1
|
Jin X, Han H, Liang Q. Effects of surgical trauma and intraoperative blood loss on tumour progression. Front Oncol 2024; 14:1412367. [PMID: 38912060 PMCID: PMC11190163 DOI: 10.3389/fonc.2024.1412367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Surgery is the primary treatment of choice for tumours, and improves prognosis, prolongs survival and is potentially curative. Previous studies have described the effects of anaesthesia and changes in the neuroendocrine, circulatory and sympathetic nervous systems on postoperative cancer progression. There is growing evidence that intraoperative blood loss is an independent prognostic factor for tumour recurrence, postoperative inflammation is a predictor of cancer prognosis, and immunosuppressive status correlates with the degree of surgical damage. This paper outlines the potential mechanisms by which blood loss, surgical trauma and postoperative immunosuppressive status contribute to tumour growth and recurrence by reducing intraoperative haemorrhage and perioperative immunotherapy, thereby reducing tumour growth and recurrence, and improving long-term prognosis.
Collapse
Affiliation(s)
| | | | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Ahn HJ. Anesthesia and cancer recurrence: a narrative review. Anesth Pain Med (Seoul) 2024; 19:94-108. [PMID: 38725164 PMCID: PMC11089301 DOI: 10.17085/apm.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024] Open
Abstract
Cancer is a leading cause of death worldwide. With the increasingly aging population, the number of emerging cancer cases is expected to increase markedly in the foreseeable future. Surgical resection with adjuvant therapy is the best available option for the potential cure of many solid tumors; thus, approximately 80% of patients with cancer undergo at least one surgical procedure during their disease. Agents used in general anesthesia can modulate cytokine release, transcription factors, and/or oncogenes. This can affect host immunity and the capability of cancer cells to survive and migrate, not only during surgery but for up to several weeks after surgery. However, it remains unknown whether exposure to anesthetic agents affects cancer recurrence or metastasis. This review explores the current literature to explain whether and how the choice of anesthetic and perioperative medication affect cancer surgery outcomes.
Collapse
Affiliation(s)
- Hyun Joo Ahn
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Long B, Jiang C, Zheng Q, Wan P. Pachydermoperiostosis combined with pyloric gland adenoma with foveolar-type adenoma. United European Gastroenterol J 2024; 12:152-154. [PMID: 37991153 PMCID: PMC10859707 DOI: 10.1002/ueg2.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Bangce Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Chenglin Jiang
- Emergency Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qingqing Zheng
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ping Wan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Murphy O, Forget P, Ma D, Buggy DJ. Tumour excisional surgery, anaesthetic-analgesic techniques, and oncologic outcomes: a narrative review. Br J Anaesth 2023; 131:989-1001. [PMID: 37689540 DOI: 10.1016/j.bja.2023.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/11/2023] Open
Abstract
Cancer is a growing global burden; there were an estimated 18 million new cancer diagnoses worldwide in 2020. Excisional surgery remains one of the main treatments for solid organ tumours in cancer patients and is potentially curative. Cancer- and surgery-induced inflammatory processes can facilitate residual tumour cell survival, growth, and subsequent recurrence. However, it has been hypothesised that anaesthetic and analgesic techniques during surgery might influence the risk of cancer recurrence. This narrative review aims to provide an updated summary of recent observational studies and new randomised controlled clinical trials on whether certain specific anaesthetic and analgesic techniques or perioperative interventions during tumour resection surgery of curative intent materially affect long-term oncologic outcomes.
Collapse
Affiliation(s)
- Orla Murphy
- Department of Anaesthesiology and Perioperative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrice Forget
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Department of Anaesthesia, NHS Grampian, Aberdeen, UK; Euro-Periscope, The ESA-IC OncoAnaesthesiology Research Group
| | - Daqing Ma
- Euro-Periscope, The ESA-IC OncoAnaesthesiology Research Group; Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Donal J Buggy
- Department of Anaesthesiology and Perioperative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Dublin, Ireland; Euro-Periscope, The ESA-IC OncoAnaesthesiology Research Group; Outcomes Research, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
Luo H, Cao H, Jia H, Shang Y, Liu J, Gui H, Yang C, Ren C, Wang Z, Liu J. EISA in Tandem with ICD to Form In Situ Nanofiber Vaccine for Enhanced Tumor Radioimmunotherapy. Adv Healthc Mater 2023; 12:e2301083. [PMID: 37300544 DOI: 10.1002/adhm.202301083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD. As ICD progresses, the peptide Fbp-GD FD FD pY (Fbp-pY), dephosphorylated by alkaline phosphatase (ALP) forms a fibrous nanostructure around the tumor cells, resulting in the capture and encapsulation of the autologous antigens produced by radiation. Utilizing the adjuvant and controlled-release advantages of self-assembling peptides, this nanofiber vaccine effectively increases antigen accumulation in the lymph nodes and cross-presentation by antigen-presenting cells (APCs). In addition, the inhibition of cyclooxygenase 2 (COX-2) expression by the nanofibers promotes the repolarization of M2-macrophages into M1 and reduces the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) required for TME remodeling. As a result, the combination of nanovaccines and RT significantly enhances the therapeutic effect on 4T1 tumors compared with RT alone, suggesting a promising treatment strategy for tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yuna Shang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
6
|
Lee H, Jung S, Gong G, Lim B, Lee HJ. Association of cyclooxygenase-2 expression with endoplasmic reticulum stress and autophagy in triple-negative breast cancer. PLoS One 2023; 18:e0289627. [PMID: 37540709 PMCID: PMC10403079 DOI: 10.1371/journal.pone.0289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p < 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p < 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer.
Collapse
Affiliation(s)
- Haechan Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - SungWook Jung
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bora Lim
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, TX, United States of America
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Dai H, Wang G, Cao W, Qi W, Chen W, Guo H. Stress granules affect the sensitivity of renal cancer cells to sorafenib by sequestering and stabilizing COX‑2 mRNA. Oncol Lett 2023; 25:274. [PMID: 37216166 PMCID: PMC10193378 DOI: 10.3892/ol.2023.13860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Most patients with renal cancer will develop resistance to sorafenib therapy and will therefore exhibit disease progression. Effective therapies for these patients are extremely limited. Cyclooxygenase-2 (COX-2) promotes the malignant transformation of cancer cells and drug resistance. The potential of COX-2 inhibitor (celecoxib) administration in combination with sorafenib for the treatment of renal cancer is unclear. The present study demonstrated that sorafenib rapidly increased the expression of COX-2 in renal cancer cells, as determined using reverse transcription-quantitative PCR and western blotting. The results of the MTT assay and cell apoptosis experiment demonstrated that the cytotoxicity of sorafenib was also affected by COX-2 expression and celecoxib enhanced the cytotoxicity of sorafenib against renal cell carcinoma. Immunofluorescence analysis indicated that sorafenib induced the formation of stress granules (SGs) in renal cancer cells. In addition, COX-2 expression was associated with the formation of SGs, and SGs could capture and stabilize COX-2 mRNAs in renal cancer cells; this was confirmed using RNA fluorescence in situ hybridization and an actinomycin D chase experiment. The protective effect of SGs was further demonstrated in cell experiments and xenograft tumor models. Thus, the present study indicated that the use of celecoxib may significantly enhance the sensitivity of renal cancer cells to sorafenib and improve efficacy. Sorafenib-induced SGs may contribute to critical events that promote COX-2 expression and survival in renal cancer cells. Therefore, the present study may provide novel ideas for the treatment of renal cancer.
Collapse
Affiliation(s)
- Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Guoli Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Qi
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Department of Urology, The Second People's Hospital of Hefei, Hefei, Anhui 230001, P.R. China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
8
|
Képes Z, Dénes N, Kertész I, Hajdu I, Trencsényi G. Overview of Prostaglandin E2 (PGE2)-Targeting Radiolabelled Imaging Probes from Preclinical Perspective: Lessons Learned and Road Ahead. Int J Mol Sci 2023; 24:ijms24086942. [PMID: 37108106 PMCID: PMC10138785 DOI: 10.3390/ijms24086942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
As malignancies still represent one of the major health concerns worldwide, early tumor identification is among the priorities of today's science. Given the strong association between cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), PGE2 receptors (EPs), and carcinogenesis, target-specific molecules directed towards the components of the COX2/PGE2/EP axis seem to be promising imaging probes in the diagnostics of PGE2pos. neoplasms and in the design of anti-cancer drugs. Featured with outstanding inclusion forming capability, β-cyclodextrins (CDs) including randomly methylated β-CD (RAMEB) were reported to complex with PGE2. Therefore, radiolabelled β-CDs could be valuable vectors in the molecular imaging of PGE2-related tumorigenesis. In vivo preclinical small animal model systems applying positron emission tomography (PET) ensure a well-suited scenario for the assessment of PGE2-affine labelled CD derivatives. Previous translational studies dealt with the evaluation of the tumor-homing capability of Gallium-68 (68Ga) and Bismuth-205/206 (205/206Bi)-appended β-CD compounds conjugated with chelator NODAGA or DOTAGA: [68Ga]Ga-NODAGA-2-hydroxypropyl-β-cyclodextrin/HPBCD, [68Ga]Ga-NODAGA-RAMEB, [68Ga]Ga-DOTAGA-RAMEB, and [205/206Bi]Bi-DOTAGA-RAMEB in experimental tumors with different PGE2 expression. These imaging probes project the establishment of tailor-made PET diagnostics of PGE2pos. malignancies. In the present review, we provide a detailed overview of the in vivo investigations of radiolabelled PGE2-directed CDs, highlighting the importance of the integration of translational discoveries into routine clinical usage.
Collapse
Affiliation(s)
- Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Noémi Dénes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Hajdu
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Chauhan LK, Chopra J, Vanangamudi M, Tripathi IP, Bhargava A, Goswami AK, Baroliya PK. Hydroxytriazenes incorporating sulphonamide derivatives: evaluation of antidiabetic, antioxidant, anti-inflammatory activities, and computational study. Mol Divers 2023; 27:223-237. [PMID: 35414151 DOI: 10.1007/s11030-022-10420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
The existent investigation deals with synthesis, characterization, computational analysis, and biological activities of some hydroxytriazene derivatives containing sulphonamide moiety. The compounds were screened for antidiabetic, antioxidant, and anti-inflammatory activities. The antidiabetic activity was assessed using α-glucosidase and α-amylase inhibition assays with IC50 values ranging from 32.0 to 759.13 μg/mL and 157.77 to 340.47 μg/mL while standard drug acarbose showed IC50 values 12.21 and 69.74 μg/mL, respectively. The antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays with IC50 value ranging from 54.01 to 912.66 μg/mL and 33.22 to 128.11 μg/mL, and standard drug ascorbic acid showed IC50 values 29.12 μg/mL and 69.13 μg/mL, respectively. Anti-inflammatory activity was investigated using the carrageenan-induced paw edema method, where percentage inhibition was up to 93.0 and 98.57 for 2 h and 4 h, respectively, and all the compounds were found to exhibit excellent anti-inflammatory activity. Moreover, prediction of activity spectra for substance and molecular docking were also performed. The PASS prediction hypothesized the potential of the compounds for anti-inflammatory activity, and docking results suggested the best binding pose for compounds 1b and 2b with the least energy value from which compounds can be considered as potent COX-2 inhibitors. Furthermore, possible interactions between hydroxytriazene analogues and the targets of antioxidant NADPH oxidase and antidiabetic human maltase-glucoamylase enzyme have been identified. The HOMO and LUMO analysis revealed charge transfer within the compounds. These findings suggested that the synthesized compounds can be potential agents for the treatment of diabetes and inflammation.
Collapse
Affiliation(s)
- Laxmi K Chauhan
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Jaishri Chopra
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Tirupathi, India.,Amity Institute of Pharmacy (AIP), Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Indra P Tripathi
- Department of Environmental Sciences, Mahatma Gandhi Gramoday Chitrakoot Vishwavidyalaya, Chitrakoot, Satna, India
| | - Amit Bhargava
- Department of Pharmacology and Toxicology Studies, Bhupal Noble Institute of Pharmaceutical Sciences, Udaipur, India
| | - Ajay K Goswami
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | | |
Collapse
|
10
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
11
|
Che X, Li T. Total versus inhaled intravenous anesthesia methods for prognosis of patients with lung, breast, or esophageal cancer: A cohort study. Front Surg 2023; 10:1155351. [PMID: 37114153 PMCID: PMC10126379 DOI: 10.3389/fsurg.2023.1155351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Objective To explore the influences of total intravenous anesthesia (TIVA) and inhaled-intravenous anesthesia on the prognosis of patients with lung, breast, or esophageal cancer. Methods In this retrospective cohort study, patients with lung, breast, or esophageal cancer who underwent surgical treatments at Beijing Shijitan Hospital between January 2010 and December 2019 were included. The patients were categorized into the TIVA group and inhaled-intravenous anesthesia group, according to the anesthesia methods used for the patients for surgery of the primary cancer. The primary outcome of this study included overall survival (OS) and recurrence/metastasis. Results Totally, 336 patients were included in this study, 119 in the TIVA group and 217 in the inhaled-intravenous anesthesia group. The OS of patients in the TIVA group was higher than in the inhaled-intravenous anesthesia group (P = 0.042). There were no significant differences in the recurrence/metastasis-free survival between the two groups (P = 0.296). Inhaled-intravenous anesthesia (HR = 1.88, 95%CI: 1.15-3.07, P = 0.012), stage III cancer (HR = 5.88, 95%CI: 2.57-13.43, P < 0.001), and stage IV cancer (HR = 22.60, 95%CI: 8.97-56.95, P < 0.001) were independently associated with recurrence/ metastasis. Comorbidities (HR = 1.75, 95%CI: 1.05-2.92, P = 0.033), the use of ephedrine, noradrenaline or phenylephrine during surgery (HR = 2.12, 95%CI: 1.11-4.06, P = 0.024), stage II cancer (HR = 3.24, 95%CI: 1.08-9.68, P = 0.035), stage III cancer (HR = 7.60, 95%CI: 2.64-21.86, P < 0.001), and stage IV cancer (HR = 26.61, 95%CI: 8.57-82.64, P < 0.001) were independently associated with OS. Conclusion In patients with breast, lung, or esophageal cancer, TIVA is preferable than inhaled-intravenous anesthesia group for longer OS,, but TIVA was not associated with the recurrence/metastasis-free survival of patients.
Collapse
Affiliation(s)
- Xiangming Che
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Correspondence: Tianzuo Li
| |
Collapse
|
12
|
Braccia DJ, Minabou Ndjite G, Weiss A, Levy S, Abeysinghe S, Jiang X, Pop M, Hall B. Gut Microbiome-Wide Search for Bacterial Azoreductases Reveals Potentially Uncharacterized Azoreductases Encoded in the Human Gut Microbiome. Drug Metab Dispos 2023; 51:142-153. [PMID: 36116790 PMCID: PMC11022935 DOI: 10.1124/dmd.122.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
The human gut is home to trillions of microorganisms that are responsible for the modification of many orally administered drugs, leading to a wide range of therapeutic outcomes. Prodrugs bearing an azo bond are designed to treat inflammatory bowel disease and colorectal cancer via microbial azo reduction, allowing for topical application of therapeutic moieties to the diseased tissue in the intestines. Despite the inextricable link between microbial azo reduction and the efficacy of azo prodrugs, the prevalence, abundance, and distribution of azoreductases have not been systematically examined across the gut microbiome. Here, we curated and clustered amino acid sequences of experimentally confirmed bacterial azoreductases and conducted a hidden Markov model-driven homolog search for these enzymes across 4644 genome sequences present in the representative Unified Human Gastrointestinal Genomes collection. We identified 1958 putative azo-reducing species, corroborating previous findings that azo reduction appears to be a ubiquitous function of the gut microbiome. However, through a systematic comparison of predicted and confirmed azo-reducing strains, we hypothesize the presence of uncharacterized azoreductases in 25 prominent strains of the human gut microbiome. Finally, we confirmed the azo reduction of Acid Orange 7 by multiple strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme Together, these results suggest the presence and activity of many uncharacterized azoreductases in the human gut microbiome and motivate future studies aimed at characterizing azoreductase genes in prominent members of the human gut microbiome. SIGNIFICANCE STATEMENT: This work systematically examined the prevalence, abundance, and distribution of azoreductases across the healthy and inflammatory bowel disease human gut microbiome, revealing potentially uncharacterized azoreductase genes. It also confirmed the reduction of Acid Orange 7 by strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme.
Collapse
Affiliation(s)
- Domenick J Braccia
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Glory Minabou Ndjite
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Ashley Weiss
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Sophia Levy
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Stephenie Abeysinghe
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Xiaofang Jiang
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Brantley Hall
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| |
Collapse
|
13
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis. Pharmaceuticals (Basel) 2022; 15:ph15121497. [PMID: 36558948 PMCID: PMC9782150 DOI: 10.3390/ph15121497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.
Collapse
|
15
|
Jiao J, Cheng CS, Xu P, Yang P, Zhang K, Jing Y, Chen Z. Mechanisms of pancreatic tumor suppression mediated by Xiang-lian pill: An integrated in silico exploration and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115586. [PMID: 35931303 DOI: 10.1016/j.jep.2022.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiang-lian pill, consisting of Coptis chinensis Franch. coprocessed with Tetradium ruticarpum (A.Juss.) T.G.Hartley (Yu-huang-lian) and Aucklandia lappa DC. (Mu-xiang), is traditionally used to relieve fever, abdominal pain, and gastrointestinal inflammatory symptoms observed in patients with malignancies of the gastrointestinal tract. Each of the three herbs contained in Xiang-lian pill has been indicated to have anticancer effects on a variety of cancers, but its effects on pancreatic cancer remain unexplored. The main extracts of these herbs have anti-pancreatic cancer effects, but the comprehensive mechanism of this compound prescription of Xiang-lian pill in pancreatic cancer remains to be revealed. AIM OF THE STUDY To explore the main active ingredients, potential anti-pancreatic cancer targets, and related mechanisms of the Xiang-lian pill and to determine its therapeutic value in vivo. MATERIALS AND METHODS Network pharmacology and bioinformatics analysis were applied to screen the potential effective ingredients and key targets. Liquid/gas-mass spectrometry was performed for ingredients validation. Molecular docking and the cellular thermal shift assay were performed to test the binding efficiency between ingredients and targets. A murine pancreatic cancer model was established and administered different doses of the Xiang-lian pill. Hematoxylin-eosin staining was used for histopathological observation. Immunohistochemistry and immunoblotting were conducted for target validation. In vitro studies (cell viability and clonogenicity assays) were conducted to investigate the impact of three main ingredients in Xiang-lian pill on pancreatic cancer cells. PTGS2 overexpression was performed to reversely confirm the antitumor mechanisms of rutaecarpine as a specific PTGS2 inhibitor. RESULTS Xiang-lian pill suppressed pancreatic cancer growth in the dose range of 0.78-2.34g/kg with no significant toxicity. Sixteen potentially active ingredients and 26 corresponding therapeutic targets for pancreatic cancer were identified. PTGS2, PTGS1, KCNH2, PRSS1, and HSP90AA1 were the top 5 significant genes targeted by the Xiang-lian pill. Evodiamine, rutaecarpine and stigmasterol bound to PTGS2 and PTGS1 with different affinities and inhibited pancreatic cancer cell proliferation. The PTGS2-associated metabolic pathway MEK/ERK was downregulated by rutaecarpine in vitro and the Xiang-lian pill in vivo. CONCLUSIONS Xiang-lian pill mainly regulates inflammation, apoptosis, metastasis, and metabolism to exert an antitumor effect. The main active ingredients in Xiang-lian pill exhibit antitumor roles through directly binding to key targets in pancreatic cancer. PTGS2 mediated MEK/ERK inhibition by rutaecarpine represents a key therapeutic mechanism of Xiang-lian pill.
Collapse
Affiliation(s)
- Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Brogi E, Forfori F. Anesthesia and cancer recurrence: an overview. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:33. [PMID: 37386584 DOI: 10.1186/s44158-022-00060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 07/01/2023]
Abstract
Several perioperative factors are responsible for the dysregulation or suppression of the immune system with a possible impact on cancer cell growth and the development of new metastasis. These factors have the potential to directly suppress the immune system and activate hypothalamic-pituitary-adrenal axis and the sympathetic nervous system with a consequent further immunosuppressive effect.Anesthetics and analgesics used during the perioperative period may modulate the innate and adaptive immune system, inflammatory system, and angiogenesis, with a possible impact on cancer recurrence and long-term outcome. Even if the current data are controversial and contrasting, it is crucial to increase awareness about this topic among healthcare professionals for a future better and conscious choice of anesthetic techniques.In this article, we aimed to provide an overview regarding the relationship between anesthesia and cancer recurrence. We reviewed the effects of surgery, perioperative factors, and anesthetic agents on tumor cell survival and tumor recurrence.
Collapse
Affiliation(s)
- Etrusca Brogi
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Francesco Forfori
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
17
|
Santander Ballestín S, Lanuza Bardaji A, Marco Continente C, Luesma Bartolomé MJ. Antitumor Anesthetic Strategy in the Perioperatory Period of the Oncological Patient: A Review. Front Med (Lausanne) 2022; 9:799355. [PMID: 35252243 PMCID: PMC8894666 DOI: 10.3389/fmed.2022.799355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The stress response triggered by the surgical aggression and the transient immunosuppression produced by anesthetic agents stimulate the inadvertent dispersion of neoplastic cells and, paradoxically, tumor progression during the perioperative period. Anesthetic agents and techniques, in relation to metastatic development, are investigated for their impact on long-term survival. Scientific evidence indicates that inhaled anesthetics and opioids benefit immunosuppression, cell proliferation, and angiogenesis, providing the ideal microenvironment for tumor progression. The likely benefit of reducing their use, or even replacing them as much as possible with anesthetic techniques that protect patients from the metastatic process, is still being investigated. The possibility of using "immunoprotective" or "antitumor" anesthetic techniques would represent a turning point in clinical practice. Through understanding of pharmacological mechanisms of anesthetics and their effects on tumor cells, new perioperative approaches emerge with the aim of halting and controlling metastatic development. Epidural anesthesia and propofol have been shown to maintain immune activity and reduce catecholaminergic and inflammatory responses, considering the protective techniques against tumor spread. The current data generate hypotheses about the influence of anesthesia on metastatic development, although prospective trials that determinate causality are necessary to make changes in clinical practice.
Collapse
Affiliation(s)
- Sonia Santander Ballestín
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
18
|
Sadik O, Schaffer D, Land W, Xue H, Yazgan I, Kafesçilere AK, Sungur M. A Bayesian Network Concept for Pain Assessment (Preprint). JMIR BIOMEDICAL ENGINEERING 2021. [DOI: 10.2196/35711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Superior Overall Survival in Patients with Colorectal Cancer, Regular Aspirin Use, and Combined Wild-Type PIK3CA and KRAS-Mutated Tumors. Cancers (Basel) 2021; 13:cancers13194959. [PMID: 34638442 PMCID: PMC8507980 DOI: 10.3390/cancers13194959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The impact of aspirin use after the diagnosis of colorectal cancer is unknown. Among others, PIK3CA mutational status was proposed as a molecular biomarker for the response to adjuvant aspirin therapy. The aim of this study was to retrospectively analyze whether the PIK3CA and KRAS mutational status had an impact on overall survival in patients with colorectal cancer and aspirin use. In a retrospective study, we obtained KRAS and PIK3CA mutational status in a cohort of 153 patients with a first diagnosis of colorectal cancer receiving tumor surgery with curative intent. Clinicopathological data and survival data were assessed using patient records and reporting registers. We observed a significant 10-year overall survival benefit in patients with aspirin use and combined wild-type PIK3CA and mutated-KRAS tumors (HR = 0.38; 95% CI = 0.17–0.87; p = 0.02). Our data indicated a benefit of aspirin usage particularly for patients with combined wild-type PIK3CA and mutated-KRAS tumor characteristics. Abstract The impact of aspirin use after the diagnosis of colorectal cancer is unknown. Among others, PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) mutational status was proposed as a molecular biomarker for the response to adjuvant aspirin therapy. However, prognostic data on aspirin use after a colorectal cancer diagnosis in relation to KRAS mutational status is limited. In a single-center retrospective study, we obtained KRAS and PIK3CA mutational status in a cohort of 153 patients with a first diagnosis of colorectal cancer receiving tumor surgery with curative intent. PIK3CA mutational status was determined by pyrosequencing, and KRAS mutational status was determined by next-generation sequencing. Clinicopathological data and survival data were assessed using patient records and reporting registers. We observed a significant 10-year overall survival benefit in patients with aspirin use and combined wild-type PIK3CA and mutated-KRAS tumors (HR = 0.38; 95% CI = 0.17–0.87; p = 0.02), but not in patients without aspirin use. Our data indicate a benefit of aspirin usage particularly for patients with combined wild-type PIK3CA and mutated-KRAS tumor characteristics.
Collapse
|
20
|
Ji XK, Madhurapantula SV, He G, Wang KY, Song CH, Zhang JY, Wang KJ. Genetic variant of cyclooxygenase-2 in gastric cancer: More inflammation and susceptibility. World J Gastroenterol 2021; 27:4653-4666. [PMID: 34366627 PMCID: PMC8326261 DOI: 10.3748/wjg.v27.i28.4653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer accounts for the majority cancer-related deaths worldwide. Although various methods have considerably improved the screening, diagnosis, and treatment of gastric cancer, its incidence is still high in Asia, and the 5-year survival rate of advanced gastric cancer patients is only 10%-20%. Therefore, more effective drugs and better screening strategies are needed for reducing the incidence and mortality of gastric cancer. Cyclooxygenase-2 (COX-2) is considered to be the key inducible enzyme in prostaglandins (PGs) synthesis, which is involved in multiple pathways in the inflammatory response. For example, inflammatory cytokines stimulate innate immune responses via Toll-like receptors and nuclear factor-kappa B to induce COX-2/PGE2 pathway. In these processes, the production of an inflammatory microenvironment promotes the occurrence of gastric cancer. Epidemiological studies have also indicated that non-steroidal anti-inflammatory drugs can reduce the risk of malignant tumors of the digestive system by blocking the effect of COX-2. However, clinical use of COX-2 inhibitors to prevent or treat gastric cancer may be limited because of potential side effects, especially in the cardiovascular system. Given these side effects and low treatment efficacy, new therapeutic approaches and early screening strategies are urgently needed. Some studies have shown that genetic variation in COX-2 also play an important role in carcinogenesis. However, the genetic variation analysis in these studies is incomplete and isolated, pointing out only a few single nucleotide polymorphisms (SNPs) and the risk of gastric cancer, and no comprehensive study covering the whole gene region has been carried out. In addition, copy number variation (CNV) is not mentioned. In this review, we summarize the SNPs in the whole COX-2 gene sequence, including exons, introns, and both the 5' and 3' untranslated regions. Results suggest that COX-2 does not increase its expression through the CNV and the SNPs in COX-2 may serve as the potential marker to establish risk stratification in the general population. This review synthesizes emerging insights of COX-2 as a biomarker in multiple studies, summarizes the association between whole COX-2 sequence variation and susceptibility to gastric cancer, and discusses the future prospect of therapeutic intervention, which will be helpful for early screening and further research to find new approaches to gastric cancer treatment.
Collapse
Affiliation(s)
- Xuan-Ke Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sailaja Vatsalya Madhurapantula
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Gui He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun-Yan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Chun-Hua Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jian-Ying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kai-Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
21
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Dockrell L, Buggy DJ. The role of regional anaesthesia in the emerging subspecialty of onco-anaesthesia: a state-of-the-art review. Anaesthesia 2021; 76 Suppl 1:148-159. [PMID: 33426658 DOI: 10.1111/anae.15243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2020] [Indexed: 01/07/2023]
Abstract
Cancer accounts for millions of deaths globally each year, predominantly due to recurrence and metastatic disease. The majority of patients with primary solid organ cancers require surgery, however, some degree of tumour dissemination related to surgery is inevitable. The surgical stress response and associated immunosuppression, pain, inflammation, tissue hypoxia and angiogenesis have all been implicated in promoting tumour survival, proliferation and recurrence. Regional anaesthesia was hypothesised to reduce the surgical stress response and immunosuppression, minimise the need for volatile anaesthesia and reduce pain and opioid requirements, thus mitigating pro-tumour pathways associated with the peri-operative period and improving long-term oncological outcomes. While some retrospective studies suggested an association between regional anaesthesia and reduced cancer recurrence, the first large randomised controlled trial on the effect of anaesthetic technique on cancer outcome found no significant difference between paravertebral regional anaesthesia and volatile anaesthesia with opioid analgesia in patients undergoing breast cancer surgery. Randomised controlled trials on the long-term oncological outcomes of regional anaesthesia in other tumour types are ongoing. The focus on how peri-operative interventions, especially regional anaesthesia, during cancer resection surgery, may enhance short-term recovery and perhaps influence long-term outcome has spawned the global emergence of the subspecialty of onco-anaesthesia. This review aims to discuss the most recent evidence on the use of regional anaesthesia in cancer surgery and the significance of its role in onco-anaesthesia.
Collapse
Affiliation(s)
- L Dockrell
- Division of Anaesthesiology and Peri-operative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| | - D J Buggy
- Division of Anaesthesiology and Peri-operative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
24
|
Zhao M, Wang Y, Zhao Y, He S, Zhao R, Song Y, Cheng J, Gong Y, Xie J, Wang Y, Hu B, Tian L, Huang Q. Caspase-3 knockout attenuates radiation-induced tumor repopulation via impairing the ATM/p53/Cox-2/PGE 2 pathway in non-small cell lung cancer. Aging (Albany NY) 2020; 12:21758-21776. [PMID: 33180744 PMCID: PMC7695367 DOI: 10.18632/aging.103984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Radiotherapy is an effective treatment for non-small cell lung cancer (NSCLC). However, irradiated, dying tumor cells generate potent growth stimulatory signals during radiotherapy that promote the repopulation of adjacent surviving tumor cells to cause tumor recurrence. We investigated the function of caspase-3 in NSCLC repopulation after radiotherapy. We found that radiotherapy induced a DNA damage response (DDR), activated caspase-3, and promoted tumor repopulation in NSCLC cells. Unexpectedly, caspase-3 knockout attenuated the ataxia-telangiectasia mutated (ATM)/p53-initiated DDR by decreasing nuclear migration of endonuclease G (EndoG), thereby reducing the growth-promoting effect of irradiated, dying tumor cells. We also identified p53 as a regulator of the Cox-2/PGE2 axis and its involvement in caspase-3-induced tumor repopulation after radiotherapy. In addition, injection of caspase-3 knockout NSCLC cells impaired tumor growth in a nude mouse model. Our findings reveal that caspase-3 promotes tumor repopulation in NSCLC cells by activating DDR and the downstream Cox-2/PGE2 axis. Thus, caspase-3-induced ATM/p53/Cox-2/PGE2 signaling pathway could provide potential therapeutic targets to reduce NSCLC recurrence after radiotherapy.
Collapse
Affiliation(s)
- Minghui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yiwei Wang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sijia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ruyi Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yanwei Song
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yanping Gong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jianzhu Xie
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yulan Wang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Binjie Hu
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
25
|
Gholamian Dehkordi N, Mirzaei SA, Elahian F. Pharmacodynamic mechanisms of anti-inflammatory drugs on the chemosensitization of multidrug-resistant cancers and the pharmacogenetics effectiveness. Inflammopharmacology 2020; 29:49-74. [PMID: 33070257 DOI: 10.1007/s10787-020-00765-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/27/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance as a remarkable issue in cancer treatment is associated with inflammation which occurs through complex chemical reactions in the tumor microenvironment. Recent studies have implicated that glucocorticoids and NSAIDs are mainly useful combinations for inflammatory response modulation in chemotherapeutic protocols for cancer treatment. Immunosuppressive actions of glucocorticoids and NSAIDs are mainly mediated by the transrepression or activation regulation of inflammatory genes with different DNA-bound transcription factors including AP-1, NFAT, NF-κB, STAT and also, varying functions of COX enzymes in cancer cells. Interestingly, many investigations have proved the benefits of these anti-inflammatory agents in the quenching of multidrug resistance pathways. Numerous analyses on the ABC transporter promoters showed conserved nucleotide sequences with several DNA response elements that participate in transcriptional regulation. Furthermore, genetic variations in nucleotide sequences of membrane transporters were strongly associated with changes in these transporters' expression or function and a substantial impact on systemic drug exposure and toxicity. It appeared that several polymorphisms in MDR transporter genes especially MDR1 have influenced the regulatory mechanisms and explained differences in glucocorticoid responses.
Collapse
Affiliation(s)
- Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
26
|
Li Y, Li J, Dong J, Zhang L, Liu D, He J, She Y, Ma C, Liu Y. 15-PGDH Expression in Gastric Cancer: A Potential Role in Anti-Tumor Immunity. Cancer Manag Res 2020; 12:7419-7426. [PMID: 32884353 PMCID: PMC7443415 DOI: 10.2147/cmar.s245726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Host immunity plays a vital role in tumorigenesis, including in tumor invasion and metastasis. However, the precise underlying mechanism remains to be explored. The enzyme 15-PGDH, which plays a key role in prostaglandin degradation, is a critical inflammatory mediator in gastric cancer (GC) tumorigenesis. Materials and Methods Immunohistochemistry was performed to determine 15-PGDH expression in GC and the corresponding adjacent non-neoplastic tissues (n=92). Results The expression of 15-PGDH in GC tissues was significantly lower than that in paracancerous tissues (P<0.001) and found to correspond inversely with GC differentiation (P=0.043) and lymph node metastasis (P=0.046). In contrast, FOXP3 expression was increased in poorly differentiated GC tissues (P=0.001). Kaplan–Meier analysis revealed that GC patients with low expression of 15-PGDH (Log rank test, P=0.007) and high expression of FOXP3 (Log rank test, P=0.009) had shorter overall survival (OS) than those with high 15-PGDH and low FOXP3 expression. OS was also correlated with pathological tumor-node-metastasis stage (Log rank test, P=0.014). Furthermore, using Cox proportional hazard regression, 15-PGDH expression [hazard ratio (HR): 0.605 (0.440–0.833); P=0.002] was identified as an independent factor for OS. Conclusion Our data suggest that 15-PGDH may contribute to anti-tumor immunity by regulating FOXP3+ Treg cells. The findings are useful for the identification of therapeutic targets for the management of GC.
Collapse
Affiliation(s)
- Yaling Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| | - Junjie Li
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Juanjuan Dong
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Lei Zhang
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Dongling Liu
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Jianzheng He
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| | - Yali She
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Chengxu Ma
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yongqi Liu
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Dunhuang Medicine and Transformation Constructed by Chinese Ministry of Education and Gansu Province, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
27
|
The Role of VEGFA, COX2, HUR and CUGBP2 in Predicting the Response to Neoadjuvant Therapy in Rectal Cancer Patients. ACTA ACUST UNITED AC 2020; 56:medicina56040192. [PMID: 32331433 PMCID: PMC7230171 DOI: 10.3390/medicina56040192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Background and objectives: The effectiveness of neoadjuvant therapy, which is commonly used for stage II-III rectal cancer (RC) treatment, is limited. Genes associated with the pathogenesis of RC could determine response to this treatment. Therefore, the aim of this study was to investigate the potential predictive value of VEGFA, COX2, HUR and CUGBP2 genes and the associations between post-treatment changes in gene expression and the efficacy of neoadjuvant therapy. Materials and Methods: Biopsies from RC and healthy rectal tissue of 28 RC patients were collected before neoadjuvant therapy and 6-8 weeks after neoadjuvant therapy. The expression levels of VEGFA, COX2, HUR, CUGBP2 genes were evaluated using a quantitative real-time polymerase chain reaction. Results: The results reveal a significantly higher expression of VEGFA, COX2 and HUR mRNA in RC tissue compared to healthy rectal tissue (p < 0.05), and elevated VEGFA gene expression in pre-treatment tissues was associated with a better response to neoadjuvant therapy based on T-stage downstaging (p < 0.05). The expression of VEGFA, HUR and CUGBP2 genes significantly decreased after neoadjuvant therapy (p < 0.05). Responders to treatment demonstrated a significantly stronger decrease of VEGFA and COX2 expression after neoadjuvant therapy than non-responders (p < 0.05). Conclusions: The findings of this study suggest that the pre-treatment VEGFA gene expression might have predictive value for the response to neoadjuvant therapy, while the post-treatment decrease in VEGFA and COX2 gene expression could indicate the effectiveness of neoadjuvant therapy in RC patients.
Collapse
|
28
|
Zhang X, Zhang J, Zhou H, Fan G, Li Q. Molecular Mechanisms and Anticancer Therapeutic Strategies in Vasculogenic Mimicry. J Cancer 2019; 10:6327-6340. [PMID: 31772665 PMCID: PMC6856738 DOI: 10.7150/jca.34171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular formation mechanism used by aggressive tumor cells. VM provides an alternative pathway for adequate blood perfusion and challenges the traditional angiogenesis mechanism that depends only on endothelial cells (ECs), as VM-forming tumor cells express a mixed endothelial/tumor phenotype. VM is closely correlated with tumor invasion, migration, and progression. Hence, anticancer therapeutic strategies targeting VM biogenesis are essential. It is widely acknowledged that the VM formation mechanism involves multiple pathways. The purpose of this review is to describe the potential molecular mechanisms related to different pathways and discuss the involvement of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in VM formation. Moreover, we discuss the significance of VM in clinical practice and present new anticancer therapeutic strategies that target VM.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Heming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| |
Collapse
|
29
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
30
|
Naproxenylamino acid derivatives: Design, synthesis, docking, QSAR and anti-inflammatory and analgesic activity. Biomed Pharmacother 2019; 116:109024. [DOI: 10.1016/j.biopha.2019.109024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023] Open
|
31
|
Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv 2019; 9:23894-23907. [PMID: 35530631 PMCID: PMC9069781 DOI: 10.1039/c9ra03608c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
Surface-modified gold nanoparticles are recognized as promising gene delivery vehicles in the treatment of cancer owing to their excellent biocompatibility with biomolecules (like DNA or RNA) and their unique optical and structural properties. In this context, this review article focuses on the diverse transfection abilities of the gene to the targeted cell on the basis of different shapes and sizes of gold nanoparticles in order to promote its effective expression for cancer treatment. In addition, recent trends in gold nanoparticle mediated gene silencing, gene delivery, detection and combinatory therapies are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Devanshu Choudhary
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
32
|
Elhenawy AA, Al-Harbi LM, El-Gazzar MA, Khowdiary MM, Moustfa A. Synthesis, molecular properties and comparative docking and QSAR of new 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetic acid derivatives as possible anticancer agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:248-262. [PMID: 31003050 DOI: 10.1016/j.saa.2019.02.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Novel coumarin amino acid derivatives were synthesized. The structure of synthesized compounds has established on basis of different spectral data. The optimization geometry, frontier molecular orbitals (FMOs), thermodynamic parameters and chemical reactivity, were discussed using DFT\B3LYP by 6-311G* basis set, to identify a clear view for inter and intramolecular interaction of tested compounds. The molecular electrostatic potential (MEP) has plotted to investigate a recognition manner of synthesized compounds upon COX-2 receptor. All tested compounds showed a promising (NLOs) nonlinear optical properties. Bond dissociation energy (BDE) has studied to investigate a potency of these molecules against autoxidation mechanism Polynomial molecular docking logarithms have performed into the COX-2 active site for tested compounds. The docking protocol that has low RMSD has selected for discussion the binding affinity. The compounds with a high docking score 3,4,6-8,10 and 11 were selected for additional study against ADMET insilico, which showed that these compounds are a good oral bioavailability without observed carcinogenesis affect. The compounds (3,4,6-8,10 and 11) which that passed through docking and ADMET profile have examined their potency against (MCF-7) breast cancer cell in vitro. The compound 7 showed a highest potency against MCF-7 with IC50 value 0.39 μM. The QSAR model has created to discover the structural necessity inhibition of MCF-7. The derived QSAR model has a statistically significant with a good predictive power.
Collapse
Affiliation(s)
- Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys Branch), Nasr City, Cairo, Egypt.
| | - L M Al-Harbi
- King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - M A El-Gazzar
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys Branch), Nasr City, Cairo, Egypt
| | - Manal M Khowdiary
- Egyptian Petroleum Research Institute, Applied Surfactant Laboratory, Nasr City 11727, Cairo, Egypt; Chemistry Department, Faculty of Applied Sciences, Um El Qura University, Makkah, Saudi Arabia
| | - A Moustfa
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys Branch), Nasr City, Cairo, Egypt
| |
Collapse
|
33
|
Abstract
Eicosanoids are bioactive lipids that play crucial roles in various pathophysiological conditions, including inflammation and cancer. They include both the COX-derived prostaglandins and the LOX-derived leukotrienes. Furthermore, the epidermal growth factor receptor (EGFR) pathways family of receptor tyrosine kinases also are known to play a central role in the tumorigenesis. Various antitumor modalities have been approved cancer treatments that target therapeutically the COX-2 and EGFR pathways; these include selective COX-2 inhibitors and EGFR monoclonal antibodies. Research has shown that the COX-2 and epidermal growth factor receptor pathways actively interact with each other in order to orchestrate carcinogenesis. This has been used to justify a targeted combinatorial approach aimed at these two pathways. Although combined therapies have been found to have a greater antitumor effect than the administration of single agent, this does not exempt them from the possible fatal cardiac effects that are associated with COX-2 inhibition. In this review, we delineate the contribution of HB-EGF, an important EGFR ligand, to the cardiac dysfunction related to decreased shedding of HB-EGF after COX-2/PGE2 inhibition. A better understanding of the molecular mechanisms underlying these cardiac side effects will make possible more effective regimens that use the dual-targeting approach.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
Esbona K, Yi Y, Saha S, Yu M, Van Doorn RR, Conklin MW, Graham DS, Wisinski KB, Ponik SM, Eliceiri KW, Wilke LG, Keely PJ. The Presence of Cyclooxygenase 2, Tumor-Associated Macrophages, and Collagen Alignment as Prognostic Markers for Invasive Breast Carcinoma Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:559-573. [PMID: 29429545 DOI: 10.1016/j.ajpath.2017.10.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Inflammation, and the organization of collagen in the breast tumor microenvironment, is an important mediator of breast tumor progression. However, a direct link between markers of inflammation, collagen organization, and patient outcome has yet to be established. A tumor microarray of 371 invasive breast carcinoma biopsy specimens was analyzed for expression of inflammatory markers, including cyclooxygenase 2 (COX-2), macrophages, and several collagen features in the tumor nest (TN) or the tumor-associated stroma (TS). The tumor microarray cohort included females, aged 18 to 80 years, with a median follow-up of 8.4 years. High expression of COX-2 (TN), CD68 (TS), and CD163 (TN and TS) predicted worse patient overall survival (OS). This notion was strengthened by the finding from the multivariate analysis that high numbers of CD163+ macrophages in the TS is an independent prognostic factor. Overall collagen deposition was associated with high stromal expression of COX-2 and CD163; however, total collagen deposition was not a predictor for OS. Conversely, local collagen density, alignment and perpendicular alignment to the tumor boundary (tumor-associated collagen signature-3) were predictors of OS. These results suggest that in invasive carcinoma, the localization of inflammatory cells and aligned collagen orientation predict poor patient survival. Additional clinical studies may help validate whether therapy with selective COX-2 inhibitors alters expression of CD68 and CD163 inflammatory markers.
Collapse
Affiliation(s)
- Karla Esbona
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Yanyao Yi
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sandeep Saha
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel R Van Doorn
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas S Graham
- Department of Information Technology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kari B Wisinski
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W Eliceiri
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee G Wilke
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
35
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
36
|
Wu L, Amarachintha S, Xu J, Oley F, Du W. Mesenchymal COX2-PG secretome engages NR4A-WNT signalling axis in haematopoietic progenitors to suppress anti-leukaemia immunity. Br J Haematol 2018; 183:445-456. [PMID: 30106181 PMCID: PMC6391996 DOI: 10.1111/bjh.15548] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/05/2018] [Indexed: 02/02/2023]
Abstract
The bone marrow (BM) microenvironment (niche) plays important roles in supporting normal/abnormal haematopoiesis. We investigated the interaction between leukaemic mesenchymal niche and haematopoietic stem and progenitor cells (HSPCs) using the model of Fanconi anaemia (FA), a genetic disorder characterized by BM failure and leukaemia. Healthy donor HSPCs co-cultured on mesenchymal stromal cells (MSCs) derived from FA patients with acute myeloid leukaemia (AML) exhibited higher human engraftment and myeloid expansion in Non-obese diabetic severe combined immunodeficiency IL-2γ-/- /SGM3 recipients. Untargeted metabolomics analysis revealed the progressively elevated prostaglandins (PGs) in the MSCs of FA patients with myelodysplastic syndromes (MDS) and AML. Reduced secretion of PGs subsequent to inflammatory cyclooxygenase 2 (COX2) inhibition ameliorated HSPC/myeloid expansion. Transcriptome analysis demonstrated dysregulation of genes involved in the NR4A family of transcription factors (TFs) and WNT/β-catenin signalling pathway in FA-AML-MSC-co-cultured-CD34+ cells. COX2 inhibition led to significantly decreased NR4A TFs and WNT signalling genes expression. Mechanistically, NR4A1 and NR4A2 synergistically activate the CTNNB1 gene promoter . Knocking down CTNNB1 or NR4A1 in AML-MSC-co-cultured-CD34+ cells increased leukaemia-reactive T-effector cells production and rescued anti-leukaemia immunity. Together, these findings suggest that specific interactions between leukaemic mesenchymal niche and HSPCs orchestrate a novel COX2/PG-NR4A/WNT signalling axis, connecting inflammation, cellular metabolism and cancer immunity.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/immunology
- Female
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Proteins/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 2/immunology
- Wnt Signaling Pathway/immunology
Collapse
Affiliation(s)
- Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV
| | - Surya Amarachintha
- The Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Frank Oley
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, Morgantown, WV, USA
| |
Collapse
|
37
|
The Effect of Anaesthetic and Analgesic Technique on Oncological Outcomes. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Kohout C, Santi C, Polito L. Anisotropic Gold Nanoparticles in Biomedical Applications. Int J Mol Sci 2018; 19:E3385. [PMID: 30380664 PMCID: PMC6274885 DOI: 10.3390/ijms19113385] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNPs) play a crucial role in the development of nanomedicine, principally due to their unique photophysical properties and high biocompatibility. The possibility to tune and customize the localized surface plasmon resonance (LSPR) toward near-infrared region by modulating the AuNP shape is one of the reasons for the huge widespread use of AuNPs. The controlled synthesis of no-symmetrical nanoparticles, named anisotropic, is an exciting goal achieved by the scientific community which explains the exponential increase of the number of publications related to the synthesis and use of such type of AuNPs. Even with such steps forward and the AuNP translation in clinic being done, some key issues are still remain and they are related to a reliable and scalable production, a full characterization, and to the development of nanotoxicology studies on the long run. In this review we highlight the very recent advances on the synthesis of the main classes of anisotropic AuNPs (nanorods, nanourchins and nanocages) and their use in the biomedical fields, in terms of diagnosis and therapeutics.
Collapse
Affiliation(s)
- Claudia Kohout
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Cristina Santi
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Laura Polito
- ISTM-CNR, Nanotechnology Lab., via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
39
|
Ricon I, Hanalis-Miller T, Haldar R, Jacoby R, Ben-Eliyahu S. Perioperative biobehavioral interventions to prevent cancer recurrence through combined inhibition of β-adrenergic and cyclooxygenase 2 signaling. Cancer 2018; 125:45-56. [DOI: 10.1002/cncr.31594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Itay Ricon
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Hanalis-Miller
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Rita Haldar
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Rebecca Jacoby
- Medical Psychology Graduate Program, School of Behavioral Sciences; Tel Aviv-Yaffo Academic College; Tel Aviv Israel
| | - Shamgar Ben-Eliyahu
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience, Tel Aviv University; Israel
| |
Collapse
|
40
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [PMID: 30094570 DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment. Int J Mol Sci 2017; 18:ijms18102029. [PMID: 28937584 PMCID: PMC5666711 DOI: 10.3390/ijms18102029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors.
Collapse
|
42
|
Alsaegh MA, Miyashita H, Taniguchi T, Zhu SR. Odontogenic epithelial proliferation is correlated with COX-2 expression in dentigerous cyst and ameloblastoma. Exp Ther Med 2016; 13:247-253. [PMID: 28123497 DOI: 10.3892/etm.2016.3939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Investigation of cyclooxygenase (COX)-2 in dentigerous cyst and ameloblastoma may help to improve understanding of the nature and behavior of odontogenic cysts and tumors, and in addition may eventually represent a definitive target for a pharmacological approach in the management of these lesions. The aim of this study was to evaluate COX-2 expression and its correlation with the proliferation of odontogenic epithelium in these lesions. Dentigerous cysts (n=16) and ameloblastomas (n=17) were evaluated. Detection of Ki-67 and COX-2 protein expression was conducted by immunohistochemistry. Data were statistically analyzed using Mann-Whitney U test and Spearman's rank correlation coefficient. No significant differences were found in the expression of Ki-67 and COX-2 between dentigerous cysts and ameloblastomas (P>0.05). A significant positive correlation (P=0.018) and highly significant positive correlation (P=0.004) were found between Ki-67 and COX-2 expression in the odontogenic epithelium of dentigerous cyst and ameloblastoma, respectively. COX-2 was expressed in the odontogenic epithelium of dentigerous cyst and ameloblastoma. It may contribute to local extension of these lesions by increasing the proliferation of their odontogenic epithelial cells.
Collapse
Affiliation(s)
- Mohammed Amjed Alsaegh
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Department of Oral and Maxillofacial Surgery, College of Dentistry, Ajman University, Al-Hulifat, Fujairah 2202, UAE; Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Mosul, Mosul, Ninavah 41002, Iraq
| | - Hitoshi Miyashita
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Department of Oral Medicine and Surgery, Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Takahiro Taniguchi
- Department of Oral Medicine and Surgery, Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Sheng Rong Zhu
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
43
|
Goswami S, Ray S, Sarkar M. Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam. Int J Biol Macromol 2016; 93:47-56. [DOI: 10.1016/j.ijbiomac.2016.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
|
44
|
Prognostic significance of expression of cysteine-rich 61 and cyclooxygenase-2 in gastric cancer. BMC Gastroenterol 2016; 16:74. [PMID: 27457107 PMCID: PMC4960852 DOI: 10.1186/s12876-016-0478-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/07/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the clinical significance of cysteine-rich 61 (Cyr-61/CCN1) and cyclooxygenase-2 (COX-2), and further explored their combined prognostic significance in gastric cancer. METHODS This retrospective study examined the expressions of Cyr-61 and COX-2 in 82 surgically removed gastric cancer specimens and 43 non-tumor gastric mucosa specimens by immunohistochemical staining to identify the abnormal expression of Cyr-61 or COX-2 in gastric cancer. Crude survival curves were constructed by the Kaplan-Meier method and Cox proportional hazards regression analysis was performed to confirm the prognostic roles of Cyr-61/COX-2 as well as sex and histological grade. RESULTS The expressions of Cyr-61 (p < 0.001) and COX-2 (p = 0.001) were both significantly up-regulated in gastric cancer samples compared with non-tumor gastric mucosa samples. The high expression of Cyr-61 or COX-2 was associated with invasion, lymph node metastasis, distant metastases, poor histological differentiation, advanced TNM stage and lower 5-year survival rate (all p < 0.05). Both Cyr-61 and COX-2 high expressions [hazard ratio (HR) = 31.8, 95 % confidence interval (CI) 4.09-246.8] was associated the higher risk of death during 5 years follow up than single Cyr-61 high expression (HR = 4.1, 95 % CI 1.5-11.6) or COX-2 high expression (HR = 2.9, 95 % CI 1.06-7.8). CONCLUSIONS Cyr-61 and COX-2 expressions are associated with the progression of gastric cancer. Additionally, combined expressions of Cyr-61 and COX-2 has a higher prognostic value than single expression.
Collapse
|
45
|
Fan YY, Callaway E, M Monk J, S Goldsby J, Yang P, Vincent L, S Chapkin R. A New Model to Study the Role of Arachidonic Acid in Colon Cancer Pathophysiology. Cancer Prev Res (Phila) 2016; 9:750-7. [PMID: 27339171 DOI: 10.1158/1940-6207.capr-16-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/09/2016] [Indexed: 02/06/2023]
Abstract
A significant increase in cyclooxygenase 2 (COX2) gene expression has been shown to promote cylcooxygenase-dependent colon cancer development. Controversy associated with the role of COX2 inhibitors indicates that additional work is needed to elucidate the effects of arachidonic acid (AA)-derived (cyclooxygenase and lipoxygenase) eicosanoids in cancer initiation, progression, and metastasis. We have recently developed a novel Fads1 knockout mouse model that allows for the investigation of AA-dependent eicosanoid deficiency without the complication of essential fatty acid deficiency. Interestingly, the survival rate of Fads1-null mice is severely compromised after 2 months on a semi-purified AA-free diet, which precludes long-term chemoprevention studies. Therefore, in this study, dietary AA levels were titrated to determine the minimal level required for survival, while maintaining a distinct AA-deficient phenotype. Null mice supplemented with AA (0.1%, 0.4%, 0.6%, 2.0%, w/w) in the diet exhibited a dose-dependent increase (P < 0.05) in AA, PGE2, 6-keto PGF1α, TXB2, and EdU-positive proliferative cells in the colon. In subsequent experiments, null mice supplemented with 0.6% AA diet were injected with a colon-specific carcinogen (azoxymethane) in order to assess cancer susceptibility. Null mice exhibited significantly (P < 0.05) reduced levels/multiplicity of aberrant crypt foci (ACF) as compared with wild-type sibling littermate control mice. These data indicate that (i) basal/minimal dietary AA supplementation (0.6%) expands the utility of the Fads1-null mouse model for long-term cancer prevention studies and (ii) that AA content in the colonic epithelium modulates colon cancer risk. Cancer Prev Res; 9(9); 750-7. ©2016 AACR.
Collapse
Affiliation(s)
- Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Evelyn Callaway
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Jennifer M Monk
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Logan Vincent
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, Texas. Center for Translational Environmental Health Research, College Station, Texas.
| |
Collapse
|
46
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
47
|
Abstract
For years the human microbiota has been implicated in the etiology of colorectal cancer (CRC). However, identifying the molecular mechanisms for how aneuploidy and chromosomal instability (CIN) arise in sporadic and colitis-associated CRC has been difficult. In this Addendum we review recent work from our laboratory that explore mechanisms by which intestinal commensals polarize colon macrophages to an M1 phenotype to generate a bystander effect (BSE) that leads to mutations, spindle malfunction, cell cycle arrest, tetraploidy, and aneuploidy in epithelial cells. BSE represents the application of a phenomenon initially described in the radiation biology field. The result of commensal-driven BSE on colon epithelial cells is aneuploidy, chromosomal instability (CIN), expression of stem cell and tumor stem cell markers and, ultimately, malignant transformation. Our findings provide a conceptual framework for integrating the microbiota with aging, cyclooxygenase (COX)-2, and inflammation as risk factors for CRC.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Mark M Huycke
- Department of Medicine; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA,The Muchmore Laboratories for Infectious Diseases Research; Oklahoma City VA Health Care System; Oklahoma City, OK USA,Correspondence to: Mark M Huycke;
| |
Collapse
|
48
|
Celecoxib antagonizes the cytotoxicity of oxaliplatin in human esophageal cancer cells by impairing the drug influx. Eur J Pharm Sci 2016; 81:137-48. [DOI: 10.1016/j.ejps.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/29/2015] [Accepted: 10/10/2015] [Indexed: 11/24/2022]
|
49
|
Venkata Sairam K, Gurupadayya BM, Vishwanathan BI, Chandan RS, Nagesha DK. Cytotoxicity studies of coumarin analogs: design, synthesis and biological activity. RSC Adv 2016. [DOI: 10.1039/c6ra22466k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a series of coumarin derivatives were designed, synthesized and evaluated for their antioxidant and cytotoxic properties.
Collapse
Affiliation(s)
- K. Venkata Sairam
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS University
- Mysuru 570 015
- India
| | - B. M. Gurupadayya
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS University
- Mysuru 570 015
- India
| | - B. Iyer Vishwanathan
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS University
- Mysuru 570 015
- India
| | - R. S. Chandan
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS University
- Mysuru 570 015
- India
| | | |
Collapse
|
50
|
The Combined Blockade of β-Adrenoceptor and COX-2 During the Perioperative Period to Improve Long-term Cancer Outcomes. Int Anesthesiol Clin 2016; 54:72-91. [DOI: 10.1097/aia.0000000000000116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|