1
|
Hou G, Hu W, Sang Y, Gan X, Xu H, Hu Q, Cao X. Corynoxine triggers cell death via activating PP2A and regulating AKT-mTOR/GSK3β axes in NSCLC. Biochem Pharmacol 2024; 222:116110. [PMID: 38460908 DOI: 10.1016/j.bcp.2024.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3β signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.
Collapse
Affiliation(s)
- Guoqing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yazhou Sang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaocai Gan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hui Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qiongying Hu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
2
|
Fu Q, Gao H, Liu K, Su J, Zhang J, Guo X, Yang F. Identification of circRNA-miRNA-mRNA Network Regulated by Hsp90 in Human Melanoma A375 Cells. Comb Chem High Throughput Screen 2024; 27:307-316. [PMID: 37303182 DOI: 10.2174/1386207326666230609145247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear. METHODS A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and wholetranscriptome sequencing was performed. RESULTS A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112- treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNAmiRNA- mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma. CONCLUSION Targeting the ITG-COL network is a promising approach to the treatment of melanoma.
Collapse
Affiliation(s)
- Qiang Fu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Hengyuan Gao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianglin Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Candidate Branch of the National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China
| | - Xiaojing Guo
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fang Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Candidate Branch of the National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
3
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
4
|
Xin Y, Sun Z, Liu J, Li W, Wang M, Chu Y, Sun Z, Deng G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol 2022; 10:1027468. [PMID: 36304896 PMCID: PMC9595601 DOI: 10.3389/fbioe.2022.1027468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous development of nanobiotechnology in recent years, combining photothermal materials with nanotechnology for tumor photothermal therapy (PTT) has drawn many attentions nanomedicine research. Although nanomaterial-mediated PTT is more specific and targeted than traditional treatment modalities, hyperthermia can also damage normal cells. Therefore, researchers have proposed the concept of low-temperature PTT, in which the expression of heat shock proteins (HSPs) is inhibited. In this article, the research strategies proposed in recent years based on the inhibition of HSPs expression to achieve low-temperature PTT was reviewed. Folowing this, the synthesis, properties, and applications of these nanomaterials were introduced. In addition, we also summarized the problems of nanomaterial-mediated low-temperature PTT at this stage and provided an outlook on future research directions.
Collapse
Affiliation(s)
- Yu Xin
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhuokai Sun
- Nanchang University Queen Mary School, Nanchang, China
| | - Jie Liu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Li
- Yantai Yuhuangding Hospital, Yantai, China
| | | | - Yongli Chu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| |
Collapse
|
5
|
Zhu L, Retana D, García‐Gómez P, Álvaro‐Espinosa L, Priego N, Masmudi‐Martín M, Yebra N, Miarka L, Hernández‐Encinas E, Blanco‐Aparicio C, Martínez S, Sobrino C, Ajenjo N, Artiga M, Ortega‐Paino E, Torres‐Ruiz R, Rodríguez‐Perales S, Soffietti R, Bertero L, Cassoni P, Weiss T, Muñoz J, Sepúlveda JM, González‐León P, Jiménez‐Roldán L, Moreno LM, Esteban O, Pérez‐Núñez Á, Hernández‐Laín A, Toldos O, Ruano Y, Alcázar L, Blasco G, Fernández‐Alén J, Caleiras E, Lafarga M, Megías D, Graña‐Castro O, Nör C, Taylor MD, Young LS, Varešlija D, Cosgrove N, Couch FJ, Cussó L, Desco M, Mouron S, Quintela‐Fandino M, Weller M, Pastor J, Valiente M. A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Mol Med 2022; 14:e14552. [PMID: 35174975 PMCID: PMC8899920 DOI: 10.15252/emmm.202114552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.
Collapse
Affiliation(s)
- Lucía Zhu
- Brain Metastasis GroupCNIOMadridSpain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raúl Torres‐Ruiz
- Molecular Cytogenetics UnitCNIOMadridSpain,Division of Hematopoietic Innovative TherapiesCentro de Investigaciones EnergeticasMedioambientales y Tecnologicas (CIEMAT)MadridSpain
| | | | | | - Riccardo Soffietti
- Department of Neuro‐OncologyUniversity and City of Health and Science HospitalTurinItaly
| | - Luca Bertero
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Paola Cassoni
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Tobias Weiss
- Department of NeurologyClinical Neuroscience CenterUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | - Javier Muñoz
- Proteomics UnitProteoRedISCIIICNIOMadridSpain,Present address:
Cell Signaling and Clinical Proteomics GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain,Present address:
IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | | | | | - Luis Jiménez‐Roldán
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain,Department of SurgeryUniversidad Complutense de MadridMadridSpain,Neuropathology UnitInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain
| | | | - Olga Esteban
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain
| | - Ángel Pérez‐Núñez
- Neurosurgery UnitHospital Universitario 12 de OctubreMadridSpain,Department of SurgeryUniversidad Complutense de MadridMadridSpain,Neuro‐Oncology GroupResearch Institute Hospital 12 de Octubre (i+12)MadridSpain
| | | | - Oscar Toldos
- Neuropathology UnitInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain
| | - Yolanda Ruano
- Pathology DepartmentInstituto i+12, Hospital Universitario 12 de OctubreMadridSpain,Universidad Francisco de VitoriaMadridSpain
| | - Lucía Alcázar
- Neurosurgery DepartmentHospital Universitario de La PrincesaMadridSpain
| | - Guillermo Blasco
- Neurosurgery DepartmentHospital Universitario de La PrincesaMadridSpain
| | | | | | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Cantabria‐IDIVALSantanderSpain
| | | | | | - Carolina Nör
- Developmental and Stem Cell Biology Program and The Arthur and Sonia Labatt Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoONCanada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program and The Arthur and Sonia Labatt Brain Tumour Research CentreThe Hospital for Sick ChildrenTorontoONCanada
| | - Leonie S Young
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Damir Varešlija
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Nicola Cosgrove
- Endocrine Oncology Research GroupDepartment of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Fergus J Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadridSpain,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain,Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadridSpain,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain,Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | | | | | - Michael Weller
- Department of NeurologyClinical Neuroscience CenterUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | | | | |
Collapse
|
6
|
Chen SH, Xu DD, Zhou PJ, Wang Y, Liu QY, Ren Z, Liu Z, Wang X, Huang HQ, Xue X, Wang Y, Wang YF. Combination treatment with sorafenib and wh‑4 additively suppresses the proliferation of liver cancer cells. Exp Ther Med 2022; 23:232. [PMID: 35222709 PMCID: PMC8815050 DOI: 10.3892/etm.2022.11156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Su-Hong Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan-Dan Xu
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yao Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xia Wang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Hui-Qing Huang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Xue Xue
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Ying Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P.R. China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
7
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine 2021; 16:1525-1551. [PMID: 33658782 PMCID: PMC7920594 DOI: 10.2147/ijn.s293427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines afford unique advantages in therapeutic intervention against tumors. However, conventional nanomedicines have failed to achieve the desired effect against cancers because of the presence of complicated physiological fluids and the tumor microenvironment. Stimuli-responsive drug-delivery systems have emerged as potential tools for advanced treatment of cancers. Versatile nano-carriers co-triggered by multiple stimuli in different levels of organisms (eg, extracorporeal, tumor tissue, cell, subcellular organelles) have aroused widespread interest because they can overcome sequential physiological and pathological barriers to deliver diverse therapeutic “payloads” to the desired targets. Furthermore, multiple stimuli-responsive drug-delivery systems (MSR-DDSs) offer a good platform for co-delivery of agents and reversing multidrug resistance. This review affords a comprehensive overview on the “landscape” of MSR-DDSs against tumors, highlights the design strategies of MSR-DDSs in recent years, discusses the putative advantage of oncotherapy or the obstacles that so far have hindered the clinical translation of MSR-DDSs.
Collapse
Affiliation(s)
- Ruixin Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lingyu Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ting Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Lu Fu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Bi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China.,Practice Training Center, Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
9
|
Chen XL, Liu P, Zhu WL, Lou LG. DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts antitumor activity against colon cancer. Acta Pharmacol Sin 2021; 42:132-141. [PMID: 32404982 PMCID: PMC7921121 DOI: 10.1038/s41401-020-0398-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Hsp90 is a potential therapeutic target for tumor, as it maintains the stability of a variety of proteins related to tumor development and progression. Autophagy is a self-degradation process to maintain cellular homeostasis and autophagy inhibitors can suppress tumor growth. In this study, we identified DCZ5248, a triazine derivative, was a dual inhibitor of both Hsp90 and late-autophagy with potent antitumor activity against colon cancer cells in vitro and in vivo. We showed that DCZ5248 (0.1-10 μM) induced dose-dependent degradation of Hsp90 client proteins (AKT, CDK4, CDK6 and RAF-1) in HCT 116 colon cancer cells through a proteasome-dependent pathway. Meanwhile, DCZ5248 (0.3 μM) induced cytoplasmic vacuole formation, LC3 II conversion, p62 protein upregulation, and inhibited autophagy at the late stage in the colon cancer cell lines tested. We further revealed that the inhibition of autophagy was achieved by impairing lysosomal functions through induction of lysosomal acidification and attenuation of lysosomal cathepsin activity. The modulation of autophagy by DCZ5248 was independent of Hsp90 inhibition as the autophagy inhibition was not blocked by Hsp90 knockdown. Importantly, inhibition of both Hsp90 function and autophagy by DCZ5248 induced G1-phase cell cycle arrest, apoptosis, and exerted potent antitumor activity against colon cancer cells both in vitro and in vivo. These findings demonstrate that DCZ5248 is a novel dual inhibitor of Hsp90 and autophagy with potential for colon cancer therapy.
Collapse
Affiliation(s)
- Xiang-Ling Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei-Liang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Guang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Xu DD, Chen SH, Zhou PJ, Wang Y, Zhao ZD, Wang X, Huang HQ, Xue X, Liu QY, Wang YF, Zhang R. Suppression of Esophageal Cancer Stem-like Cells by SNX-2112 Is Enhanced by STAT3 Silencing. Front Pharmacol 2020; 11:532395. [PMID: 33390934 PMCID: PMC7772942 DOI: 10.3389/fphar.2020.532395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023] Open
Abstract
Many studies have demonstrated that cancer stem cells (CSCs) or tumor-initiating cells (TICs) are responsible for tumor cell proliferation, chemotherapy resistance, metastasis, and relapse in various cancers. We, and others, have previously shown that the signal transducer and activator of transcription 3 (STAT3) signaling pathway is responsible for CSCs and TICs growth. Recent reports have indicated that the heat shock protein 90 (Hsp90) is also essential for the survival of CSCs and TICs. SNX-2112 is an Hsp90 inhibitor. However, it remains unclear whether proliferation of esophageal cancer stem-like cells (ECSLCs) is suppressed by SNX-2112 with knockdown of STAT3 (shSTAT3). Here, we explored the association between SNX-2112 with shSTAT3 and the suppression of ECSLCs growth. We found that the expression level of both STAT3 and p-STAT3 was higher in clinical esophageal cancer tissue than in the adjacent normal tissue, using western blot and qPCR analysis. Furthermore, differential expression analysis demonstrated that STAT3 was overexpressed in clinical specimens. We demonstrated that SNX-2112 inhibited cancer cell proliferation, decreased ABCB1 and ABCG2 gene expression levels and reduced the colony formation capacity of ECSLCs, which was enhanced by STAT3 silencing. Flow cytometry analysis revealed that the combination of SNX-2112 and shSTAT3 significantly induced apoptosis and cell cycle arrest at G2/M phase in ECSLCs. Levels of proliferation pathway proteins, including p38, c-Jun N-terminal kinase (JNK), and extracellular signal–regulated kinase (ERK) which were also client proteins of Hsp90, were also reduced. In addition, SNX-2112 with shSTAT3 inhibited the proliferation of ECSLCs in vivo. Finally, STAT3 overexpression eliminated the apoptotic and antiproliferative effects of SNX-2112 on ECSLCs. Hence, these results provide a rationale for the therapeutic potential of the combination of SNX-2112 with shSTAT3 in esophageal cancer, and may indicate new targets for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Dan-Dan Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, SunYat-Sen University Cancer Center, Guangzhou, China
| | - Su-Hong Chen
- Guangdong Food and Drug Vocational College, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ying Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhen-Dong Zhao
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xia Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hui-Qing Huang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xue Xue
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, SunYat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
12
|
SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
13
|
Park S, Kim KE, Park HJ, Cho D. The Role of Erythroid Differentiation Regulator 1 (ERDR1) in the Control of Proliferation and Photodynamic Therapy (PDT) Response. Int J Mol Sci 2020; 21:ijms21072603. [PMID: 32283647 PMCID: PMC7178175 DOI: 10.3390/ijms21072603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Erythroid differentiation regulator 1 (ERDR1) was newly identified as a secreted protein that plays an essential role in maintaining cell growth homeostasis. ERDR1 enhances apoptosis at high cell densities, leading to the inhibition of cell survival. Exogenous ERDR1 treatment decreases cancer cell proliferation and tumor growth as a result of increased apoptosis via the regulation of apoptosis-related gene expression. Moreover, ERDR1 plays a pivotal role in skin diseases; ERDR1 expression in actinic keratosis (AK) is negatively correlated with the increase in apoptosis. Because of its high specificity and efficiency, photodynamic therapy (PDT) is a common therapy for patients with various skin diseases, including cancer. Many studies indicate that apoptosis is mainly induced by PDT treatment. As an apoptosis inducer, the recovery of the ERDR1 expression after PDT is correlated with good therapeutic outcomes. Here, we review recent findings that highlight the function of ERDR1 in the control of apoptosis. Thus, ERDR1 may have a role in the apoptosis regulation of target cells in the lesions, as the recovery of its expression after PDT is correlated with good therapeutic outcomes.
Collapse
Affiliation(s)
- Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea;
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-2-3779-1230 (H.J.P.); +82-2-3290-4541 (D.C.)
| | - Daeho Cho
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea;
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02481, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-2-3779-1230 (H.J.P.); +82-2-3290-4541 (D.C.)
| |
Collapse
|
14
|
Zhao Q, Zhu HP, Xie X, Mao Q, Liu YQ, He XH, Peng C, Jiang QL, Huang W. Novel HSP90-PI3K Dual Inhibitor Suppresses Melanoma Cell Proliferation by Interfering with HSP90-EGFR Interaction and Downstream Signaling Pathways. Int J Mol Sci 2020; 21:E1845. [PMID: 32156008 PMCID: PMC7084941 DOI: 10.3390/ijms21051845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence has continuously increased over the past 20 years. Therefore, the discovery of a novel targeted therapeutic strategy for melanoma is urgently needed. In our study, MTT-based cell proliferation assay, cell cycle, and apoptosis assays through flow cytometry, protein immunoblotting, protein immunoprecipitation, designing of melanoma xenograft models, and immunohistochemical/immunofluorescent assays were carried out to determine the detailed molecular mechanisms of a novel HSP90-PI3K dual inhibitor. Our compound, named DHP1808, was found to suppress A375 cell proliferation through apoptosis induction by activating the Fas/FasL signaling pathway; it also induced cell-cycle arrest and inhibited the cell migration and invasion of A375 cells by interfering with Hsp90-EGFR interactions and downstream signaling pathways. Our results indicate that DHP1808 could be a promising lead compound for the Hsp90/PI3K dual inhibitor.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Hong-Ping Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China;
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing-Lin Jiang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| |
Collapse
|
15
|
Liu K, Chen J, Yang F, Zhou Z, Liu Y, Guo Y, Hu H, Gao H, Li H, Zhou W, Qin B, Wang Y. BJ-B11, an Hsp90 Inhibitor, Constrains the Proliferation and Invasion of Breast Cancer Cells. Front Oncol 2019; 9:1447. [PMID: 31921692 PMCID: PMC6930179 DOI: 10.3389/fonc.2019.01447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women; however, its underlying etiology remains largely unknown. In this study, we systematically analyzed breast cancer tissues using comprehensive iTRAQ labeled quantitative proteomics, identifying 841 differentially expressed proteins (474 and 367 significantly over- and under-expressed, respectively), which were annotated by protein domain analysis. All the heat shock proteins identified were upregulated in breast cancer tissues; Hsp90 upregulation was also validated by RT-qPCR and immunohistochemistry, and high Hsp90 protein levels correlated with poorer survival. Hsp90AA1 overexpression promoted MDA-MB-231 cell proliferation, whilst BJ-B11, an Hsp90 inhibitor, hampered their invasion, migration, and proliferation in a time and dose-dependent manner and induced cell cycle arrest and apoptosis. BJ-B11 inhibited the expression of epithelial-mesenchymal transition (EMT) marker in MDA-MB-231 cells, whereas Hsp90AA1 promoted its expression. Moreover, BJ-B11 inhibited tumor growth in xenograft model. Altogether, Hsp90 activation is a risk factor in breast cancer patients, and BJ-B11 could be used to treat breast cancer.
Collapse
Affiliation(s)
- Kaisheng Liu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Juan Chen
- Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Fang Yang
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Zhifan Zhou
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ying Liu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yaomin Guo
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hong Hu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hengyuan Gao
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Haili Li
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Wenbin Zhou
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Bo Qin
- Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Liu K, Guo Y, Zheng K, Zou C, Wu H, Wang S, Ou L, Wang Y, Huang B, Wang X. Identification of the circRNA-miRNA-mRNA regulatory network of Hsp90 inhibitor-induced cell death in colorectal cancer by integrated analysis. Gene 2019; 727:144232. [PMID: 31715300 DOI: 10.1016/j.gene.2019.144232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a global disease with high incidence and mortality rate. Hsp90 inhibitors induce cell death in various cancers, including CRC. However, the underlying mechanisms need to be clarified further. In this study, Caco-2 cells were treated with 0.25 μM SNX-2112, an Hsp90 inhibitor, for 48 h; subsequently, whole-transcriptome sequencing was performed. At the mRNA level in SNX-2112-treated Caco-2 cells, 1588 genes were upregulated, and 433 genes were downregulated. Six genes were found to be associated with necroptosis and apoptosis, and these 6 upregulated genes were validated by RT-qPCR. Hundred and six miRNAs were upregulated, and 48 miRNAs were downregulated in SNX-2112-treated Caco-2 cells. Eleven downregulated miRNAs were found to interact with the 6 upregulated genes. Moreover, 676 circRNAs were upregulated, and 291 circRNAs were downregulated in SNX-2112-treated Caco-2 cells. Among them, 126 circRNAs were found to be the target of the 11 downregulated miRNAs. The circRNA-miRNA-mRNA regulatory network of Hsp90 inhibitor-induced cell death in colorectal cancer was constructed. This regulatory network extends the underlying mechanism of Hsp90 and improves our understanding of Hsp90 inhibitors as potential targeted therapeutic agents.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Haixiong Wu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China
| | - Ling Ou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Bowan Huang
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang 524000, Guangdong, China.
| | - Xiao Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
17
|
Xue N, Lai F, Du T, Ji M, Liu D, Yan C, Zhang S, Yu X, Jin J, Chen X. Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer. Cell Mol Life Sci 2019; 76:3433-3447. [PMID: 30980109 PMCID: PMC11105470 DOI: 10.1007/s00018-019-03080-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
Enhancement of insulin-like growth factor 1 receptor (IGF-IR) degradation by heat shock protein 90 (HSP90) inhibitor is a potential antitumor therapeutic strategy. However, very little is known about how IGF-IR protein levels are degraded by HSP90 inhibitors in pancreatic cancer (PC). We found that the HSP90α inhibitor NVP-AUY922 (922) effectively downregulated and destabilized the IGF-1Rβ protein, substantially reduced the levels of downstream signaling molecules (p-AKT, AKT and p-ERK1/2), and resulted in growth inhibition and apoptosis in IGF-1Rβ-overexpressing PC cells. Preincubation with a proteasome or lysosome inhibitor (MG132, 3 MA or CQ) mainly led to IGF-1Rβ degradation via the lysosome degradation pathway, rather than the proteasome-dependent pathway, after PC cells were treated with 922 for 24 h. These results might be associated with the inhibition of pancreatic cellular chymotrypsin-peptidase activity by 922 for 24 h. Interestingly, 922 induced autophagic flux by increasing LC3II expression and puncta formation. However, knockdown of the crucial autophagy component AGT5 and the chemical inhibitor 3 MA-blocked 922-induced autophagy did not abrogate 922-triggered IGF-1Rβ degradation. Furthermore, 922 could enhance chaperone-mediated autophagy (CMA) activity and promote the association between HSP/HSC70 and IGF-1Rβ or LAMP2A in coimmunoprecipitation and immunofluorescence analyses. Silencing of LAMP2A to inhibit CMA activity reversed 922-induced IGF-1Rβ degradation, suggesting that IGF-1Rβ degradation by 922 was partially dependent on the CMA pathway rather than macroautophagy. This finding is mirrored by the identification of the KFERQ-like motif in IGF-1Rβ. These observations support the potential application of 922 for IGF-1Rβ-overexpressing PC therapy and first identify the role of the CMA pathway in IGF-1Rβ degradation by an HSP90 inhibitor.
Collapse
Affiliation(s)
- Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Di Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoming Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
18
|
Wu J, Li L, Wang Y, Ren X, Lin K, He Y. The HSP90/Akt pathway may mediate artemether-induced apoptosis of Cal27 cells. FEBS Open Bio 2019; 9:1726-1733. [PMID: 31376209 PMCID: PMC6768108 DOI: 10.1002/2211-5463.12711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Tongue squamous cell carcinoma is the most common malignant tumor in oral and maxillofacial regions. Recent research has found that artemether can inhibit growth and induce apoptosis of cancer cells, although the mechanism is not clear. The present study aimed to explore the correlation between the HSP90/Akt pathway and artemether‐induced apoptosis of Cal27 cells. A cell counting kit‐8 and flow cytometry were used to detect the proliferation and apoptosis of Cal27 cells, respectively, mRNA expression was examined by quantitative RT‐PCR, and protein expression was detected by western blotting. Our data revealed that artemether can inhibit growth and induce apoptosis of Cal27 cells. As the artemether concentration was increased, we observed downregulation of the expression of HSP90, p‐Akt and p‐mTOR in Cal27 cells, whereas the expression of Akt was not significantly changed. We also observed a time‐dependent decrease in the expression of HSP90, p‐Akt and p‐mTOR during exposure to 0.1 mg·mL−1 artemether. In conclusion, the HSP90/Akt pathway may be involved in artemether‐induced apoptosis of Cal27 cells.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Lei Li
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiting Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Ken Lin
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children's Hospital, Kunming, China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Liu K, Jin H, Guo Y, Liu Y, Wan Y, Zhao P, Zhou Z, Wang J, Wang M, Zou C, Wu W, Cheng Z, Dai Y. CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells. FEBS Open Bio 2019; 9:1119-1127. [PMID: 30985981 PMCID: PMC6551490 DOI: 10.1002/2211-5463.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF cells and tissues exhibit various mitochondrial abnormalities. However, the underlying molecular mechanisms remain elusive. Here, we examined the mechanisms through which CFTR regulates Bcl‐2 family proteins, which in turn regulate permeabilization of the mitochondrial outer membrane. Notably, inhibition of CFTR activated Bax and Bad, but inhibited Bcl‐2. Moreover, degradation of phosphorylated extracellular signal‐regulated kinase 1/2 (ERK1/2) and AKT increased significantly in CFTR‐knockdown cells. Dysfunction of CFTR decreased heat‐shock protein 90 (Hsp90) mRNA levels, and CFTR was found to interact with Hsp90. Inhibition of Hsp90 by SNX‐2112 induced the degradation of phosphorylated AKT and ERK1/2 in Caco2 and HRT18 cells. These findings may help provide insights into the physiological role of CFTR in CF‐related diseases.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongtao Jin
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ying Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Wan
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Pan Zhao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifan Zhou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jianhong Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Maolin Wang
- School of Medicine, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiqing Wu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhiqiang Cheng
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
20
|
HSP90 inhibitor DPB induces autophagy and more effectively apoptosis in A549 cells combined with autophagy inhibitors. In Vitro Cell Dev Biol Anim 2019; 55:349-354. [PMID: 30989449 DOI: 10.1007/s11626-019-00327-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/25/2019] [Indexed: 01/10/2023]
Abstract
In our previous study, we proved that a novel Heat shock protein 90 (HSP90) inhibitor 4-(3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) benzoic acid (DPB) could inhibit A549 lung cancer cell growth via inducing apoptosis. However, whether DPB affects autophagy is still unknown. Here, we investigated the effects of DPB on autophagy and the improved anti-cancer activity in A549 lung cancer cells. Aggregation of LC3-II was observed using laser scanning confocal microscopy in GFP-LC3 stably transfected U87 cells. Autophagy and apoptosis-related protein levels were examined by Western blot analysis. It is suggested that treatment with DPB (5-20 μmol/L) induced mTOR-independent autophagy in dose- and time-dependent manners. Pre-treatment A549 cells with autophagy inhibitor 3-methyladenine (3-MA, 5 mmol/L) enhanced DPB-induced apoptosis. And, DPB inhibited A549 cell growth more effectively in combination with autophagy inhibitors 3-MA (5 mmol/L) or 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO, 30 μmol/L). These results illustrated that as a potential and promising HSP90 inhibitor, DPB could be utilized in the treatment of cancer combined with the autophagy inhibitor.
Collapse
|
21
|
Hsp90 Inhibitor SNX-2112 Enhances TRAIL-Induced Apoptosis of Human Cervical Cancer Cells via the ROS-Mediated JNK-p53-Autophagy-DR5 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9675450. [PMID: 31019655 PMCID: PMC6452544 DOI: 10.1155/2019/9675450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.
Collapse
|
22
|
Peng H, Zeng X, Zhou Y, Zhang D, Nussinov R, Cheng F. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications. PLoS Comput Biol 2019; 15:e1006772. [PMID: 30779739 PMCID: PMC6396937 DOI: 10.1371/journal.pcbi.1006772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/01/2019] [Accepted: 01/09/2019] [Indexed: 11/28/2022] Open
Abstract
Recent advances in next-generation sequencing and computational technologies have enabled routine analysis of large-scale single-cell ribonucleic acid sequencing (scRNA-seq) data. However, scRNA-seq technologies have suffered from several technical challenges, including low mean expression levels in most genes and higher frequencies of missing data than bulk population sequencing technologies. Identifying functional gene sets and their regulatory networks that link specific cell types to human diseases and therapeutics from scRNA-seq profiles are daunting tasks. In this study, we developed a Component Overlapping Attribute Clustering (COAC) algorithm to perform the localized (cell subpopulation) gene co-expression network analysis from large-scale scRNA-seq profiles. Gene subnetworks that represent specific gene co-expression patterns are inferred from the components of a decomposed matrix of scRNA-seq profiles. We showed that single-cell gene subnetworks identified by COAC from multiple time points within cell phases can be used for cell type identification with high accuracy (83%). In addition, COAC-inferred subnetworks from melanoma patients' scRNA-seq profiles are highly correlated with survival rate from The Cancer Genome Atlas (TCGA). Moreover, the localized gene subnetworks identified by COAC from individual patients' scRNA-seq data can be used as pharmacogenomics biomarkers to predict drug responses (The area under the receiver operating characteristic curves ranges from 0.728 to 0.783) in cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) database. In summary, COAC offers a powerful tool to identify potential network-based diagnostic and pharmacogenomics biomarkers from large-scale scRNA-seq profiles. COAC is freely available at https://github.com/ChengF-Lab/COAC.
Collapse
Affiliation(s)
- He Peng
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Xiangxiang Zeng
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Yadi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States of America
| | - Defu Zhang
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States of America
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| |
Collapse
|
23
|
Heat-shock protein 90α is involved in maintaining the stability of VP16 and VP16-mediated transactivation of α genes from herpes simplex virus-1. Mol Med 2018; 24:65. [PMID: 30577726 PMCID: PMC6303900 DOI: 10.1186/s10020-018-0066-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 01/24/2023] Open
Abstract
Background Numerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear. Methods and results Hsp90α knockdown or inhibition significantly inhibited the promoter activity of HSV-1 α genes and downregulated virion protein 16(VP16) expression from virus and plasmids. The Hsp90α knockdown-induced suppression of α genes promoter activity and downregulation of α genes was reversed by VP16 overexpression, indicating that Hsp90α is involved in VP16-mediated transcription of HSV-1 α genes. Co-immunoprecipitation experiments indicated that VP16 interacted with Hsp90α through the conserved core domain within VP16. Based on using autophagy inhibitors and the presence of Hsp90 inhibitors in ATG7−/− (autophagy-deficient) cells, Hsp90 inhibition-induced degradation of VP16 is dependent on macroautophagy-mediated degradation but not chaperone-mediated autophagy (CMA) pathway. In vivo studies demonstrated that treatment with gels containing Hsp90 inhibitor effectively reduced the level of VP16 and α genes, which may contribute to the amelioration of the skin lesions in an HSV-1 infection mediated zosteriform model. Conclusion Our study provides new insights into the mechanisms by which Hsp90α facilitates the transactivation of HSV-1 α genes and viral infection, and highlights the importance of developing selective inhibitors targeting the interaction between Hsp90α and VP16 to reduce toxicity, a major challenge in the clinical use of Hsp90 inhibitors. Electronic supplementary material The online version of this article (10.1186/s10020-018-0066-x) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Han J, Goldstein LA, Hou W, Chatterjee S, Burns TF, Rabinowich H. HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC. Autophagy 2018; 14:958-971. [PMID: 29561705 PMCID: PMC6103412 DOI: 10.1080/15548627.2018.1434471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy has emerged as a resistance mechanism to anticancer drug treatments that induce metabolic stress. Certain tumors, including a subset of KRAS-mutant NSCLCs have been shown to be addicted to autophagy, and potentially vulnerable to autophagy inhibition. Currently, autophagy inhibition is being tested in the clinic as a therapeutic component for tumors that utilize this degradation process as a drug resistance mechanism. The current study provides evidence that HSP90 (heat shock protein 90) inhibition diminishes the expression of ATG7, thereby impeding the cellular capability of mounting an effective autophagic response in NSCLC cells. Additionally, an elevation in the expression level of CASP9 (caspase 9) prodomain in KRAS-mutant NSCLC cells surviving HSP90 inhibition appears to serve as a cell survival mechanism. Initial characterization of this survival mechanism suggests that the altered expression of CASP9 is mainly ATG7 independent; it does not involve the apoptotic activity of CASP9; and it localizes to a late endosomal and pre-lysosomal phase of the degradation cascade. HSP90 inhibitors are identified here as a pharmacological approach for targeting autophagy via destabilization of ATG7, while an induced expression of CASP9, but not its apoptotic activity, is identified as a resistance mechanism to the cellular stress brought about by HSP90 inhibition.
Collapse
Affiliation(s)
- Jie Han
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Leslie A Goldstein
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Wen Hou
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Suman Chatterjee
- b Department of Medicine, Division of Hematology-Oncology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Timothy F Burns
- b Department of Medicine, Division of Hematology-Oncology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Hannah Rabinowich
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
25
|
Shin EJ, Choi HK, Sung MJ, Park JH, Chung MY, Chung S, Hwang JT. Anti-tumour effects of beta-sitosterol are mediated by AMPK/PTEN/HSP90 axis in AGS human gastric adenocarcinoma cells and xenograft mouse models. Biochem Pharmacol 2018; 152:60-70. [PMID: 29559312 DOI: 10.1016/j.bcp.2018.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023]
Abstract
We investigated the anti-cancer effects of beta-sitosterol (BS), a plant-derived sterol in AGS human gastric adenocarcinoma cells and xenograft mouse models. BS significantly reduced cell viability by inducing apoptosis in AGS adenocarcinoma cells. This was accompanied by the formation of apoptotic bodies, as detected by Annexin V, caspase 3/7 activity, and MitoPotential assay. BS stimulated phosphatase and tensin homolog (PTEN) and phospho-AMP-activated protein kinase (p-AMPK) expression. Pharmacological inhibitors or siRNA were used to further analyse the relationship between the two proteins. AMPK was found to represent a likely upstream regulator of PTEN. Additionally, two-dimensional gel electrophoresis was used to identify related proteins in the treatment of BS. The decrease of Hsp90 protein by BS was observed. Induction of PTEN protein and reduction of Hsp90 was mediated by AICAR, an AMPK activator, indicating that AMPK is necessary for PTEN and Hsp90 expression. Additionally, BS was found to be effective through the regulation of cancer biomarker. Furthermore, BS suppressed tumour growth without toxicity in the AGS xenograft mouse models-. Taken together, the present results demonstrate that BS exerts anti-cancer effects in AGS cells and xenograft mouse models by mediating AMPK, PTEN, and Hsp90.
Collapse
Affiliation(s)
- Eun Ju Shin
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Mi Jeong Sung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae Ho Park
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Yu Chung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Sangwon Chung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
26
|
Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, Lin YY, Huang C, Li YN, Dai HF, Tan GH. 3'-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Am J Cancer Res 2018; 8:2044-2060. [PMID: 29556372 PMCID: PMC5858516 DOI: 10.7150/thno.23304] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Cardenolides have potential as anticancer drugs. 3′-epi-12β-hydroxyfroside (HyFS) is a new cardenolide structure isolated by our research group, but its molecular mechanisms remain poorly understood. This study investigates the relationship between its antitumor activities and autophagy in lung cancer cells. Methods: Cell growth and proliferation were detected by MTT, lactate dehydrogenase (LDH) release, 5-ethynyl-20-deoxyuridine (EDU) and colony formation assays. Cell apoptosis was detected by flow cytometry. Autophagic and signal proteins were detected by Western blotting. Markers of autophagy and autophagy flux were also detected by immunofluorescence, transmission electron microscopy and acridine orange staining. Real time RT-PCR was used to analyze the gene expression of Hsp90. Hsp90 ubiquitination was detected by coimmunoprecipitation. The antitumore activities of HyFS were observed in nude mice. Results: HyFS treatment inhibited cell proliferation and induced autophagy in A549 and H460 lung cancer cells, but stronger inhibition of cell proliferation and induction of cell apoptosis were shown when HyFS-mediated autophagy was blocked. The Hsp90/Akt/mTOR axis was found to be involved in the activation of HyFS-mediated autophagy. Evidence of direct interaction between Hsp90 and Akt was observed. HyFS treatment resulted in decreased levels of heat shock protein 90 (Hsp90) and phosphorylated Akt, overexpression of Hsp90 increased activation of autophagy, and inhibition of Hsp90 expression decreased autophagy. In addition, ubiquitin-mediated degradation of Hsp90 and subsequent dephosphorylation of its client protein Akt were also found in HyFS-treated lung cancer cells. Moreover, combination treatment with HyFS and chloroquine showed remarkably increased tumor inhibition in both A549- and H460-bearing mice. Conclusion: Our results demonstrate that HyFS induced cytoprotective autophagy through ubiquitin-mediated degradation of Hsp90, which further blocked the Akt/mTOR pathway in lung cancer cells. Thus, a combination of a HyFS-like cardenolide and an autophagic inhibitor is a potential alternative approach for the treatment of lung cancer.
Collapse
|
27
|
Shin MK, Jeong KH, Choi H, Ahn HJ, Lee MH. Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line. J Dermatol Sci 2018; 90:357-360. [PMID: 29433909 DOI: 10.1016/j.jdermsci.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/27/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heat shock proteins (Hsps) are chaperone proteins, which are upregulated after various stresses. Hsp90 inhibitors have been investigated as adjuvant therapies for the treatment of melanoma. Thermal ablation could be a treatment option for surgically unresectable melanoma or congenital nevomelanocytic nevi, however, there is a limitation such as the possibility of recurrence. OBJECTIVE We evaluated apoptosis in a melanoma cell line treated with the Hsp90 inhibitor 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in hyperthermic conditions. METHODS SK-MEL-2 cells were stimulated at 43 °C for 1 h and treated with 0, 0.1 and 1 μM 17-DMAG. We evaluated the cell viability using MTT and apoptosis with HSP 90 inhibitor. We studied the protein expression of AKT, phospho-AKT, ERK, phospho-ERK, MAPK, and phospho-MAPK, caspase 3,7,9, and anti-poly (ADP-ribose) polymerase. RESULTS 17-DMAG significantly inhibited the proliferation of the SK-MEL-2 cells at 37 °C (0.1 μM: 44.47% and 1 μM: 61.23%) and 43 °C (0.1 μM: 49.21% and 1 μM: 63.60%), suggesting synergism between thermal stimulation and 17-DMAG. 17-DMAG treatment increased the frequency of apoptotic cell populations to 2.17% (0.1 μM) and 3.05% (1 μM) in 37 °C controls, and 4.40% (0.1 μM) and 4.97% (1 μM) in the group stimulated at 43 °C. AKT phosphorylation were activated by thermal stimulation and inhibited by 17-DMAG. CONCLUSION Hsp90 inhibitor treatment may be clinically applicable to enhance the apoptosis of melanoma cells in hyperthermic condition.
Collapse
Affiliation(s)
- Min Kyung Shin
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Ki-Heon Jeong
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeongwon Choi
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Jin Ahn
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mu-Hyoung Lee
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Targeted delivery of SNX-2112 by polysaccharide-modified graphene oxide nanocomposites for treatment of lung cancer. Carbohydr Polym 2018; 185:85-95. [PMID: 29421063 DOI: 10.1016/j.carbpol.2018.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
Graphene oxide (GO) is a promising material for biomedical applications, particularly in drug delivery, due to its exceptional chemical and physical properties. In this work, an innovative GO-based carrier was developed by modifying GO with chitosan (CHI) to improve the biocompatibility, and followed by the conjugation of hyaluronic acid (HA), the target ligand for CD44, to realize the specific recognition of tumor cells and improve the efficiency of anti-tumor drug delivery. The resulting product GO-CHI-HA was loaded with an anti-cancer drug SNX-2112, which is the Hsp90 inhibitor. The total release amount and release rate of SNX-2112 were significantly higher in acidic condition than in physiological condition. GO-CHI-HA with a low concentration had little impact on the lysis of red blood cells (RBCs) and blood coagulation and showed low toxicity in A549 cells and NHBE cells. The GO-CHI-HA/SNX-2112 proved to be effective in inhibiting and killing A549 cells while having lower cytotoxicity against normal human bronchial epithelial cells (NHBE cells). Furthermore, in vivo toxicity of the materials towards vital organs in SD rats were also studied through histological examinations and blood property analyses, the results of which showed that although inflammatory response was developed in the short-term, GO-CHI-HA/SNX-2112 caused no severe long-term injury. Therefore, this drug delivery system showed great potential as an effective and safe drug delivery system with little adverse side effects for cancer therapy.
Collapse
|
29
|
Wu Y, Zhang X, Li H, Deng P, Li H, He T, Rong J, Zhao J, Liu Z. A core/shell stabilized polysaccharide-based nanoparticle with intracellular environment-sensitive drug delivery for breast cancer therapy. J Mater Chem B 2018; 6:6646-6659. [DOI: 10.1039/c8tb00633d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we developed a novel core/shell chitosan (Cs)/hyaluronan (HA)-based hybrid nanoparticle, i.e. SNX@Cs-SNX/cHA, with good stability in the bloodstream and intracellular environment-sensitive drug delivery for breast cancer therapy.
Collapse
Affiliation(s)
- Yan Wu
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xinyue Zhang
- Guangzhoujinan Biomedicine Research and Development Center
- Guangdong Provincial Key Laboratory of Bioengineering Medicine
- National Engineering Research Center of Genetic Medicine
- Jinan University
- Guangzhou 510632
| | - Huaqiang Li
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Pengfei Deng
- Guangzhoujinan Biomedicine Research and Development Center
- Guangdong Provincial Key Laboratory of Bioengineering Medicine
- National Engineering Research Center of Genetic Medicine
- Jinan University
- Guangzhou 510632
| | - Huiru Li
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Tianqi He
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Jianhua Rong
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Jianhao Zhao
- Department of Materials Science and Engineering
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Zhong Liu
- Guangzhoujinan Biomedicine Research and Development Center
- Guangdong Provincial Key Laboratory of Bioengineering Medicine
- National Engineering Research Center of Genetic Medicine
- Jinan University
- Guangzhou 510632
| |
Collapse
|
30
|
Sauvage F, Messaoudi S, Fattal E, Barratt G, Vergnaud-Gauduchon J. Heat shock proteins and cancer: How can nanomedicine be harnessed? J Control Release 2017; 248:133-143. [PMID: 28088573 DOI: 10.1016/j.jconrel.2017.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles.
Collapse
Affiliation(s)
- Félix Sauvage
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Samir Messaoudi
- BioCIS-UMR 8076, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Gillian Barratt
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Juliette Vergnaud-Gauduchon
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France.
| |
Collapse
|
31
|
Rabaça AN, Arruda DC, Figueiredo CR, Massaoka MH, Farias CF, Tada DB, Maia VC, Silva Junior PI, Girola N, Real F, Mortara RA, Polonelli L, Travassos LR. AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio 2016; 6:885-901. [PMID: 27642552 PMCID: PMC5011487 DOI: 10.1002/2211-5463.12080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Antibody‐derived peptides modulate functions of the immune system and are a source of anti‐infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity‐determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC‐1001 displays antimetastatic activities using B16F10‐Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC‐1001 H3 bound to both G‐ and F‐actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR‐derived peptides.
Collapse
Affiliation(s)
- Aline N Rabaça
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Denise C Arruda
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil; Núcleo Integrado de Biotecnologia Universidade de Mogi das Cruzes Brazil
| | - Carlos R Figueiredo
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Mariana H Massaoka
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Camyla F Farias
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Dayane B Tada
- Departamento de Ciência e Tecnologia Universidade Federal de São Paulo (UNIFESP) São José dos Campos Brazil
| | | | - Pedro I Silva Junior
- Laboratório Especial de Toxinologia Aplicada Instituto Butantan São Paulo Brazil
| | - Natalia Girola
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Fernando Real
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Renato A Mortara
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit Department of Biomedical Biotechnological and Translational Sciences Universitá degli Studi di Parma Italy
| | - Luiz R Travassos
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| |
Collapse
|
32
|
Zheng L, Wu S, Tan L, Tan H, Yu B. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells. J Biomater Appl 2016; 31:379-86. [PMID: 27231263 DOI: 10.1177/0885328216651183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs–CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT–CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Lixia Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shao Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baodan Yu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Rodríguez ME, Cogno IS, Milla Sanabria LS, Morán YS, Rivarola VA. Heat shock proteins in the context of photodynamic therapy: autophagy, apoptosis and immunogenic cell death. Photochem Photobiol Sci 2016; 15:1090-1102. [DOI: 10.1039/c6pp00097e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins can mediate resistance to photodynamic therapy by inhibiting apoptosis and modulating autophagy which, in turn, prevents apoptosis and immunogenic cell death.
Collapse
Affiliation(s)
- Matías E. Rodríguez
- Departamento de Biología Molecular
- Universidad Nacional de Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Ingrid S. Cogno
- Departamento de Biología Molecular
- Universidad Nacional de Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Laura S. Milla Sanabria
- Departamento de Biología Molecular
- Universidad Nacional de Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Yanina S. Morán
- Departamento de Biología Molecular
- Universidad Nacional de Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Viviana A. Rivarola
- Departamento de Biología Molecular
- Universidad Nacional de Río Cuarto
- Río Cuarto (5800)
- Argentina
| |
Collapse
|
34
|
Strocchia M, Terracciano S, Chini MG, Vassallo A, Vaccaro MC, Dal Piaz F, Leone A, Riccio R, Bruno I, Bifulco G. Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun (Camb) 2015; 51:3850-3. [PMID: 25656927 DOI: 10.1039/c4cc10074c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hsp90 C-terminal ligands are potential new anti-cancer drugs alternative to the more studied N-terminal inhibitors. Here we report the identification of a new dihydropyrimidinone binding the C-terminus, which is not structurally related to other well-known natural and nature-inspired inhibitors of this second druggable Hsp90 site.
Collapse
Affiliation(s)
- Maria Strocchia
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shetake NG, Kumar A, Gaikwad S, Ray P, Desai S, Ningthoujam RS, Vatsa RK, Pandey BN. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int J Hyperthermia 2015; 31:909-19. [DOI: 10.3109/02656736.2015.1075072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
36
|
Zhang X, Zhang T, Ye Y, Chen H, Sun H, Zhou X, Ma Z, Wu B. Phospholipid-stabilized mesoporous carbon nanospheres as versatile carriers for systemic delivery of amphiphobic SNX-2112 (a Hsp90 inhibitor) with enhanced antitumor effect. Eur J Pharm Biopharm 2015; 94:30-41. [DOI: 10.1016/j.ejpb.2015.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022]
|
37
|
Home T, Jensen RA, Rao R. Heat shock factor 1 in protein homeostasis and oncogenic signal integration. Cancer Res 2015; 75:907-12. [PMID: 25724679 DOI: 10.1158/0008-5472.can-14-2905] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock factor 1 (HSF1) is a stress-inducible transcription factor and has been described as a multi-faceted modulator of tumorigenesis. Heat shock, accumulation of misfolded proteins, or malignant transformation promotes the activation and nuclear translocation of HSF1, where it binds to the promoters of heat shock proteins and an array of nonheat shock-regulated proteins to upregulate their transcription. These stress-responsive and tumor-promoting genes in turn alter the ability of tumor cells to respond to a variety of stresses and enable them to thrive in less than favorable growth conditions. Although a direct role for HSF1 in promoting mRNA transcription of tumor-promoting genes has been suggested, it appears that this property is context- and cell-type dependent. Furthermore, recent studies have demonstrated a direct involvement of mTOR signaling in regulating HSF1-mediated transcription, thus establishing a direct link between protein translation and HSF1 activity. Interestingly, there is a growing understanding of the signaling pathways that are modulated by HSF1 in a variety of tumor types and the co-option of these survival pathways by HSF1 to promote tumorigenesis. This review will focus on the role of HSF1 in protein homeostasis and HSF1-mediated oncogenic signaling pathways that together promote tumorigenesis.
Collapse
Affiliation(s)
- Trisha Home
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Rekha Rao
- The University of Kansas Cancer Center, Kansas City, Kansas.
| |
Collapse
|
38
|
Wang S, Du Z, Luo J, Wang X, Li H, Liu Y, Zhang Y, Ma J, Xiao W, Wang Y, Zhong X. Inhibition of heat shock protein 90 suppresses squamous carcinogenic progression in a mouse model of esophageal cancer. J Cancer Res Clin Oncol 2015; 141:1405-16. [PMID: 25563492 DOI: 10.1007/s00432-014-1896-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Heat shock protein 90 (Hsp90), a potential therapeutic target, has been widely recognized in vitro and in vivo in immunodeficient mice. Here, we aimed to evaluate the role of Hsp90 in an immunocompetent mouse model of esophageal squamous cell cancer (ESCC). METHODS The carcinogen 4-nitroquinoline 1-oxide (4NQO) was used to induce ESCC in C57BL/6 mice. Cancer progression was analyzed through observation of appearance, hematoxylin-eosin staining, immunohistochemical detection, and terminal dUTP nick-end labeling analysis. RESULTS 4NQO led to the progressive appearance of preneoplastic and tumoral lesions in the esophagus, with 100 % incidence of ESCC in situ occurring only after 16 weeks of carcinogen exposure. Most of these lesions evolved spontaneously into highly invasive ESCC even after 4NQO withdrawal (weeks 16-22). Interestingly, there was marked upregulation of Hsp90 and its client proteins in tumoral lesions at 22 weeks. Hsp90 inhibition by intraperitoneal injection of SNX-2112 over the following 2 weeks downregulated AKT and cyclin D1 expression, leading to significant reduction in tumor incidence and prevention of ESCC progression. Moreover, SNX-2112 treatment decreased proliferating cell nuclear antigen expression and increased the number of apoptotic cells in ESCC tissues. CONCLUSIONS Our in vivo findings support the contribution of Hsp90 to ESCC progression, which was achieved by stimulating apoptosis and inhibition of cell proliferation, and provide a strong rationale for further evaluation of Hsp90 inhibitors for treating ESCC.
Collapse
Affiliation(s)
- Shaoxiang Wang
- Institute of Molecular Medicine, Department of Medicine, Shenzhen University, Shenzhen, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang X, Wang S, Liu Y, Huang D, Zheng K, Zhang Y, Wang X, Liu Q, Yang D, Wang Y. Comparative effects of SNX-7081 and SNX-2112 on cell cycle, apoptosis and Hsp90 client proteins in human cancer cells. Oncol Rep 2014; 33:230-8. [PMID: 25334086 DOI: 10.3892/or.2014.3552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
SNX-2112, a novel 2-aminobenzamide inhibitor of Hsp90, previously showed a broad spectrum of anticancer activity. However, subsequent development has been discontinued due to ocular toxicity as identified in a phase I study. SNX-7081, another closely related Hsp90 inhibitor with a side chain of indole instead of indazole, has recently attracted attention. The aim of the present study was to investigate the anticancer effects of SNX-7081 in eleven cell lines, as well as the mechanisms involved, with SNX-2112 serving as a reference. The cytotoxic effects were determined using an MTT assay and apoptosis was measured using flow cytometry. The results showed that SNX-7081 exerted better inhibitory effects than SNX-2112 in six eighths of the human cancer cell lines, with an average IC50 of 1 µM. The two inhibitors exerted low cytotoxicity in L-02, HDF and MRC5 normal human cells (IC50 >50 µM), and arrested cancer cells at the G2/M phase in a similar manner to normal cells. Compared with SNX-2112, SNX-7081 exhibited more potent effects on cell apoptosis in four sixths of the human cancer cell lines, and was more active in the downregulation of Hsp90 client proteins. In addition, SNX-7081 exhibited a stronger binding affinity to Hsp90 than SNX-2112 in molecular docking experiments. Considering the superior effects against Hsp90 affinity, cell growth, apoptosis, and Hsp90 client proteins in a majority of human cancer cells, the novel SNX-7081 may be a promising alternative to SNX-2112, which merits further evaluation.
Collapse
Affiliation(s)
- Xiao Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shaoxiang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuting Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P.R. China
| | - Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yi Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiuying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
40
|
Liu Y, Wang X, Wang Y, Zhang Y, Zheng K, Yan H, Zhang L, Chen W, Wang X, Liu Q, Wang S, Wang Y. Combination of SNX-2112 with 5-FU exhibits antagonistic effect in esophageal cancer cells. Int J Oncol 2014; 46:299-307. [PMID: 25333998 DOI: 10.3892/ijo.2014.2714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
The low efficacy of single-drug chemotherapy forms the basis for combination therapy in esophageal squamous cell carcinoma. SNX-2112, a selective heat shock protein 90 (Hsp90) inhibitor, was recently reported as being effective in combination with cisplatin and paclitaxel. In this study, we investigated the effect of SNX-2112 in combination with 5-fluorouracil (5-FU), another first-line anticancer drug, in esophageal cancer. Unexpectedly, tetrazolium assay revealed that the combination of SNX-2112 with 5-FU exhibited antagonistic effect. Flow cytometry revealed that the SNX-2112 and 5-FU combination greatly decreased the number of G2/M cells compared to SNX-2112-only treatment in Eca‑109 cells. This effect might be related to the altered mRNA level of cyclin-related genes including cyclin D1, Chk2 and Cdk4. Further, 5-FU attenuated SNX-2112-induced apoptosis by decreasing poly(ADP-ribose) polymerase (PARP) cleavage and inactivating caspase-3, -8 and -9. Additionally, 5-FU suppressed the SNX-2112-induced decrease of mitochondrial membrane potential. Moreover, 5-FU partly recovered Hsp90 client proteins, including Akt, p-Akt, inhibitor of κB kinase (IKK)α, extracellular signal-regulated kinase (ERK)1/2, and glycogen synthase kinase (GSK)-3β, which SNX-2112 had downregulated. Taken together, this is the first report that the combination of SNX-2112 with 5-FU exhibited antagonistic effect in esophageal cancer cells by affecting growth inhibition, cell cycle, apoptosis, and Hsp90 client proteins, suggesting that care is required in the clinical application of combined SNX-2112 and 5-FU.
Collapse
Affiliation(s)
- Yuting Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xiao Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Ying Wang
- Department of Biotechnology, Jinan University, Guangzhou 510632, P.R. China
| | - Yi Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Kai Zheng
- School of Medicine, Shenzhen University, Shenzhen 518060, P.R. China
| | - Haizhao Yan
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Li Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Wenbo Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Qiuying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Shaoxiang Wang
- School of Medicine, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
41
|
Shen H, Zhu H, Song M, Tian Y, Huang Y, Zheng H, Cao R, Lin J, Bi Z, Zhong W. A selenosemicarbazone complex with copper efficiently down-regulates the 90-kDa heat shock protein HSP90AA1 and its client proteins in cancer cells. BMC Cancer 2014; 14:629. [PMID: 25167922 PMCID: PMC4168210 DOI: 10.1186/1471-2407-14-629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background The 90-kDa heat shock protein HSP90AA1 is critical for the stability of several proteins that are important for tumor progression and thus, is a promising target for cancer therapy. Selenosemicarbazone metal complexes have been shown to possess anticancer activity through an unknown molecular mechanism. Methods The MTT assay, fluorescence-activated cell sorting, and fluorescent microscopy were used to analyze the mechanism of the anti-cancer activity of the selenosemicarbazone metal complexes. Additionally, RNA-seq was applied to identify transcriptional gene changes, and in turn, the signaling pathways involved in the process of 2-24a/Cu-induced cell death. Last, the expression of HSP90AA1, HSPA1A, PIM1, and AKT proteins in 2-24a/Cu-treated cells were investigated by western blot analysis. Results A novel selenosemicarbazone copper complex (2-24a/Cu) efficiently induced G2/M arrest and was cytotoxic in cancer cells. 2-24a/Cu significantly induced oxidative stress in cancer cells. Interestingly, although RNA-seq revealed that the transcription of HSP90AA1 was increased in 2-24a/Cu-treated cells, western blotting showed that the expression of HSP90AA1 protein was significantly decreased in these cells. Furthermore, down-regulation of HSP90AA1 led to the degradation of its client proteins (PIM1 and AKT1), which are also cancer therapy targets. Conclusion Our results showed that 2-24a/Cu efficiently generates oxidative stress and down-regulates HSP90AA1 and its client proteins (PIM1, AKT1) in U2os and HeLa cells. These results demonstrate the potential application of this novel copper complex in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenggang Bi
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | |
Collapse
|
42
|
Wang X, Wang S, Liu Y, Ding W, Zheng K, Xiang Y, Liu K, Wang D, Zeng Y, Xia M, Yang D, Wang Y. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochem Biophys Res Commun 2014; 446:160-6. [DOI: 10.1016/j.bbrc.2014.02.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/18/2014] [Indexed: 01/12/2023]
|
43
|
Liu W, Liu H, Sun H, Dong D, Ma Z, Wang Y, Wu B. Metabolite elucidation of the Hsp90 inhibitor SNX-2112 using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Xenobiotica 2013; 44:455-64. [DOI: 10.3109/00498254.2013.853849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
45
|
Ragazzoni Y, Desideri M, Gabellini C, De Luca T, Carradori S, Secci D, Nescatelli R, Candiloro A, Condello M, Meschini S, Del Bufalo D, Trisciuoglio D. The thiazole derivative CPTH6 impairs autophagy. Cell Death Dis 2013; 4:e524. [PMID: 23470531 PMCID: PMC3613831 DOI: 10.1038/cddis.2013.53] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) induces apoptosis and cell cycle arrest in human leukemia cells. The aim of this study was to evaluate whether CPTH6 is able to affect autophagy. By using several human tumor cell lines with different origins we demonstrated that CPTH6 treatment induced, in a dose-dependent manner, a significant increase in autophagic features, as imaged by electron microscopy, immunoblotting analysis of membrane-bound form of microtubule-associated protein 1 light chain 3 (LC3B-II) levels and by appearance of typical LC3B-II-associated autophagosomal puncta. To gain insights into the molecular mechanisms of elevated markers of autophagy induced by CPTH6 treatment, we silenced the expression of several proteins acting at different steps of autophagy. We found that the effect of CPTH6 on autophagy developed through a noncanonical mechanism that did not require beclin-1-dependent nucleation, but involved Atg-7-mediated elongation of autophagosomal membranes. Strikingly, a combined treatment of CPTH6 with late-stage autophagy inhibitors, such as chloroquine and bafilomycin A1, demonstrates that under basal condition CPTH6 reduces autophagosome turnover through an impairment of their degradation pathway, rather than enhancing autophagosome formation, as confirmed by immunofluorescence experiments. According to these results, CPTH6-induced enhancement of autophagy substrate p62 and NBR1 protein levels confirms a blockage of autophagic cargo degradation. In addition, CPTH6 inhibited autophagosome maturation and compounds having high structural similarities with CPTH6 produced similar effects on the autophagic pathway. Finally, the evidence that CPTH6 treatment decreased α-tubulin acetylation and failed to increase autophagic markers in cells in which acetyltransferase ATAT1 expression was silenced indicates a possible role of α-tubulin acetylation in CPTH6-induced alteration in autophagy. Overall, CPTH6 could be a valuable agent for the treatment of cancer and should be further studied as a possible antineoplastic agent.
Collapse
Affiliation(s)
- Y Ragazzoni
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - M Desideri
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - C Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - T De Luca
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - S Carradori
- Department of Drug Chemistry and Technologies, ‘Sapienza' University, Rome, Italy
| | - D Secci
- Department of Drug Chemistry and Technologies, ‘Sapienza' University, Rome, Italy
| | - R Nescatelli
- Department of Chemistry, ‘Sapienza' University, Rome, Italy
| | - A Candiloro
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - M Condello
- Department of Technology and Health, Italian National Institute of Health, Rome, Italy
| | - S Meschini
- Department of Technology and Health, Italian National Institute of Health, Rome, Italy
| | - D Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - D Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
46
|
LIU KAISHENG, ZHANG YI, DING WEICHAO, WANG SHAOXIANG, XIANG YANGFEI, YANG PAN, CHEN ZHENPING, ZHENG KAI, LIU ZHONG, XIA MIN, WANG YIFEI. The selective Hsp90 inhibitor BJ-B11 exhibits potent antitumor activity via induction of cell cycle arrest, apoptosis and autophagy in Eca-109 human esophageal squamous carcinoma cells. Int J Oncol 2012; 41:2276-84. [DOI: 10.3892/ijo.2012.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/03/2012] [Indexed: 11/06/2022] Open
|
47
|
Thirukkumaran CM, Shi ZQ, Luider J, Kopciuk K, Gao H, Bahlis N, Neri P, Pho M, Stewart D, Mansoor A, Morris DG. Reovirus as a viable therapeutic option for the treatment of multiple myeloma. Clin Cancer Res 2012; 18:4962-72. [PMID: 22761466 DOI: 10.1158/1078-0432.ccr-11-3085] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Despite the recent advances made in the treatment of multiple myeloma, the disease still remains incurable. The oncolytic potential of reovirus has previously been shown and is currently in phase III clinical trials for solid tumors. We tested the hypothesis that reovirus can successfully target human multiple myeloma in vitro, ex vivo, and in vivo without affecting human hematopoietic stem cell (HHSC) re-population/differentiation in a murine model that partially recapitulates human multiple myeloma. EXPERIMENTAL DESIGN Human myeloma cell lines and ex vivo tumor specimens were exposed to reovirus and oncolysis and mechanisms of cell death were assessed. RPMI 8226(GFP+) cells were injected intravenously to non-obese diabetic/severe combined immune deficient (NOD/SCID) mice and treated with live reovirus (LV) or dead virus (DV). Multiple myeloma disease progression was evaluated via whole-body fluorescence and bone marrow infiltration. HHSCs exposed to LV/DV were injected to NOD/SCID mice and re-population/differentiation was monitored. RESULTS A total of six of seven myeloma cell lines and five of seven patient tumor specimens exposed to reovirus showed significant in vitro sensitivity. Tumor response of multiple myeloma by LV, but not DV, was confirmed by comparison of total tumor weights (P = 0.05), and bone marrow infiltration (1/6, LV; 5/6, DV). Mice injected with LV- or DV-exposed HHSCs maintained in vivo re-population/lineage differentiation showing a lack of viral effect on the stem cell compartment. Reovirus oncolysis was mediated primarily by activation of the apoptotic pathways. CONCLUSIONS The unique ability of reovirus to selectively kill multiple myeloma while sparing HHSCs places it as a promising systemic multiple myeloma therapeutic for clinical testing.
Collapse
|