1
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
2
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
4
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
5
|
Yu S, Ge Z, Chen W, Han J. Pyrrolidine Dithiocarbamate Enhances the Cytotoxic Effect of Arsenic Trioxide on Acute Promyelocytic Leukemia Cells. Comb Chem High Throughput Screen 2023; 26:2067-2076. [PMID: 36694317 DOI: 10.2174/1386207326666230123155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND More than 95% patients with acute promyelocytic leukemia (APL) carry the PML-RARα fusion oncoprotein. Arsenic trioxide (ATO) is an efficacious therapeutic agent for APL, and the mechanism involves the binding with PML and degradation of PML-RARα protein. Pyrrolidine dithiocarbamate (PDTC) demonstrates the function of facilitating the cytotoxic effect of ATO. PURPOSE To investigate whether PDTC is potential to enhance the cytotoxic effect of ATO to APL cells by acting on PML-RARα oncoproteins. METHODS Inhibitory effects of drugs on cell viability were examined by CCK-8 test, and apoptosis was evaluated by flow cytometry. Western blotting and immunofluorescence assays were used to explore the mechanism. RESULTS PDTC improved the effect of ATO on inhibiting proliferation of NB4 cells in vitro. Further, PDTC-ATO promoted apoptosis and cell cycle arrest in NB4 cells. The expression of caspase- 3 and Bcl-2 was reduced in PDTC-ATO-treated NB4 cells, while cleaved caspase-3 and Bax was up-regulated. Furthermore, less PML-RARα expression were found in PDTC-ATO-treated NB4 cells than that in NB4 cells treated with ATO singly. Laser confocal microscopy showed that protein colocalization of PML and RARα was disrupted more significantly by PDTC-ATO treatment than that with ATO monotherapy. CONCLUSION In conclusion, PDTC enhanced the cytotoxic effect of ATO on APL, and the mechanism was, at least in part, related to the promotion of ATO-induced degradation of PML-RARα fusion protein via forming a complex PDTC-ATO.
Collapse
Affiliation(s)
- Simin Yu
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixiang Chen
- General Department of Chongming Branch, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinbin Han
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Bariana M, Cassella E, Rateshwar J, Ouk S, Liou HC, Heller C, Colorado I, Feinman R, Makhdoom A, Siegel DS, Heller G, Tuckett A, Mondello P, Zakrzewski JL. Inhibition of NF-κB DNA Binding Suppresses Myeloma Growth via Intracellular Redox and Tumor Microenvironment Modulation. Mol Cancer Ther 2022; 21:1798-1809. [PMID: 36190955 PMCID: PMC9722601 DOI: 10.1158/1535-7163.mct-22-0257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Multiple myeloma is a plasma cell malignancy that is still largely incurable, despite considerable progress in recent years. NF-κB is a well-established therapeutic target in multiple myeloma, but none of the currently available treatment options offer direct, specific pharmacologic targeting of NF-κB transcriptional activity. Thus, we designed a novel direct NF-κB inhibitor (IT848) as a drug candidate with strong potential for clinical translation and conducted comprehensive in vitro and in vivo mechanistic studies in multiple myeloma cell lines, primary multiple myeloma cells, xenograft models, and immunocompetent mouse models of multiple myeloma. Here, we show that IT848 inhibits NF-κB activity through inhibition of DNA binding of all five NF-κB subunits. IT848 treatment of multiple myeloma cell lines and patient samples inhibited proliferation and induced caspase-dependent and independent apoptosis. In addition to direct NF-κB inhibitory effects, IT848 treatment altered the redox homeostasis of multiple myeloma cells through depletion of the reduced glutathione pool, selectively inducing oxidative stress in multiple myeloma but not in healthy cells. Multiple myeloma xenograft studies confirmed the efficacy of IT848 as single agent and in combination with bortezomib. Furthermore, IT848 significantly improved survival when combined with programmed death protein 1 inhibition, and correlative immune studies revealed that this clinical benefit was associated with suppression of regulatory T-cell infiltration of the bone marrow microenvironment. In conclusion, IT848 is a potent direct NF-κB inhibitor and inducer of oxidative stress specifically in tumor cells, displaying significant activity against multiple myeloma cells in vitro and in vivo, both as monotherapy as well as in combination with bortezomib or immune checkpoint blockade.
Collapse
Affiliation(s)
- Manpreet Bariana
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elena Cassella
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Janice Rateshwar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | | | | | - Iriana Colorado
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rena Feinman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Ali Makhdoom
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - David S. Siegel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA,Multiple Myeloma Division, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Glenn Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Tuckett
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Johannes L. Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA,Department of Oncology, Georgetown University, Washington, DC, USA,Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
7
|
Cvrljevic AN, Butt U, Huhtinen K, Grönroos TJ, Böckelman C, Lassus H, Butzow R, Haglund C, Kaipio K, Arsiola T, Laajala TD, Connolly DC, Ristimäki A, Carpen O, Pouwels J, Westermarck J. Ovarian Cancers with Low CIP2A Tumor Expression Constitute an APR-246-Sensitive Disease Subtype. Mol Cancer Ther 2022; 21:1236-1245. [PMID: 35364610 PMCID: PMC9256766 DOI: 10.1158/1535-7163.mct-21-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Identification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype. Through a screen for therapeutics that would preferentially kill CIP2A-deficient ovarian cancer cells, we identified reactive oxygen species inducer APR-246, tested previously in ovarian cancer clinical trials. Consistent with CIP2A-deficient ovarian cancer subtype in humans, CIP2A is dispensable for development of MISIIR-Tag-driven mouse ovarian cancer tumors. Nevertheless, CIP2A-null ovarian cancer tumor cells from MISIIR-Tag mice displayed APR-246 hypersensitivity both in vitro and in vivo. Mechanistically, the lack of CIP2A expression hypersensitizes the ovarian cancer cells to APR-246 by inhibition of NF-κB activity. Accordingly, combination of APR-246 and NF-κB inhibitor compounds strongly synergized in killing of CIP2A-positive ovarian cancer cells. Collectively, the results warrant consideration of clinical testing of APR-246 for CIP2A-deficient ovarian cancer tumor subtype patients. Results also reveal CIP2A as a candidate APR-246 combination therapy target for ovarian cancer.
Collapse
Affiliation(s)
- Anna N. Cvrljevic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Umar Butt
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine, University of Turku, Turku, Finland,Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tove J. Grönroos
- Turku PET Centre, University of Turku, Turku, Finland,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Camilla Böckelman
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki,HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Kaipio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tiina Arsiola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Teemu D. Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Denise C. Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ari Ristimäki
- Department of Pathology and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki,HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jeroen Pouwels
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Gunda V, Chhonker YS, Natesh NS, Raut P, Muniyan S, Wyatt TA, Murry DJ, Batra SK, Rachagani S. Nuclear factor kappa-B contributes to cigarette smoke tolerance in pancreatic ductal adenocarcinoma through cysteine metabolism. Biomed Pharmacother 2021; 144:112312. [PMID: 34678726 DOI: 10.1016/j.biopha.2021.112312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Retrospective studies revealed that cigarette smoking enhances risk of incidence and worsens prognosis in pancreatic cancer (PC) patients. Poor prognosis in smoker cohort of PC patients indicates prevalence of cigarette smoke stimulated survival mechanisms yet to be explored in PC. In this study, cigarette smoke induced metabolic pathways were explored and targeted in PC. METHODS Human pancreatic ductal adenocarcinoma cell (PDAC) lines, genetically engineered mice models (GEMMs), mass spectrometry based heavy isotope-based metabolite analysis, cytotoxicity assays and Nuclear factor kappa-B (NF-kB) targeting were utilized in this study. Cigarette smoke extract (CSE) was prepared fresh each day by bubbling cell culture media with the smoke emitted from 85 mm, filtered, Code 1R6F reference cigarettes and used for in vitro procedures. High dose cigarette smoke exposure of GEMMs was achieved by daily exposure of animals to similar cigarettes, 6 h/day for a total period of 180 days. FINDINGS We observed that PDAC cells upregulate glutathione anabolism through cysteine uptake and glutamate cysteine ligase (GCLM), supporting survival, upon CSE exposure. In vivo, cigarette smoke exposure leads to concomitant upregulation of GCLM and activated NF-kB in the PDAC consistent with in vitro, in CSE-exposed PDAC. Finally, either inhibition of NF-kB or depletion of cysteine impaired PDAC cell survival in cigarette smoke exposed conditions through suppression of glutathione and ROS enhancement, reverted by glutathione supplementation. INTERPRETATION Our findings demonstrate scope for targeting smoke induced, NF-kB mediated, cysteine and glutathione metabolism for improving the survival of smoke addicted PDAC.
Collapse
Affiliation(s)
- Venugopal Gunda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagabhishek Sirpu Natesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Quantitative trait mapping in Diversity Outbred mice identifies novel genomic regions associated with the hepatic glutathione redox system. Redox Biol 2021; 46:102093. [PMID: 34418604 PMCID: PMC8385155 DOI: 10.1016/j.redox.2021.102093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 11/01/2022] Open
Abstract
The tripeptide glutathione (GSH) is instrumental to antioxidant protection and xenobiotic metabolism, and the ratio of its reduced and oxidized forms (GSH/GSSG) indicates the cellular redox environment and maintains key aspects of cellular signaling. Disruptions in GSH levels and GSH/GSSG have long been tied to various chronic diseases, and many studies have examined whether variant alleles in genes responsible for GSH synthesis and metabolism are associated with increased disease risk. However, past studies have been limited to established, canonical GSH genes, though emerging evidence suggests that novel loci and genes influence the GSH redox system in specific tissues. The present study marks the most comprehensive effort to date to directly identify genetic loci associated with the GSH redox system. We employed the Diversity Outbred (DO) mouse population, a model of human genetics, and measured GSH and the essential redox cofactor NADPH in liver, the organ with the highest levels of GSH in the body. Under normal physiological conditions, we observed substantial variation in hepatic GSH and NADPH levels and their redox balances, and discovered a novel, significant quantitative trait locus (QTL) on murine chromosome 16 underlying GSH/GSSG; bioinformatics analyses revealed Socs1 to be the most likely candidate gene. We also discovered novel QTL associated with hepatic NADP+ levels and NADP+/NADPH, as well as unique candidate genes behind each trait. Overall, these findings transform our understanding of the GSH redox system, revealing genetic loci that govern it and proposing new candidate genes to investigate in future mechanistic endeavors.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
11
|
Adenomyosis is associated with specific proton nuclear magnetic resonance ( 1H-NMR) serum metabolic profiles. Fertil Steril 2021; 116:243-254. [PMID: 33849709 DOI: 10.1016/j.fertnstert.2021.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine whether the adenomyosis phenotype affects the proton nuclear magnetic resonance (1H-NMR)-based serum metabolic profile of patients. DESIGN Cohort study. SETTING University hospital-based research center. PATIENTS Seventy-seven patients who underwent laparoscopy for a benign gynecologic condition. INTERVENTIONS Pelvic magnetic resonance imaging and collection of a venous peripheral blood sample were performed during the preoperative workup. The women were allocated to the adenomyosis group (n = 32), or the control group (n = 45). The adenomyosis group was further subdivided into two groups: diffuse adenomyosis of the inner myometrium (n = 14) and focal adenomyosis of the outer myometrium (n = 18). Other adenomyosis phenotypes were excluded. MAIN OUTCOME MEASURES Metabolomic profiling based on 1H-NMR spectroscopy in combination with statistical approaches. RESULTS The serum metabolic profiles of the patients with adenomyosis indicated lower concentrations of 3-hydroxybutyrate, glutamate, and serine compared with controls. Conversely, the concentrations of proline, choline, citrate, 2-hydroxybutyrate, and creatinine were higher in the adenomyosis group. The focal adenomyosis of the outer myometrium and the diffuse adenomyosis phenotypes also each exhibited a specific metabolic profile. CONCLUSION Serum metabolic changes were detected in women with features of adenomyosis compared with their disease-free counterparts, and a number of specific metabolic pathways appear to be engaged according to the adenomyosis phenotype. The metabolites with altered levels are particularly involved in immune activation as well as cell proliferation and cell migration. Nevertheless, this study did find evidence of a correlation between metabolite levels and symptoms thought to be related to adenomyosis. Further studies are required to determine the clinical significance of these differences in metabolic profiles.
Collapse
|
12
|
Ayuso P, García-Martín E, Agúndez JAG. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Antioxidants (Basel) 2021; 10:antiox10020294. [PMID: 33672092 PMCID: PMC7919686 DOI: 10.3390/antiox10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by β-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.
Collapse
Affiliation(s)
- Pedro Ayuso
- Correspondence: ; Tel.: +34-927257000 (ext. 51038)
| | | | | |
Collapse
|
13
|
Bravo-Cuellar A, Ortiz-Lazareno PC, Sierra-Díaz E, Solorzano-Ibarra F, Méndez-Clemente AS, Aguilar-Lemarroy A, Jave-Suárez LF, Ruiz Velazco-Niño É, Hernández-Flores G. Pentoxifylline Sensitizes Cisplatin-Resistant Human Cervical Cancer Cells to Cisplatin Treatment: Involvement of Mitochondrial and NF-Kappa B Pathways. Front Oncol 2020; 10:592706. [PMID: 33680921 PMCID: PMC7931705 DOI: 10.3389/fonc.2020.592706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer continues to be a major public health problem worldwide, and Cisplatin is used as first-line chemotherapy for this cancer; however, malignant cells exposed to CISplatin (CIS) become insensitive to the effects of this drug. PenToXifylline (PTX) is a xanthine that sensitizes several types of tumor cells to apoptosis induced by antitumor drugs, such as Adriamycin, Carboplatin, and CIS. The effects of PTX on tumor cells have been related to the disruption of the NF-κB pathway, thus preventing the activation of cell survival mechanisms such as the expression of anti-apoptotic genes, the secretion of proinflammatory interleukins, and growth factors. Objective In this work, we studied the antitumor proprieties of PTX in human SiHa cervical carcinoma cells resistant to CIS. Materials and Methods SiHa and HeLa cervical cancer cells and their CIS-resistant derived cell lines (SiHaCIS-R and HeLaCIS-R, respectively) were used as in-vitro models. We studied the effects of PTX alone or in combination with CIS on cell viability, apoptosis, caspase-3, caspase-8, and caspase-9 activity, cleaved PARP-1, anti-apoptotic protein (Bcl-2 and Bcl-xL) levels, p65 phosphorylation, cadmium chloride (CdCl2) sensitivity, Platinum (Pt) accumulation, and glutathione (GSH) levels, as well as on the gene expression of GSH and drug transporters (influx and efflux). Results PTX sensitized SiHaCIS-R cells to the effects of CIS by inducing apoptosis, caspase activation, and PARP-1 cleavage. PTX treatment also decreased p65 phosphorylation, increased Pt levels, depleted GSH, and downregulated the expression of the ATP7A, ATP7B, GSR, and MGST1 genes. Conclusion PTX reverses the acquired phenotype of CIS resistance close to the sensitivity of parental SiHa cells.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Erick Sierra-Díaz
- Departamento de Urología, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Anibal Samael Méndez-Clemente
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico.,Programa de Doctorado en Ciencias Biomédicas Orientación Inmunología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Édgar Ruiz Velazco-Niño
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Mexico
| |
Collapse
|
14
|
Nicholas TP, Haick AK, Workman TW, Griffith WC, Nolin JD, Kavanagh TJ, Faustman EM, Altemeier WA. The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology 2020; 14:908-928. [PMID: 32574512 DOI: 10.1080/17435390.2020.1777475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James D Nolin
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William A Altemeier
- Center for Lung Biology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Yoshino Y, Yuan B, Okusumi S, Aoyama R, Murota R, Kikuchi H, Takagi N, Toyoda H. Enhanced cytotoxic effects of arsenite in combination with anthocyanidin compound, delphinidin, against a human leukemia cell line, HL-60. Chem Biol Interact 2018; 294:9-17. [PMID: 30125548 DOI: 10.1016/j.cbi.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
Among five major anthocyanin compounds, delphinidin exhibited the most potent and selective cytocidal effect against HL-60, a trivalent arsenic (As(III))-resistant cell line. Co-treatment with delphinidin and As(III) resulted in the reduction of IC50 value for As(III) from 11.2 to 1.5 μM, which was considered as clinically achieved concentrations of As(III). The combination treatment strongly preferred to selectively enhance the cytotoxicity of As(III) against HL-60 cells rather than human peripheral blood mononuclear cells. The induction of apoptosis as evidenced by the increase of sub-G1 cells, DNA fragmentation, annexin V-positive cells and the activation of caspase-8, -9 and -3 was observed in HL-60 cells co-treated with As(III) and delphinidin. Similar to the activation pattern of caspases, a substantial decrease in the expression level of Bid along with the loss of mitochondrial membrane potential was also observed. These results suggested that the combination treatment triggered a convergence of the intrinsic and extrinsic pathways of apoptosis via the activation of caspase-8 and cleaved Bid. Delphinidin itself significantly decreased the intracellular GSH ([i]GSH) and nuclear factor-κB (NF-κB) binding activity, and further returned As(III)-triggered increment of [i]GSH and enhancement of NF-κB binding activity to control level. Additionally, buthionine sulfoximine, a GSH depletor; JSH-23, a NF-κB inhibitor, also mimicked the capacity of delphinidin to significantly induce the reduction of [i]GSH along with the potentiation of As(III) cytotoxicity in HL-60 cells. These observations suggested that delphinidin-induced sensitization of HL-60 cells to As(III) was caused by the reduction of [i]GSH, which was probably associated with the inhibitory effect of delphinidin on NF-κB binding activity. These findings further suggest that delphinidin-induced sensitization of HL-60 cells to As(III) may lead to dose reduction of As(III) in clinical application, and ultimately contribute to minimizing its side effects.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan; Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Saki Okusumi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Reiji Aoyama
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ryo Murota
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
16
|
Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 2018; 69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine) is an intracellular thiol molecule and a potent antioxidant that participates in the toxic metabolism phase II biotransformation of xenobiotics. It can bind to a variety of proteins in a process known as glutathionylation. Protein glutathionylation is now recognised as one of important posttranslational regulatory mechanisms in cell and tissue physiology. Direct and indirect regulatory roles in physiological processes include glutathionylation of major transcriptional factors, eicosanoids, cytokines, and nitric oxide (NO). This review looks into these regulatory mechanisms through examples of glutathione regulation in apoptosis, vascularisation, metabolic processes, mitochondrial integrity, immune system, and neural physiology. The focus is on the physiological roles of glutathione beyond biotransformational metabolism.
Collapse
|
17
|
Dias QC, Nunes IDS, Garcia PV, Favaro WJ. Potential therapeutic strategies for non - muscle invasive bladder cancer based on association of intravesical immunotherapy with p - mapa and systemic administration of cisplatin and doxorubicin. Int Braz J Urol 2016; 42:942-954. [PMID: 24893914 PMCID: PMC5066890 DOI: 10.1590/s1677-5538.ibju.2015.0381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 11/21/2022] Open
Abstract
The present study describes the histopathological and molecular effects of P-MAPA (Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride) intravesical immunotherapy combined with systemic doxorubicin or cisplatin for treatment of non-muscle invasive bladder cancer (NMIBC) in an appropriate animal model. Our results showed an undifferentiated tumor, characterizing a tumor invading mucosa or submucosa of the bladder wall (pT1) and papillary carcinoma in situ (pTa) in the Cancer group. The histopathological changes were similar between the combined treatment with intravesical P-MAPA plus systemic Cisplatin and P-MAPA immunotherapy alone, showing decrease of urothelial neoplastic lesions progression and histopathological recovery in 80% of the animals. The animals treated systemically with cisplatin or doxorubicin singly, showed 100% of malignant lesions in the urinary bladder. Furthemore, the combined treatment with P-MAPA and Doxorubicin showed no decrease of urothelial neoplastic lesions progression and histopathological recovery. Furthermore, Akt, PI3K, NF-kB and VEGF protein levels were significantly lower in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments than other groups. In contrast, PTEN protein levels were significantly higher in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments. Thus, it could be concluded that combination of intravesical P-MAPA immunotherapy and systemic cisplatin in the NMIBC animal model was effective, well tolerated and showed no apparent signs of antagonism between the drugs. In addition, intravesical P-MAPA immunotherapy may be considered as a valuable option for treatment of BCG unresponsive patients that unmet the criteria for early cystectomy.
Collapse
Affiliation(s)
- Queila Cristina Dias
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil
| | | | - Patrick Vianna Garcia
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil
| | - Wagner Jose Favaro
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil.,FarmaBrasilis R & D, Campinas, SP, Brasil
| |
Collapse
|
18
|
Antrodia cinnamomea alleviates cisplatin-induced hepatotoxicity and enhances chemo-sensitivity of line-1 lung carcinoma xenografted in BALB/cByJ mice. Oncotarget 2016; 6:25741-54. [PMID: 26325335 PMCID: PMC4694863 DOI: 10.18632/oncotarget.4348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023] Open
Abstract
Whereas cisplatin (cis-diamminedichloroplatinum II) is a first-line medicine to treat solid cancerous tumors, it often causes serious side effects. New medicines that have an equivalent or even better therapeutic effect but with free or less side effects than cisplatin are highly anticipated in cancer therapy. Recent reports revealed that Antrodia cinnamomea (AC) possesses hepatoprotective activity in addition to anticancer. In this study, we wanted to know whether AC enhances chemo-sensitivity of cisplatin and/or alleviates cisplatin-induced hepatotoxicity, as well as the underlying mechanisms thereof. Our results indicated that AC inhibited proliferation of line-1 lung carcinoma cells and rescued hepatic HepG2 cells from cisplatin-induced cell death in vitro. The fact is that AC and cisplatin synergized to constrain growth of line-1 lung carcinoma cells in BALB/cByJ mice. Quantitative real-time PCR further revealed that AC promoted expression of apoptosis-related genes, while it decreased expression of NF-κB and VEGF in tumor tissues. In liver, AC reduced cisplatin-induced liver dysfunctions, liver inflammation and hepatic apoptosis in addition to body weight restoration. In summary, AC is able to increase cisplatin efficacy by triggering expression of apoptosis-related genes in line-1 lung cancer cells as well as to protect liver from tissue damage by avoiding cisplatin-induced hepatic inflammation and cell death.
Collapse
|
19
|
Pérez-Vargas JE, Zarco N, Vergara P, Shibayama M, Segovia J, Tsutsumi V, Muriel P. l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor. Hum Exp Toxicol 2015; 35:135-46. [PMID: 25852135 DOI: 10.1177/0960327115578864] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we evaluated the ability of L-theanine in preventing experimental hepatic cirrhosis and investigated the roles of nuclear factor-κB (NF-κB) activation as well as transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) regulation. Experimental hepatic cirrhosis was established by the administration of carbon tetrachloride (CCl4) to rats (0.4 g/kg, intraperitoneally, three times per week, for 8 weeks), and at the same time, adding L-theanine (8.0 mg/kg) to the drinking water. Rats had ad libitum access to water and food throughout the treatment period. CCl4 treatment promoted NF-κB activation and increased the expression of both TGF-β and CTGF. CCl4 increased the serum activities of alanine aminotransferase and γ-glutamyl transpeptidase and the degree of lipid peroxidation, and it also induced a decrease in the glutathione and glutathione disulfide ratio. L-Theanine prevented increased expression of NF-κB and down-regulated the pro-inflammatory (interleukin (IL)-1β and IL-6) and profibrotic (TGF-β and CTGF) cytokines. Furthermore, the levels of messenger RNA encoding these proteins decreased in agreement with the expression levels. L-Theanine promoted the expression of the anti-inflammatory cytokine IL-10 and the fibrolytic enzyme metalloproteinase-13. Liver hydroxyproline contents and histopathological analysis demonstrated the anti-fibrotic effect of l-theanine. In conclusion, L-theanine prevents CCl4-induced experimental hepatic cirrhosis in rats by blocking the main pro-inflammatory and pro-fibrogenic signals.
Collapse
Affiliation(s)
| | - N Zarco
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN Apartado, D.F. México
| | - P Vergara
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN Apartado, D.F. México
| | - M Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN Apartado, D.F. México
| | - J Segovia
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN Apartado, D.F. México
| | - V Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN Apartado, D.F. México
| | - P Muriel
- Department of Pharmacology, Cinvestav-IPN Apartado, D.F. México
| |
Collapse
|
20
|
Huang TH, Chiu YH, Chan YL, Chiu YH, Wang H, Huang KC, Li TL, Hsu KH, Wu CJ. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 2015; 13:1882-900. [PMID: 25854641 PMCID: PMC4413192 DOI: 10.3390/md13041882] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023] Open
Abstract
Fucoidan, a heparin-like sulfated polysaccharide, is rich in brown algae. It has a wide assortment of protective activities against cancer, for example, induction of hepatocellular carcinoma senescence, induction of human breast and colon carcinoma apoptosis, and impediment of lung cancer cells migration and invasion. However, the anti-metastatic mechanism that fucoidan exploits remains elusive. In this report, we explored the effects of fucoidan on cachectic symptoms, tumor development, lung carcinoma cell spreading and proliferation, as well as expression of metastasis-associated proteins in the Lewis lung carcinoma (LLC) cells-inoculated mice model. We discovered that administration of fucoidan has prophylactic effects on mitigation of cachectic body weight loss and improvement of lung masses in tumor-inoculated mice. These desired effects are attributed to inhibition of LLC spreading and proliferation in lung tissues. Fucoidan also down-regulates expression of matrix metalloproteinases (MMPs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and vascular endothelial growth factor (VEGF). Moreover, the tumor-bearing mice supplemented with fucoidan indeed benefit from an ensemble of the chemo-phylacticity. The fact is that fucoidan significantly decreases viability, migration, invasion, and MMPs activities of LLC cells. In summary, fucoidan is suitable to act as a chemo-preventative agent for minimizing cachectic symptoms as well as inhibiting lung carcinoma metastasis through down-regulating metastatic factors VEGF and MMPs.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yi-Han Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan.
| | - Ya-Huang Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu 30093, Taiwan.
| | - Hang Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Institute of Biomedical Nutrition, Hung Kuang University, Taichung 43302, Taiwan.
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuang-Hung Hsu
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
- Laboratory for Epidemiology, Department and graduate institute of health care management, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
21
|
Nafees S, Ahmad ST, Arjumand W, Rashid S, Ali N, Sultana S. Carvacrol ameliorates thioacetamide-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in liver of Wistar rats. Hum Exp Toxicol 2013; 32:1292-304. [PMID: 23925945 DOI: 10.1177/0960327113499047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to investigate the protective effects of carvacrol against thioacetamide (TAA)-induced oxidative stress, inflammation and apoptosis in liver of Wistar rats. In this study, rats were subjected to concomitant prophylactic oral pretreatment of carvacrol (25 and 50 mg kg(-1) body weight (b.w.)) against the hepatotoxicity induced by intraperitoneal administration of TAA (300 mg kg(-1) b.w.). Efficacy of carvacrol against the hepatotoxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, histopathological changes, and expressions of inflammation and apoptosis. Carvacrol pretreatment prevented deteriorative effects induced by TAA through a protective mechanism in a dose-dependent manner that involved reduction of oxidative stress, inflammation and apoptosis. We found that the protective effect of carvacrol pretreatment is mediated by its inhibitory effect on nuclear factor kappa B activation, Bax and Bcl-2 expression, as well as by restoration of histopathological changes against TAA administration. We may suggest that carvacrol efficiently ameliorates liver injury caused by TAA.
Collapse
Affiliation(s)
- S Nafees
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, Hamdard Nagar, New Delhi, India
| | | | | | | | | | | |
Collapse
|
22
|
Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological responses: a review. Radiat Res 2012; 178:505-23. [PMID: 23106210 DOI: 10.1667/rr3031.1] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). "Self" molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, "driver" cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly affect intrinsic cellular radiosensitivity, the incidence and type of radiation tissue complications, bystander effects, genomic instability and cancer. Minor and not so minor, polymorphisms in cytokine genes give considerable diversity within populations and are relevant to causation of disease. Therapeutic intervention is made difficult by such complexity; but the potential prize is great.
Collapse
Affiliation(s)
- Dörthe Schaue
- David Geffen School Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714, USA.
| | | | | |
Collapse
|
23
|
Baldwin AS. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246:327-45. [PMID: 22435564 DOI: 10.1111/j.1600-065x.2012.01095.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular response to survive or to undergo death is fundamental to the benefit of the organism, and errors in this process can lead to autoimmunity and cancer. The transcription factor nuclear factor κB (NF-κB) functions to block cell death through transcriptional induction of genes encoding anti-apoptotic and antioxidant proteins. This is essential for survival of activated cells of the immune system and for cells undergoing a DNA damage response. In Ras-transformed cells and tumors as well as other cancers, NF-κB functions to suppress apoptosis--a hallmark of cancer. Critical prosurvival roles for inhibitor of NF-κB kinase (IKK) family members, including IKKε and TBK1, have been reported, which are both NF-κB-dependent and -independent. While the roles of NF-κB in promoting cell survival in lymphocytes and in cancers is relatively clear, evidence has been presented that NF-κB can promote cell death in particular contexts. Recently, IKK was shown to play a critical role in the induction of autophagy, a metabolic response typically associated with cell survival but which can lead to cell death. This review provides an historical perspective, along with new findings, regarding the roles of the IKK and NF-κB pathways in regulating cell survival.
Collapse
Affiliation(s)
- Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Woods JR, Mo H, Bieberich AA, Alavanja T, Colby DA. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments. MEDCHEMCOMM 2011. [PMID: 22029741 DOI: 10.1039/c2md20172k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using (19)F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using (19)F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells.
Collapse
Affiliation(s)
- James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
25
|
Woods JR, Mo H, Bieberich AA, Alavanja T, Colby DA. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments. J Med Chem 2011; 54:7934-41. [PMID: 22029741 DOI: 10.1021/jm201114t] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design, synthesis, and biological activity of fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, are described. A fluorinated aminoparthenolide analogue with biological activity similar to the parent natural product was discovered, and its X-ray structure was obtained. This lead compound was then studied using (19)F NMR in the presence and absence of glutathione to obtain additional mechanism of action data, and it was found that the aminoparthenolide eliminates amine faster in the presence of glutathione than in the absence of glutathione. The exact changes in concentrations of fluorinated compound and amine were quantified by a concentration-reference method using (19)F NMR; a major benefit of applying this strategy is that no deuterated solvents or internal standards are required to obtain accurate concentrations. These mechanistic data with glutathione may contribute to the conversion of the amino-derivative to parthenolide, the active pharmacological agent, in glutathione-rich cancer cells.
Collapse
Affiliation(s)
- James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
26
|
Batra S, Balamayooran G, Sahoo MK. Nuclear factor-κB: a key regulator in health and disease of lungs. Arch Immunol Ther Exp (Warsz) 2011; 59:335-51. [PMID: 21786215 PMCID: PMC7079756 DOI: 10.1007/s00005-011-0136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/02/2011] [Indexed: 12/27/2022]
Abstract
Rel/NF-κB transcription factors play a key role in modulating the response of immunoregulatory genes including cytokines and chemokines, cell adhesion molecules, acute phase proteins, and anti-microbial peptides. Furthermore, an array of genes important for angiogenesis, tumor invasion and metastasis is also regulated by nuclear factor-κB (NF-κB). Close association of NF-κB with inflammation and tumorigenesis makes it an attractive target for basic research as well as for pharmaceutical industries. Studies involving various animal and cellular models have revealed the importance of NF-κB in pathobiology of lung diseases. This review (a) describes structures, activities, and regulation of NF-κB family members; (b) provides information which implicates NF-κB in pathogenesis of pulmonary inflammation and cancer; and (c) discusses information about available synthetic and natural compounds which target NF-κB or specific components of NF-κB signal transduction pathway and which may provide the foundation for development of effective therapy for lung inflammation and bronchogenic carcinomas.
Collapse
Affiliation(s)
- Sanjay Batra
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | |
Collapse
|
27
|
|
28
|
Koga H, Hagiwara S, Mei H, Hiraoka N, Kusaka J, Goto K, Kashima K, Noguchi T. The vitamin E derivative, ESeroS-GS, attenuates renal ischemia-reperfusion injury in rats. J Surg Res 2011; 176:220-5. [PMID: 22440932 DOI: 10.1016/j.jss.2011.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acute kidney injury (AKI), which occurs during renal transplantation and cardiovascular surgery, is a major clinical problem associated with high mortality, and has limited treatment options. Anti-inflammation therapy has been suggested to improve the course and outcome of AKI. In this study, we hypothesized that ESeroS-GS, a vitamin E derivative, inhibits cytokine production and prevents renal ischemia-reperfusion (I/R) injury in rats. METHODS Rats received an intravenous infusion of ESeroS-GS or saline, and underwent experimentally-induced renal I/R injury or sham treatment. Rats were sacrificed after 60 min of ischemia and 24 h of reperfusion. To evaluate the renal protective effects of ESero-GS, renal function was examined, kidneys were histologically assessed, levels of myeloperoxidase (MPO) and serum cytokines were measured, and caspase 3/7 activity was determined. RESULTS ESeroS-GS attenuated I/R-induced histologic alterations, reduced levels of MPO and serum BUN, Cre, TNF-α, and IL-6, and decreased caspase 3/7 activity in kidneys of rats subjected to renal I/R injury. CONCLUSIONS ESeroS-GS attenuated renal injury after I/R by reducing serum cytokine levels. Our findings suggest that ESeroS-GS may have therapeutic potential against various human I/R conditions.
Collapse
Affiliation(s)
- Hironori Koga
- Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | | | | | | | | | | | | | | |
Collapse
|