Vanesa Martín
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci 2014; 115:8-14. [PMID: 25219883 DOI: 10.1016/j.lfs.2014.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 01/13/2023]
Abstract
Proteasome inhibitors and melatonin are both intimately involved in the regulation of major signal transduction proteins including p53, cyclin p27, transcription factor NF-κB, apoptotic factors Bax and Bim, caspase 3, caspase 9, anti-apoptotic factor Bcl-2, TRAIL, NRF2 and transcription factor beta-catenin. The fact that these factors are shared targets of the proteasome inhibitor bortezomib and melatonin suggests the working hypothesis that melatonin is a proteasome inhibitor. Supporting this hypothesis is the fact that melatonin shares with bortezomib a selective pro-apoptotic action in cancer cells. Furthermore, both bortezomib and melatonin increase the sensitivity of human glioma cells to TRAIL-induced apoptosis. Direct evidence for melatonin inhibition of the proteasome was recently found in human renal cancer cells. We raise the issue whether melatonin should be investigated in combination with proteasome inhibitors to reduce toxicity, to reduce drug resistance, and to enhance efficacy. This may be particularly valid for hematological malignancies in which proteasome inhibitors have been shown to be useful. Further studies are necessary to determine whether the actions of melatonin on cellular signaling pathways are due to a direct inhibitory effect on the catalytic core of the proteasome, due to an inhibitory action on the regulatory particle of the proteasome, or due to an indirect effect of melatonin on phosphorylation of signal transducing factors.
Collapse
|
38
|
Salucci S, Burattini S, Battistelli M, Baldassarri V, Curzi D, Valmori A, Falcieri E. Melatonin prevents chemical-induced haemopoietic cell death. Int J Mol Sci 2014; 15:6625-40. [PMID: 24747596 PMCID: PMC4013651 DOI: 10.3390/ijms15046625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/12/2022] Open
Abstract
Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.
| | | | | | | | - Davide Curzi
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.
| | - Aurelio Valmori
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy.
| | | |
Collapse
|
39
|
Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 2013; 17:1483-96. [DOI: 10.1517/14728222.2013.834890] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer 2013; 108:2005-12. [PMID: 23632480 PMCID: PMC3670480 DOI: 10.1038/bjc.2013.188] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Current evidence indicates that a stem cell-like sub-population within malignant glioblastomas, that overexpress members of the adenosine triphosphate-binding cassette (ABC) family transporters, is responsible for multidrug resistance and tumour relapse. Eradication of the brain tumour stem cell (BTSC) compartment is therefore essential to achieve a stable and long-lasting remission. Methods: Melatonin actions were analysed by viability cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein expression and quantitative and qualitative promoter methylation methods. Results: Combinations of melatonin and chemotherapeutic drugs (including temozolomide, current treatment for malignant gliomas) have a synergistic toxic effect on BTSCs and A172 malignant glioma cells. This effect is correlated with a downregulation of the expression and function of the ABC transporter ABCG2/BCRP. Melatonin increased the methylation levels of the ABCG2/BCRP promoter and the effects on ABCG2/BCRP expression and function were prevented by preincubation with a DNA methyltransferase inhibitor. Conclusion: Our results point out a possible relationship between the downregulation of ABCG2/BCRP function and the synergistic toxic effect of melatonin and chemotherapeutic drugs. Melatonin could be a promising candidate to overcome multidrug resistance in the treatment of glioblastomas, and thus improve the efficiency of current therapies.
Collapse
|
41
|
Rodriguez C, Martín V, Herrera F, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sánchez-Sánchez AM, Suárez S, Puente-Moncada N, Anítua MJ, Antolín I. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 2013; 14:6597-613. [PMID: 23528889 PMCID: PMC3645656 DOI: 10.3390/ijms14046597] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect.
Collapse
Affiliation(s)
- Carmen Rodriguez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Vanesa Martín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Federico Herrera
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisboa, Professor Egas Moniz Avenue, 1649-028 Lisboa, Portugal
| | - Guillermo García-Santos
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Jezabel Rodriguez-Blanco
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Sara Casado-Zapico
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Ana María Sánchez-Sánchez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Santos Suárez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Noelia Puente-Moncada
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - María José Anítua
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Isaac Antolín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| |
Collapse
|
42
|
Subbiah V, Brown RE, Buryanek J, Trent J, Ashkenazi A, Herbst R, Kurzrock R. Targeting the apoptotic pathway in chondrosarcoma using recombinant human Apo2L/TRAIL (dulanermin), a dual proapoptotic receptor (DR4/DR5) agonist. Mol Cancer Ther 2012; 11:2541-6. [PMID: 22914439 DOI: 10.1158/1535-7163.mct-12-0358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recombinant human Apo2L/TRAIL (dulanermin) is based on the ligand for death receptors (DR4 and DR5), which promotes apoptosis. We report a patient with refractory chondrosarcoma who showed a prolonged response to dulanermin and explore mechanisms of response and resistance. This heavily pretreated patient had progressive metastatic chondrosarcoma to the lung. On dulanermin (8 mg/kg i.v. on days 1-5 in a 21-day cycle), the patient achieved a sustained partial response with only subcentimeter nodules remaining. After 62 months of dulanermin treatment, progressive disease in the lungs was noted, and the patient underwent a resection that confirmed chondrosarcoma. DR4 was detected (immunohistochemistry) in the patient's tumor, which may have enabled the response. However, upregulation of prosurvival proteins, namely, phosphorylated (p)-NF-κBp65 (Ser 536), p-STAT3 (Tyr 705), p-ERK 1/2 (Thr 202/Tyr 204), p-mTOR (Ser 2448), FASN, and Bcl-2, were also detected, which may have provided the underlying mechanisms for acquired dulanermin resistance. The patient was restarted on dulanermin and has continued on this treatment for an additional 16 months since surgery (78 months since initiation of treatment), with his most recent computed tomography (CT) scans showing no evidence of disease.
Collapse
Affiliation(s)
- Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
44
|
García-Santos G, Martin V, Rodríguez-Blanco J, Herrera F, Casado-Zapico S, Sánchez-Sánchez AM, Antolín I, Rodríguez C. Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin. Br J Cancer 2012; 106:1288-96. [PMID: 22382690 PMCID: PMC3314785 DOI: 10.1038/bjc.2012.66] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Despite recent advances in cancer therapy, the 5-year survival rate for Ewing's sarcoma is still very low, and new therapeutic approaches are necessary. It was found previously that melatonin induces cell death in the Ewing's sarcoma cell line, SK-N-MC, by activating the extrinsic apoptotic pathway. Methods: Melatonin actions were analysed by metabolic viability/survival cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein activation/expression and electrophoretic mobility shift assay for transcription factor activation. Results: Melatonin increases the expression of Fas and its ligand Fas L, this increase being responsible for cell death induced by the indolamine. Melatonin also produces a transient increase in intracellular oxidants and activation of the redox-regulated transcription factor Nuclear factor-kappaB. Inhibition of such activation prevents cell death and Fas/Fas L upregulation. Cytotoxic effect and Fas/Fas L regulation occur in all Ewing's cell lines studied, and do not occur in the other tumour cell lines studied where melatonin does not induce cell death. Conclusion: Our data offers new insights in the study of alternative therapeutic strategies in the treatment of Ewing's sarcoma. Further attention deserves to be given to the differences in the cellular biology of sensitive tumours that could explain the cytotoxic effect of melatonin and the increase in the level of free radicals caused by this molecule, in particular cancer types.
Collapse
Affiliation(s)
- G García-Santos
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/ Julian Claveria 6, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sánchez-Sánchez AM, Martín V, García-Santos G, Rodríguez-Blanco J, Casado-Zapico S, Suarez-Garnacho S, Antolín I, Rodriguez C. Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic Res 2011; 45:1333-41. [PMID: 21923620 DOI: 10.3109/10715762.2011.623700] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Melatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects. Here we describe a dual effect of melatonin on intracellular redox state in relation to its antiproliferative vs cytotoxic actions in cancer cells. Thus, inhibition of proliferation correlates with a decrease on intracellular reactive oxygen species (ROS) and increase of antioxidant defences (antioxidant enzymes and intracellular gluthation,GSH levels), while induction of cell death correlates with an increase on intracellular ROS and decrease of antioxidant defences. Moreover, cell death can be prevented by other well-known antioxidants or can be increased by hydrogen peroxide. Thus, tumour cell fate will depend on the ability of melatonin to induce either an antioxidant environment--related to the antiproliferative effect or a prooxidant environment related to the cytotoxic effect.
Collapse
Affiliation(s)
- Ana M Sánchez-Sánchez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rouette A, Parent S, Girouard J, Leblanc V, Asselin E. Cisplatin increases B-cell-lymphoma-2 expression via activation of protein kinase C and Akt2 in endometrial cancer cells. Int J Cancer 2011; 130:1755-67. [PMID: 21618512 DOI: 10.1002/ijc.26183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/28/2011] [Indexed: 01/13/2023]
Abstract
Human carcinomas often show resistance to cisplatin and Bcl-2 is associated with resistance to cisplatin. However, Bcl-2 regulation on cisplatin treatment in human cancers is unknown. Here, we show a novel mechanism by which cisplatin treatment promotes resistance by increasing the expression of Bcl-2 mRNA. Bcl-2 mRNA and protein expression was increased in cisplatin-resistant endometrial cancer cell lines (KLE and HEC-1-A), but not in cisplatin-sensitive cell line (Ishikawa). Cisplatin-mediated increase in Bcl-2 expression was blocked by combination with either actinomycin D or cycloheximide. In addition, Bcl-2 inhibition by HA14-1 led to increased cisplatin-induced apoptosis in KLE and HEC-1-A, whereas Bcl-2 overexpression in Ishikawa led to decreased cisplatin-induced apoptosis. Inhibition of protein kinase C (PKC) activity prevented cisplatin-dependant increase in Bcl-2 mRNA, and induced apoptosis in KLE cells. Furthermore, PKC inhibition was associated with decreased Akt and NF-κB activity. Cells stably expressing shRNA for Akt isoforms revealed that Akt2 was involved in cisplatin-dependant increase in Bcl-2 and apoptosis. Overexpression of Akt2 in Akt2-deficient cells led to increased Bcl-2 expression on cisplatin treatment. Our data suggest a novel regulation pathway of Bcl-2 by cisplatin, via the activation of PKC and Akt2, which has a profound impact on resistance to cisplatin-induced apoptosis in endometrial cancer cells.
Collapse
Affiliation(s)
- Alexandre Rouette
- Research Group in Molecular Oncology and Endocrinology, Department of Chemistry and Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
47
|
Koh W, Jeong SJ, Lee HJ, Ryu HG, Lee EO, Ahn KS, Bae H, Kim SH. Melatonin promotes puromycin-induced apoptosis with activation of caspase-3 and 5'-adenosine monophosphate-activated kinase-alpha in human leukemia HL-60 cells. J Pineal Res 2011; 50:367-73. [PMID: 21244482 DOI: 10.1111/j.1600-079x.2010.00852.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin, a naturally occurring molecule, is produced by the pineal gland in a circadian manner to regulate biologic rhythms in humans. Recent studies report that melatonin may be an attractive candidate as an anticancer agent or for combined therapy because of its antioxidant, oncostatic and immunoregulatory activities. In this study, the potentiating effect of melatonin was evaluated on the apoptosis induced by puromycin as an anticancer drug in acute promyelocytic leukemia HL-60 cells. Melatonin did not show significant cytotoxicity against HL-60 cells compared to puromycin. However, melatonin significantly augmented the cytotoxicity of puromycin. Consistently, combined treatment of melatonin and puromycin reduced the expression of anti-apoptotic proteins, such as bcl-2 and bcl-x(L) , and also induced caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage compared to puromycin treatment alone. Furthermore, cell cycle analysis revealed that melatonin promoted puromycin-induced apoptosis by increasing the sub-G1 population, but suppressing G2/M arrest in HL-60 cells. Interestingly, melatonin activated the phosphorylation of 5'-adenosine monophosphate-activated kinase (AMPK) in combination with puromycin. Taken together, our results suggest that melatonin potentiates puromycin-induced apoptosis with caspase-3 and AMPK activation in HL-60 cells, and thus, melatonin treatment can be effectively applied to leukemia treatment as a potential sensitizer for chemotherapeutic agents.
Collapse
Affiliation(s)
- Wonil Koh
- College of Oriental Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Casado-Zapico S, Martín V, García-Santos G, Rodríguez-Blanco J, Sánchez-Sánchez AM, Luño E, Suárez C, García-Pedrero JM, Menendez ST, Antolín I, Rodriguez C. Regulation of the expression of death receptors and their ligands by melatonin in haematological cancer cell lines and in leukaemia cells from patients. J Pineal Res 2011; 50:345-55. [PMID: 21392090 DOI: 10.1111/j.1600-079x.2010.00850.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Incorporation of new therapeutic agents remains as a major challenge for treatment of patients with malignant haematological disorders. Melatonin is an indolamine without relevant side effects. It has been shown previously to exhibit synergism with several chemotherapeutic drugs in Ewing sarcoma cells by potentiating the extrinsic pathway of apoptosis. It also sensitizes human glioma cells against TRAIL by increasing DR5 expression. Here, we report the induction of cell death by melatonin in several human malignant haematological cell lines through the activation of the extrinsic pathway of apoptosis. Such activation was mediated by the increase in the expression of the death receptors Fas, DR4 and DR5 and their ligands Fas L and TRAIL, with a remarkable rise in the expression of Fas and Fas L. The cytotoxic effect and the increase in Fas and Fas L were dependent on Akt activation. Results were corroborated in blasts from bone marrow and peripheral blood of acute myeloid leukaemia patients, where melatonin induced cell death and increased both Fas and Fas L expressions. We conclude that melatonin may be considered as a potential antileukaemic agent and its therapeutic use, either alone or in combination with current chemotherapeutic drugs, should be taken into consideration for further research.
Collapse
Affiliation(s)
- Sara Casado-Zapico
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu H, Xu L, Wei JE, Xie MR, Wang SE, Zhou RX. Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Rec (Hoboken) 2011; 294:781-8. [PMID: 21416626 DOI: 10.1002/ar.21361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/27/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022]
Abstract
Melatonin is an important immune modulator with antitumor functions, and increased CD4(+) CD25(+) regulatory T cells (Tregs) have been observed in tumor tissues of patients and animal models with gastric cancer. However, the relationship between melatonin and Tregs remains unclear. To explore this potential connection, we performed an in vivo study by inoculating the murine foregastric carcinoma (MFC) cell line in mice and then treated them with different doses of melatonin (0, 25, 50, and 100 mg/kg, i.p.) for 1 week. The results showed that melatonin could reduce the tumor tissue and decrease Tregs numbers and Forkhead box p3 (Foxp3) expression in the tumor tissue. An in vitro study was also performed to test the effects of purified Tregs on melatonin-mediated inhibition of MFC cells. The cell cultures were divided into three groups: 1) MFC+ Tregs; 2) MFC only; and 3) MFC+CD4(+) CD25(-) T cells. After treatment with different concentrations of melatonin (0, 2, 4, 6, 8, and 10 mM) for 24 h, a dose-dependent apoptosis and cell cycle arrest at the G2/M phase was detected in melatonin-treated MFC at melatonin concentration higher than 4 mM. There were no significant differences in the rates of apoptosis and cell cycle distributions of MFC among the three groups. In conclusion, the antigastric cancer effect of melatonin is associated with downregulation of CD4(+) CD25(+) Tregs and its Foxp3 expression in the tumor tissue.
Collapse
Affiliation(s)
- Hui Liu
- Department of Human Anatomy, Histology and Embryology, Neurobiology Research Center, Fujian Medical University, Fuzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Qin JZ, Xin H, Nickoloff B. 2-Deoxyglucose sensitizes melanoma cells to TRAIL-induced apoptosis which is reduced by mannose. Biochem Biophys Res Commun 2010; 401:293-9. [DOI: 10.1016/j.bbrc.2010.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/29/2022]
|