1
|
Intachat C, Chuammitri P, Sornpet B, Patchanee P, Manachai N, Piyarungsri K. Unraveling TGF-β1's Role in Mediating Fibrosis and Cell Death in Feline Kidney Cells. Animals (Basel) 2025; 15:257. [PMID: 39858257 PMCID: PMC11758325 DOI: 10.3390/ani15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic kidney disease (CKD) is prevalent among older cats. The transforming growth factor beta 1 (TGF-β1) pathway is associated with renal fibrosis. TGF-β1 signaling through the non-canonical/smad-independent pathway activates mitogen-activated protein kinase (MAPK) signaling, which is linked to fibrosis and apoptosis. The MAPK pathway regulates the Bcl-2 protein family, which is known for its anti-apoptosis properties. This study aimed to quantify the mRNA expression of the TGFβ, MAPK, and Bcl2 genes and the protein expression of TGF-β1 and MAPK in feline kidney cells and tissue. A gene expression analysis was conducted using qPCR to calculate the relative gene expression, while the protein expression was assessed through Western blot analysis. Immunohistochemistry staining of TGF-β1 and MAPK was performed on feline kidney tissue. The results revealed the significant upregulation of TGFβ (p = 0.001) and considerable downregulation of Bcl2 (p = 0.010) in doxorubicin-treated feline kidney cells. The immunostaining levels of TGF-β1 and MAPK were higher in the kidney tissue of cats with CKD than in non-CKD cats. However, there was no difference in TGFβ, MAPK, or Bcl2 gene expression in CKD vs. non-CKD cats. The findings suggest that TGF-β1 and Bcl-2 are associated with renal fibrosis and apoptosis in feline kidney cells. A deeper understanding of the TGF-β1 pathway could enable veterinarians to monitor disease progression and mitigate complications in feline CKD.
Collapse
Affiliation(s)
- Chanyanuch Intachat
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
- Research Center of Producing and Development of Products and Innovation for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Benjaporn Sornpet
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Prapas Patchanee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Nawin Manachai
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Kakanang Piyarungsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
- Research Center of Producing and Development of Products and Innovation for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
2
|
Duan BT, Zhang HY, Song ZH, Han XY, Cui KL, Xu T, Zhang Y, Zhao YJ, Lei X, Tan F, Guo LL, Yang HL, Zhang L, Bai R, Lv XL, Zheng MX. EtROP38 suppresses apoptosis of host cells infected with Eimeria tenella by inhibition of the p38MAPK pathway. Vet Parasitol 2024; 331:110296. [PMID: 39217762 DOI: 10.1016/j.vetpar.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The mechanism by which the pathogenic factors of Eimeria tenella damage host cells is unknown. Some kinases from the rhoptry compartment can regulate apoptosis of host cells. This study focused on revealing the role and critical nodes of E. tenella rhoptry protein (EtROP) 38 in controlling the apoptosis of host cells via the P38 mitogen-activated protein kinase (MAPK) signaling pathway. The cells were treated with EtROP38 protein, siRNA p38MAPK, or both. The rate of infection, apoptosis, and the dynamic changes in the expression and activation of key factor genes of the P38MAPK signaling pathway in host cells infected with E. tenella were measured. The results showed that the addition of EtROP38 and/or knockdown of the host cells p38 gene reduced the apoptosis rate of cecal epithelial cells (CECS), decreased the mRNA expressions of p38, p53, c-myc, c-fos, and c-jun and increased the expression of p65, decreased the protein expressions of c-myc, c-fos, and c-jun, decreased the p38 protein phosphorylation level, and increased the p65 protein phosphorylation level in CECS. When E. tenella was inoculated for 4-96 h, the addition of Et ROP38 and/or host cell p38 knockdown both increased the infection rate of host cells, and this effect was more pronounced with the addition of EtROP38 with the host cell p38 knockdown. These observations indicate that E. tenella can inhibits the activation of the p38MAPK signaling pathway in host cells via EtROP38, which suppresses apoptosis in host cells.
Collapse
Affiliation(s)
- Bu-Ting Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Hao-Yu Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Zi-Hao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Xiao-Yi Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Kai-Ling Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Tong Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Yu Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Yong-Juan Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China; School of Food and Environment, Jinzhong College of Information, Taigu, Jinzhong, China
| | - Xuan Lei
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Fan Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Lu-Lu Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Hui-Lin Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Li Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Xiao-Ling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Ming-Xue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, China.
| |
Collapse
|
3
|
Xu M, Li F, Xu X, Hu N, Miao J, Zhao Y, Ji S, Wang Y, Wang L. Proteomic analysis reveals that cigarette smoke exposure diminishes ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell proliferation-apoptosis balance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115989. [PMID: 38242047 DOI: 10.1016/j.ecoenv.2024.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - XiaoYan Xu
- Assisted Reproduction Centre of Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Sailing Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
4
|
Xing D, Jin Y, Sun D, Liu Y, Cai B, Gao C, Cui Y, Jin B. Protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. Arch Gerontol Geriatr 2024; 117:105274. [PMID: 37995648 DOI: 10.1016/j.archger.2023.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Chao Gao
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Yugui Cui
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Zhang J, Wang H, Chen H, Liu Y, Wang A, Hou H, Hu Q. Acetaldehyde induces similar cytotoxic and genotoxic risks in BEAS-2B cells and HHSteCs: involvement of differential regulation of MAPK/ERK and PI3K/AKT pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79423-79436. [PMID: 37284951 DOI: 10.1007/s11356-023-27508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Long-term use of alcohol and cigarettes is associated with millions of deaths each year, directly or indirectly. The carcinogen acetaldehyde is both a metabolite of alcohol and the most abundant carbonyl compound in cigarette smoke, and co-exposure of them is usual and primarily leads to liver and lung injury, respectively. However, few studies have explored the synchronic risk of acetaldehyde on the liver and lung. Here, we investigated the toxic effects and related mechanisms of acetaldehyde based on normal hepatocytes and lung cells. The results showed that acetaldehyde caused significant dose-dependent increases of cytotoxicity, ROS level, DNA adduct level, DNA single/double-strand breakage, and chromosomal damage in BEAS-2B cells and HHSteCs, with similar effects at the same doses. The gene and protein expression and phosphorylation of p38MAPK, ERK, PI3K, and AKT, key proteins of MAPK/ERK and PI3K/AKT pathways regulating cell survival and tumorigenesis, were significantly upregulated on BEAS-2B cells, while only protein expression and phosphorylation of ERK were upregulated significantly, the other three decreased in HHSteCs. When either the inhibitor of the four key proteins was co-treated with acetaldehyde, cell viabilities were almost unchanged in BEAS-2B cells and HHSteCs. Thus, acetaldehyde could synchronically induce similar toxic effects in BEAS-2B cells and HHSteCs, and MAPK/ERK and PI3K/AKT pathways seem to be involved in different regulatory mechanisms.
Collapse
Affiliation(s)
- Jingni Zhang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Yong Liu
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - An Wang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Qingyuan Hu
- University of Science and Technology of China, 230026, Hefei, China.
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China.
| |
Collapse
|
6
|
Huang YK, Chang KC, Li CY, Lieu AS, Lin CL. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr Issues Mol Biol 2023; 45:3391-3405. [PMID: 37185746 PMCID: PMC10136867 DOI: 10.3390/cimb45040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
8
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
9
|
ATM/IKK alpha axis regulates the crosstalk between autophagy and apoptosis in selenite-treated Jurkat cells. Chem Biol Interact 2022; 367:110178. [PMID: 36113632 DOI: 10.1016/j.cbi.2022.110178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Selenium is an essential trace element. High dosage of selenite exhibits a great potential in treating leukemia. Previous study discovered selenite could promote leukemia cells apoptosis through inducing DNA damage and cell cycle arrest, while the switch mechanisms of these events and autophagy were still unclear. Current study discovered selenite promoted autophagy and apoptosis of leukemia Jurkat cells. In this process, DNA damage related ATM/IKK alpha axis was activated. This axis could stabilize pro-apoptotic P73, and promote autophagy through regulating NF-kappaB signaling pathway. Moreover, survivin-2B was also confirmed to be necessary for the ATM-induced nuclear location of IKK alpha, and therefore stood at the node position of apoptosis and autophagy cascades inside Jurkat cells. Finally, our in vivo experiments proved that selenite exhibited some anti-tumor effects on Jurkat cells-bearing mice. Moreover, alterations of ATM and IKK alpha expression observed in vivo were similar to that identified in vitro. Therefore, our findings had fully confirmed survivin-2B dependent activation of ATM/IKK alpha axis might be another crosstalk between autophagy and apoptosis of selenite-treated leukemia cells.
Collapse
|
10
|
Yang W, Wu W, Liang H, Chen J, Dong X. TOX3 regulates the proliferation and apoptosis of colorectal cancer by downregulating RhoB via the activation of MAPK pathway. Cell Biol Int 2022; 46:1074-1088. [PMID: 35347804 DOI: 10.1002/cbin.11802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yang
- Department of General Surgery, The first affiliated hospital of Soochow UniversitySuzhou215006P.R.China
| | - Wei Wu
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Hailiang Liang
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Jiejing Chen
- Department of General Surgery, The affiliated hospital of Yangzhou UniversityYangzhou225000P.R.China
| | - Xiaoqiang Dong
- Department of General Surgery, The first affiliated hospital of Soochow UniversitySuzhou215006P.R.China
| |
Collapse
|
11
|
Lin J, Cao Z, Yu D, Cai W. Identification of Transcription Factor-Related Gene Signature and Risk Score Model for Colon Adenocarcinoma. Front Genet 2021; 12:709133. [PMID: 34603375 PMCID: PMC8485095 DOI: 10.3389/fgene.2021.709133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
The prognosis of colon adenocarcinoma (COAD) remains poor. However, the specific and sensitive biomarkers for diagnosis and prognosis of COAD are absent. Transcription factors (TFs) are involved in many biological processes in cells. As the molecule of the signal pathway of the terminal effectors, TFs play important roles in tumorigenesis and development. A growing body of research suggests that aberrant TFs contribute to the development of COAD, as well as to its clinicopathological features and prognosis. In consequence, a few studies have investigated the relationship between the TF-related risk model and the prognosis of COAD. Therefore, in this article, we hope to develop a prognostic risk model based on TFs to predict the prognosis of patients with COAD. The mRNA transcription data and corresponding clinical data were downloaded from TCGA and GEO. Then, 141 differentially expressed genes, validated by the GEPIA2 database, were identified by differential expression analysis between normal and tumor samples. Univariate, multivariate and Lasso Cox regression analysis were performed to identify seven prognostic genes (E2F3, ETS2, HLF, HSF4, KLF4, MEIS2, and TCF7L1). The Kaplan-Meier curve and the receiver operating characteristic curve (ROC, 1-year AUC: 0.723, 3-year AUC: 0.775, 5-year AUC: 0.786) showed that our model could be used to predict the prognosis of patients with COAD. Multivariate Cox analysis also reported that the risk model is an independent prognostic factor of COAD. The external cohort (GSE17536 and GSE39582) was used to validate our risk model, which indicated that our risk model may be a reliable predictive model for COAD patients. Finally, based on the model and the clinicopathological factors, we constructed a nomogram with a C-index of 0.802. In conclusion, we emphasize the clinical significance of TFs in COAD and construct a prognostic model of TFs, which could provide a novel and reliable model for the prognosis of COAD.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Cao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Li SY, Shang J, Mao XM, Fan R, Li HQ, Li RH, Shen DY. Diosgenin exerts anti-tumor effects through inactivation of cAMP/PKA/CREB signaling pathway in colorectal cancer. Eur J Pharmacol 2021; 908:174370. [PMID: 34324855 DOI: 10.1016/j.ejphar.2021.174370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
Colorectal cancer (CRC) is the most fatal gastrointestinal tumor and it is urge to explore powerful drugs for the treatment. Diosgenin (DSG) as a new steroidal had been reported exerts anti-tumor activity in multiple cancers, including CRC. However, the potential mechanism of DSG suppresses CRC remains further to be revealed. Here, we reported that DSG inhibited proliferation of CRC cells in dose- and time-dependent manner, induced apoptosis by modulating p53 and Bcl-2 family proteins expression to mediate mitochondrial apoptosis pathway, suppressed migration and invasion by reducing MMP-9 (matrix metalloproteinase) and decreased aerobic glycolysis by mediating glucose transporter (GLUT) like GLUT3 and GLUT4, and pyruvate carboxylase PC downregulation. Intriguingly, mechanistic study suggests those phenotypes involved DSG inhibited cAMP/PKA/CREB pathway in CRC cells, and result to inhibit the phosphorylation of CREB to regulate the transcription of genes above-mentioned. Finally, nude mice xenograft tumor model further indicated that DSG could be a great agent to suppress the growth of CRC cells in vivo and have no obvious side effects. Taken together, we revealed a unique mechanism that DSG suppresses CRC cells through cAMP/PKA/CREB pathway and DSG is a promising candidate drug for CRC treatment.
Collapse
Affiliation(s)
- Si-Yang Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Jin Shang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Hui-Qi Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Rui-Han Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China.
| |
Collapse
|
13
|
Selenite Inhibits Notch Signaling in Cells and Mice. Int J Mol Sci 2021; 22:ijms22052518. [PMID: 33802299 PMCID: PMC7959125 DOI: 10.3390/ijms22052518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023] Open
Abstract
Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta–Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.
Collapse
|
14
|
Zhong Y, Liu J, Cheng X, Zhang H, Zhang C, Xia Z, Wu Z, Zhang L, Zheng Y, Gao Z, Jiang Z, Wang Z, Huang D, Lu Y, Jiang F. Design, synthesis and biological evaluations of diverse Michael acceptor-based phenazine hybrid molecules as TrxR1 inhibitors. Bioorg Chem 2021; 109:104736. [PMID: 33640630 DOI: 10.1016/j.bioorg.2021.104736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
A series of novel phenazine derivatives (1~27) containing the Michael acceptor scaffolds were designed and synthesized in this study. Some compounds exhibited selective cytotoxicity against Bel-7402 cancer cell line in vitro, in which compound 26 were found to have the best antiproliferative activity. Meanwhile, compound 26 showed no obvious cell toxicity against human normal liver epithelial L02 cells, which means this compound possessed a better safety potential. In the following research, compound 26 was verified to inhibit TrxR1 enzyme activity, ultimately resulting in cellular molecular mechanism events of apoptosis including growth of intracellular ROS level, depletion of reduced Trx1, liberation of ASK1 and up-regulation of p38, respectively. Together, all these evidences implicated that compound 26 acted as the TrxR1 inhibitor against Bel-7402 cells, and could activate apoptosis through the ROS-Trx-ASK1-p38 pathway.
Collapse
Affiliation(s)
- Yucheng Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Cheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Chunhua Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongxi Wu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Zheng
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanyu Gao
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhidong Jiang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhixiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2020; 40:1555-1569. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, however, the molecular mechanisms underlying the pathogenesis of CRC remain largely unclear. Recent studies have revealed crucial roles of transcription factors in CRC development. Transcription factors essential for the regulation of gene expression by interacting with transcription corepressor/enhancer complexes and they orchestrate downstream signal transduction. Deregulation of transcription factors is a frequent occurrence in CRC, and the accompanying drastic changes in gene expression profiles play fundamental roles in multistep process of tumorigenesis, from cellular transformation, disease progression to metastatic disease. Herein, we summarized current and emerging key transcription factors that participate in CRC tumorigenesis, and highlighted their oncogenic or tumor suppressive functions. Moreover, we presented critical transcription factors of CRC, emphasized the major molecular mechanisms underlying their effect on signal cascades associated with tumorigenesis, and summarized of their potential as molecular biomarkers for CRC prognosis therapeutic response, as well as drug targets for CRC treatment. A better understanding of transcription factors involved in the development of CRC will provide new insights into the pathological mechanisms and reveal novel prognostic biomarkers and therapeutic strategies for CRC.
Collapse
|
16
|
Zhao Y, Wu H, Xing X, Ma Y, Ji S, Xu X, Zhao X, Wang S, Jiang W, Fang C, Zhang L, Yan F, Wang X. CD13 Induces Autophagy to Promote Hepatocellular Carcinoma Cell Chemoresistance Through the P38/Hsp27/CREB/ATG7 Pathway. J Pharmacol Exp Ther 2020; 374:512-520. [PMID: 32571958 DOI: 10.1124/jpet.120.265637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The chemoresistance of hepatocellular carcinoma (HCC) is a serious problem that directly hinders the effect of chemotherapeutic agents. We previously reported that Aminopeptidase N (CD13) inhibition can enhance the cytotoxic efficacy of chemotherapy agents. In the present study, we use liver cancer cells to explore the molecular mechanism accounting for the relationship between CD13 and chemoresistance. We demonstrate that CD13 overexpression activates the P38/heat shock protein 27/cAMP response element-binding protein (CREB) signaling pathway to limit the efficacy of cytotoxic agents. Moreover, blockade of P38 or CREB sensitizes HCC cells to 5-fluorouracil. Then we reveal that CREB binds to the autophagy related 7 (ATG7) promoter to induce autophagy and promote HCC cell chemoresistance. CD13 inhibition also downregulates the expression of ATG7, autophagy, and tumor cell growth in vivo. Overall, the combination a CD13 inhibitor and chemotherapeutic agents may be a potential strategy for overcoming drug resistance in HCC. SIGNIFICANCE STATEMENT: Our study demonstrates that Aminopeptidase N (CD13) promotes hepatocellular carcinoma (HCC) cell chemoresistance via the P38/heat shock protein 27/cAMP response element-binding protein (CREB) pathway. CREB regulates autophagy related 7 transcription and expression to induce autophagy. Our results collectively suggest that CD13 may serve as a potential target for overcoming HCC resistance.
Collapse
Affiliation(s)
- Yan Zhao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Huina Wu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xiaoyan Xing
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Yuqian Ma
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Shengping Ji
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xinyue Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xin Zhao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Sensen Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Wenyan Jiang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Chunyan Fang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| |
Collapse
|
17
|
A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie 2020; 175:159-172. [PMID: 32497551 DOI: 10.1016/j.biochi.2020.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process for cells that can provide energy sources and allows cancer cells to evade cell death. Therefore, studies on the combination of autophagy inhibitors with drugs are increasing as a new treatment modality in cancer. Previously, we reported the anti-tumor activity of a Palladium (Pd)(II) complex against different types of cancer in vitro and in vivo. Chloroquine (CQ), the worldwide used anti-malarial drug, has recently been focused as a chemosensitizer in cancer treatment. The aim of this study was to investigate the efficacy of a combined treatment of these agents that work through different mechanisms to provide an effective treatment modality for metastatic prostate cancer that is certainly fatal. Metastatic prostate cancer cell lines (PC-3 and LNCaP) were treated with Pd (II) complex, CQ, and their combination. The combination enhanced apoptosis by increasing phosphatidylserine translocation and pro-apoptotic proteins. Apoptosis was confirmed by the use of apoptosis inhibitor. The formation of acidic vesicular organelles (AVOs) was observed by acridine orange staining in fluorescence microscopy. The Pd (II) complex increased AVOs formation in prostate cancer cells and CQ-pretreatment has potentiated this effect. Importantly, treatment with CQ suppressed the pro-survival function of autophagy, which might have contributed to enhanced cytotoxicity. In addition, PI3K/AKT/mTOR-related protein expressions were altered after the combination of treatments. Our results suggest that combination treatment enhances apoptotic cell death possibly via the inhibition of autophagy, and may therefore be regarded as a novel and better approach for the treatment of metastatic prostate cancer.
Collapse
|
18
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
20
|
Shen J, Zhou Y, Zhang X, Peng W, Peng C, Zhou Q, Li C, Wen T, Shi Y. Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway. Aging (Albany NY) 2019; 11:9280-9294. [PMID: 31689237 PMCID: PMC6874455 DOI: 10.18632/aging.102332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
Abstract
Background: Intrahepatic cholangiocarcinoma (ICC) is characterized by a highly aggressive nature and a dismal outcome. FOXA2 is an archetypal transcription factor involved in cholangiocyte proliferation. Results: FOXA2 expression was negatively correlated with tumor stage (p = 0.024). Univariate and multivariate analyses showed that low FoxA2 expression was associated with tumor relapse and survival. At 20 weeks after TAA administration, FoxA2-/- mice displayed significant manifestations of neoplasia, while WT mice did not. RNA sequencing analysis showed that the expression of genes in the MAPK signaling pathway was significantly higher in FoxA2-/- mice. IHC and Western blot results showed that p-ERK1/2, CREB1 and RAS were highly expressed in FoxA2-/- mice. Furthermore, using in vitro experiments with siRNA, we found that low expression of FoxA2 could exacerbate the metastatic potential of ICC. The expression of p-ERK1/2 and RAS, which are key mediators of the MAPK signaling pathway, was significantly increased. Conclusion: Low FOXA2 expression negatively affected the prognosis of patients with ICC. Loss of FoxA2 expression could promote intrahepatic bile duct neoplasia partly via activation of the MAPK signaling pathway. Materials and methods: In all, the data of 85 patients with ICC were retrospectively collected and analyzed. TAA was used to induce ICC in FoxA2-/- mice and WT mice. RNA-sequencing analysis was used to identify the expression of different genes.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, MCH, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Wei Peng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Chihan Peng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Qiang Zhou
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Chuan Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, MCH, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Lu Z, Zhou H, Zhang S, Dai W, Zhang Y, Hong L, Chen F, Cao J. Activation of reactive oxygen species-mediated mitogen-activated protein kinases pathway regulates both extrinsic and intrinsic apoptosis induced by arctigenin in Hep G2. J Pharm Pharmacol 2019; 72:29-43. [PMID: 31617221 DOI: 10.1111/jphp.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/14/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Arctigenin (ARG) has been proved to inhibit the viability of hepatocellular carcinoma (HCC) via inducing apoptosis. However, the precise mechanism remains unknown. The present study was aimed to further investigate the mechanism of ARG against HCC in vitro and in vivo. METHODS Arctigenin was applied in vitro and in vivo. Western blotting, immunohistochemistry, etc., were used to investigate the mechanisms. KEY FINDINGS The time-dependent enhancement of Bax/Bcl-2 ratio, cytochrome c release, Fas and FasL levels, caspase cascade activation and the loss in the mitochondrial out membrane potential indicated that both intrinsic and extrinsic apoptotic pathways were triggered by ARG. Moreover, Jun NH2-terminal kinase (JNK) and p38 phosphorylated time-dependently. And inhibition of the phosphorylation of either p38 or JNK led to a significant reduction in HepG2 apoptosis, owing to the crucial roles of p38 and JNK played in regulating the apoptosis pathways. In addition, ARG increased the generation of reactive oxygen species (ROS) in HepG2 cells, while the antioxidant N-acetyl cysteine almost reversed ARG-induced JNK and p38 activation, and dramatically decreased cell apoptosis. In vivo, ARG increased the cell apoptosis in tumour tissues, and p-p38, p-JNK and Bax were significantly upregulated. CONCLUSIONS Our findings demonstrated that ARG induced apoptosis in HCC via ROS-mediated mitogen-activated protein kinases apoptosis pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shishuo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liping Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fanjie Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Chatterjee S, Patra D, Chakraborti U, Sengupta D, Ghosh P, Basu A, Sadhukhan GC, Chowdhury KD. Association of p38MAPK-p53-Fas aggregation in S-allyl cysteine mediated regulation of hepatocarcinoma. ENVIRONMENTAL TOXICOLOGY 2019; 34:928-940. [PMID: 31067004 DOI: 10.1002/tox.22764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Bioactive components of dietary phytochemicals have been reported to possess antitumor activities. Evidences suggested key role of stress responsive p38MAPK in the induction of nutraceuticals mediated apoptosis in hepatocellular carcinoma (HCC). Current study demonstrated detailed molecular bagatelle associated with p38 MAPK mediated effective suppression of cell growth both in HepG2 and chemically induced liver carcinoma after S-allyl cysteine (SAC) treatment. SAC promoted p38MAPK activity responsible for p53 phosphorylation, its stabilization followed by nuclear translocation leading to induction in expression and oligomerization of Fas protein. Distinctive p38MAPK-p53 axis dependent Fas-FasL-FADD mediated caspase activities along with perturbed cell cycling became normalized with continuation of SAC treatment for another month to diethylnitrosamine induced liver carcinoma. Co-treatment with SB203580, the p38MAPK inhibitor, prevented pro-apoptotic effect of SAC by altering p53 phosphorylation and death inducing signaling complex conformation in HepG2 and induced HCC. Collectively study suggested significant contribution of p38MAPK-p53-DISC-Caspase pathway in the regulation of anti-neoplastic activity of SAC against HCC.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Department of Zoology, Vidyasagar College, Kolkata, West Bengal, India
| | - Debajyoti Patra
- Molecular Biology and Tissue Culture Laboratory, Department of Zoology, Vidyasagar College, Kolkata, West Bengal, India
| | - Udipta Chakraborti
- Department of Zoology, University of Kalyani, Kalyani, West Bengal, India
| | - Dipanwita Sengupta
- Department of Comprehensive Cancer Center, Ohio State University College of Medicine, Columbus, Ohio
| | - Pujita Ghosh
- Cyto-genetics Laboratory, Department of Zoology, Rammohon College, Kolkata, West Bengal, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, India
| | | | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohon College, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Li Z, Ding X, Wu H, Liu C. Artemisinin inhibits angiogenesis by regulating p38 MAPK/CREB/TSP-1 signaling pathway in osteosarcoma. J Cell Biochem 2019; 120:11462-11470. [PMID: 30746754 DOI: 10.1002/jcb.28424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Osteosarcoma is the most common bone tumor and characterizes a high metastatic potential. In osteosarcoma, angiogenesis is reported to be closely associated with tumor metastasis. Understanding the underlying mechanisms and accordingly developing therapeutic strategies are urgently desired. Antimalarial agent, artemisinin, has been reported to inhibit tumor angiogenesis. However, we still knew little about the effects of artemisinin on angiogenesis and its potential molecular mechanisms in human osteosarcoma. In this study, we found that artemisinin could induce both the expression and secretion of thrombospondin-1 (TSP-1) in a dose-dependent way in osteosarcoma cells. In addition, TSP-1 could effectively restore the artemisinin-induced suppression of angiogenesis in human umbilical vein endothelial cells (HUVECs). More importantly, we further found that phosphorylation of cAMP response element-binding protein (CREB) bond specifically to the promoter of TSP-1 and promoted its transcriptional activation. Moreover, our results showed that artemisinin could induce the phosphorylation of CREB via the activation of p38 mitogen-activated protein kinase (MAPK) signaling pathway in osteosarcoma cells. In vivo, we also found that artemisinin could inhibit osteosarcoma proliferation and angiogenesis by regulating the p38 MAPK/CREB/TSP-1 signaling pathway. Taken together, our findings indicated that artemisinin could inhibit angiogenesis by regulating the p38 MAPK/CREB/TSP-1 signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Zhi Li
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Ding
- Department of Orthopedics, the Second Affiliated Hospital of Nantong University, Nantong, China
| | - Haihui Wu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Orthopedics, Shanghai Songjiang Central Hospital, Shanghai, China
| |
Collapse
|
24
|
Guo JB, Zhu Y, Chen BL, Song G, Peng MS, Hu HY, Zheng YL, Chen CC, Yang JZ, Chen PJ, Wang XQ. Network and pathway-based analysis of microRNA role in neuropathic pain in rat models. J Cell Mol Med 2019; 23:4534-4544. [PMID: 31066224 PMCID: PMC6584487 DOI: 10.1111/jcmm.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms underlying neuropathic pain (NP) remain poorly understood. Emerging evidence has suggested the role of microRNAs (miRNAs) in the initiation and development of NP, but the specific effects of miRNAs in NP are largely unknown. Here, we use network- and pathway-based methods to investigate NP-induced miRNA changes and their biological functions by conducting a systematic search through multiple electronic databases. Thirty-seven articles meet the inclusion criteria. Venn analysis and target gene forecasting are performed and the results indicate that 167 overlapping target genes are co-regulated by five down-regulated miRNAs (rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206). Protein-protein interaction network analysis shows that 77 genes exhibit interactions, with cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit beta (degree = 11) and cAMP-response element binding protein 1 (degree = 10) having the highest connectivity degree. Gene ontology analysis shows that these target genes are enriched in neuron part, neuron projection, somatodendritic compartment and nervous system development. Moreover, analysis of Kyoto Encyclopedia of Genes and Genomes reveals that three pathways, namely, axon guidance, circadian entrainment and insulin secretion, are significantly enriched. In addition, rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206 are consistently down-regulated in the NP models, thus constituting the potential biomarkers of this disease. Characterizing these miRNAs and their target genes paves way for their future use in clinical practice.
Collapse
Affiliation(s)
- Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing-Lin Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Meng-Si Peng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hao-Yu Hu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing-Zhao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
25
|
Fu X, Feng Y, Shao B, Zhang Y. Activation of the ERK/Creb/Bcl‑2 pathway protects periodontal ligament stem cells against hydrogen peroxide‑induced oxidative stress. Mol Med Rep 2019; 19:3649-3657. [PMID: 30896883 PMCID: PMC6472112 DOI: 10.3892/mmr.2019.10027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are promising stem cells sources for regenerative medicine, particularly clinical periodontal ligament repair. It is critical to maintain high quality and a large quantity of PDLSCs for clinical usage. However, how PDLSCs respond to environmental stimuli, including reactive oxygen species (ROS), is poorly understood. The aim of the present study was to investigate how PDLSCs react to oxidative stress and the underlying mechanisms. Hydrogen peroxide-induced oxidative stress was used to mimic a ROS increase in rat PDLSCs. The expression levels of Creb were detected under oxidative stress to examine the role that Creb serves in PDLSCs under oxidative stress. The present results demonstrated that the expression of Creb was reduced in a dose-dependent manner in response to the H2O2 stimulus. Overexpressing Creb significantly reduced the ROS levels and protein expression levels of apoptotic genes in PDLSCs. The phosphorylation of the ERK pathway is indispensable in the activation of Creb-induced protection. Our results revealed a protective role of Creb in ROS-induced apoptosis, and validated the ERK/Creb/apoptosis regulator Bcl-2 pathway works as an anti-apoptotic signaling in PDLSCs. These findings will facilitate the in vitro culturing of PDLSCs for clinical usage and promote stem cell based therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiaohui Fu
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yimiao Feng
- Department of Orthodontics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bingyi Shao
- Department of Operative Dentistry and Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, P.R. China
| | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
26
|
Guardado-Félix D, Antunes-Ricardo M, Rocha-Pizaña MR, Martínez-Torres AC, Gutiérrez-Uribe JA, Serna Saldivar SO. Chickpea (Cicer arietinum L.) sprouts containing supranutritional levels of selenium decrease tumor growth of colon cancer cells xenografted in immune-suppressed mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Wang L, Yao L, Li X, Chen J, Lou C, Wang Y. Stephanthraniline A suppresses proliferation of HCT116 human colon cancer cells through induction of caspase-dependent apoptosis, dysregulation of mitochondrial function, cell cycle arrest and regulation of Akt/p38 signaling pathways. J Toxicol Sci 2019; 44:523-533. [DOI: 10.2131/jts.44.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Lu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Li Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Xiaoyu Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, China
| | - Juan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, China
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Yiqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| |
Collapse
|
28
|
Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway. Eur J Pain 2018; 23:750-764. [PMID: 30427581 DOI: 10.1002/ejp.1342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/04/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) causes continuous neurological deficits and major sensory-motor impairments. There is no effective treatment to enhance sensory-motor function following SCI. Thus, it is crucial to develop novel therapeutics for this particular patient population. Astaxanthin (AST) is a strong antioxidant, anti-inflammatory and anti-apoptotic agent. In the present study, it was tested in a severe compression SCI model with emphasis on sensory-motor outcomes, signalling pathway, along with other complications. METHODS A severe SCI was induced by compression of the rat thoracic spinal cord with an aneurysm clip and treatment with AST or the vehicle was carried out, 30 min after injury. Behavioural tests including open field, von Frey, hot plate and BBB were performed weekly to 28 days post-injury. Rats were assigned to measure blood glucose, weight and auricle temperature. Western blot and histological analysis also were performed at the same time points. RESULTS AST decreased mechanical and thermal pain and also improved motor function performance, reduced blood glucose and auricle temperature increases and attenuated weight loss in SCI rats. Western blot analysis showed decreased activation of ERK1/2 and increased activation of AKT following AST treatment. The histology results revealed that AST considerably preserved myelinated white matter and the number of motor neurons following SCI. CONCLUSION Taken together, the beneficial effects of AST to improve sensory-motor outcomes, attenuate pathological tissue damage and modulate ERK and AKT signalling pathways following SCI, suggest it as a strong therapeutic agent towards clinical applications. SIGNIFICANCE Spinal cord injury (SCI) impairs sensory-motor function and causes complications, which astaxanthin (AST) has the potential to be used as a treatment for. The present study investigates the effects of AST in a compression model of SCI with emphasis on sensory-motor outcomes alongside other complications, histopathological damage and also related signalling pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Sheng J, Zou X, Cheng Z, Xiang Y, Yang W, Lin Y, Cui R. Recent Advances in Herbal Medicines for Digestive System Malignancies. Front Pharmacol 2018; 9:1249. [PMID: 30524272 PMCID: PMC6256117 DOI: 10.3389/fphar.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines, as an important part of traditional Chinese medicine (TCM), have been used to treat digestive system malignancies (DSM) for many years, and have gradually gained recognition worldwide. The role of herbal medicines in the comprehensive treatment of DSM is being improved from adjuvant treatment of the autologous immune function in cancer patients, to the treatment of both the symptoms and disease, direct inhibition of tumor cell growth and proliferation, and induction of tumor cell autophagy and apoptosis. Their specific mechanisms in these treatments are also being explored. The paper reviews the current anti-tumor mechanisms of TCM, including single herbal medicines, Chinese herbal formulations, Chinese medicine preparations and TCM extract, and their application in the comprehensive treatment of digestive system tumors, providing a reference for clinical application of TCM.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yien Xiang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull 2018; 143:217-224. [PMID: 30243665 DOI: 10.1016/j.brainresbull.2018.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition in which inflammatory responses in the secondary phase of injury leads to long lasting sensory-motor dysfunction. The medicinal therapy of SCI complications is still a clinical challenge. Understanding the molecular pathways underlying the progress of damage will help to find new therapeutic candidates. Astaxanthin (AST) is a ketocarotenoid which has shown anti-inflammatory effects in models of traumatic brain injury. In the present study, we examined its potential in the elimination of SCI damage through glutamatergic-phospo p38 mitogen-activated protein kinase (p-p38MAPK) signaling pathway. Inflammatory response, histopathological changes and sensory-motor function were also investigated in a severe compression model of SCI in male rats. The results of acetone drop and inclined plane tests indicated the promising role of AST in improving sensory and motor function of SCI rats. AST decreased the expression of n-methyl-d-aspartate receptor subunit 2B (NR2B) and p-p38MAPK as inflammatory signaling mediators as well as tumor necrosis factor-α (TNF-α) as an inflammatory cytokine, following compression SCI. The histopathological study culminated in preserved white mater and motor neurons beyond the injury level in rostral and caudal parts. The results show the potential of AST to inhibit glutamate-initiated signaling pathway and inflammatory reactions in the secondary phase of SCI, and suggest it as a promising candidate to enhance functional recovery after SCI.
Collapse
|
31
|
Zhang T, Zhao G, Zhu X, Jiang K, Wu H, Deng G, Qiu C. Sodium selenite induces apoptosis via ROS-mediated NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis in 4T1 cells. J Cell Physiol 2018; 234:2511-2522. [PMID: 30218457 DOI: 10.1002/jcp.26783] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Sodium selenite (SSE), a source of inorganic selenium, has been widely used as a clinical cancer treatment, but the precise molecular mechanisms of SSE remain to be elucidated. Our in vitro experiments have confirmed that SSE treatment causes a transient increase in intracellular reactive oxygen species (ROS) levels, resulting in the inhibition of nuclear transcription factor-κB (NF-κB) signaling and p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha phosphorylation levels in 4T1 cells. The inhibition of NF-κB subsequently increased the expression of the apoptosis gene B-cell lymphoma-2-associated X (Bax) and downregulated the transcription of antiapoptosis genes, such as B-cell lymphoma-2, cellular inhibitor of apoptosis 1, and X-linked inhibitor of apoptosis. Additionally, the accumulation of ROS caused mitochondrial dysfunction, leading to the activation of caspase-9 and -3, thereby resulting in apoptosis. However, modulation of the ROS level by the chemical inhibitor N-acetyl-cysteine reversed these events. Similarly, in vitro murine syngeneic breast tumor models showed that SSE inhibits tumor growth by promoting apoptosis. These results indicate that SSE induces apoptosis via ROS-mediated inhibition of NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Li XQ, Cai LM, Liu J, Ma YL, Kong YH, Li H, Jiang M. Liquiritin suppresses UVB‑induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF‑κB and MAPK/caspase signaling pathways. Int J Mol Med 2018; 42:1445-1459. [PMID: 29901082 PMCID: PMC6089709 DOI: 10.3892/ijmm.2018.3720] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
Solar ultraviolet B (UVB) radiation is known to trigger inflammation, oxidative stress and apoptotic responses through various signaling pathways, which eventually lead to skin cancer. The present study investigated whether liquiritin suppresses UVB-induced skin injury in viv and in vitr using SKH-1 hairless mice and HACAT cells, respectively. The animals were exposed to UVB irradiation (180 mJ/cm2) for 20 min, followed by liquiritin treatment. The findings indicated that UVB exposure resulted in the excessive release of pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, IL-6 and cyclooxygenase (COX)2, which were dependent on the toll-like receptor (TLR)4/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. Oxidative stress was also observed, evidenced by reduced antioxidants and elevated oxidants. Apoptosis, examined using terminal deoxynucleotidyl transferase dUTP nick end labeling and crystal violet staining, suggested that UVB irradiation caused cell death in viv and in vitro, which was closely associated with p38/c-Jun N-terminal kinase and caspase activity. Of note, liquiritin treatment in mice and cells exposed to UVB showed reduced inflammatory response, oxidative stress and apoptosis through inhibiting the activation of TLR4/MyD88/NF-κB mitogen-activated protein kinases and caspase pathways, and downregulating the release of oxidants. Overall, the data revealed that liquiritin may be a useful compound against UVB-induced skin injury.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li-Min Cai
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jing Liu
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan-Li Ma
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ying-Hui Kong
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - He Li
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ming Jiang
- Department of Dermatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
艾 晓, 姚 芳, 王 晓, 段 东, 李 科, 胡 子, 殷 果, 王 梅, 吴 炳. [Role of allograft inflammatory factor-1 in regulating the proliferation, migration and apoptosis of colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:511-519. [PMID: 29891445 PMCID: PMC6743897 DOI: 10.3969/j.issn.1673-4254.2018.05.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of allograft inflammatory factor-1 (AIF-1) in colorectal cancer (CRC) progression and explore the possible mechanism. METHODS The expression levels of AIF-1 in 70 CRC tissues and paired adjacent tissues were detected using immunohistochemistry and Western blotting, and the correlation of AIF-1 expression with the clinicopathological features of the patients was analyzed. In the CRC cell line SW480, the functional role of AIF-1 in regulating tumor progression was investigated by transfecting the cells with an AIF-1-overexpressing plasmid (AIF-1) and a negative control plasmid (NC). EdU proliferation assay and flow cytometry were used to assess the cell proliferation and cell cycle changes; Transwell migration assay and Annexin V-APC/7-AAD apoptosis assay kit were used to analyze the cell migration and apoptosis. The changes in the biological behaviors of the cells were observed after application of SB203580 to block the p38 MAPK pathway. The expression levels of CDK4, cyclin D1, P21, P27, MMP2, MMP9, Bax, Bcl2, Bcl-xl, p38 and p-p38 were detected using Western blotting. RESULTS AIF-1 was down-regulated in CRC tissues compared with the adjacent normal tissues, and its expression level was positively correlated with lymph node metastasis (P=0.008), TNM stage (P=0.003) and tumor size (P=0.023). Overexpression of AIF-1 in SW480 cells significantly reduced EdU-positive cells and caused obvious cell cycle arrest in G1 phase (P<0.05). AIF-1 overexpression resulted in significantly lowered protein expressions of CDK4 and cyclin D1, enhanced expressions of P21 and P27, attenuated cell migration ability (P<0.001), and decreased protein levels of MMP2 and MMP9. AIF-1 overexpression also induced obvious apoptosis of SW480 cells (P<0.01), significantly increased the protein levels of Bax and p-p38, and decreased the protein levels of Bcl-2 and Bcl-xl; SB203580 significantly attenuated the apoptosis-inducing effect of AIF-1 overexpression. CONCLUSION AIF-1 plays the role of a tumor suppressor in CRC by inhibiting cell proliferation, suppressing cell migration and inducing cell apoptosis. AIF-1 overexpression promotes the apoptosis of CRC cells by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- 晓兰 艾
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 芳 姚
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓睛 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 东北 段
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 科 李
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 子有 胡
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 果 殷
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 梅 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 炳义 吴
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Sun Y, Xu Y, Cheng X, Chen X, Xie Y, Zhang L, Wang L, Hu J, Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res 2018; 96:1430-1443. [PMID: 29682799 DOI: 10.1002/jnr.24251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/24/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor, a typical ionotropic glutamate receptor, is a crucial protein for maintaining brain function. GluN2A and GluN2B are the main types of NMDA receptor subunit in the adult forebrain. Studies have demonstrated that they play different roles in a number of pathophysiological processes. Although the underlying mechanism for this has not been clarified, the most fundamental reason may be the differences between the signaling pathways associated with GluN2A and GluN2B. With the aim of elucidating the reasons behind the diverse roles of these two subunits, we described the signaling differences between GluN2A and GluN2B from the aspects of C-terminus-associated molecules, effects on typical downstream signaling proteins, and metabotropic signaling. Because there are several factors interfering with the determination of subunit-specific signaling, there is still a long way to go toward clarifying the signaling differences between these two subunits. Developing better pharmacology tools, such as highly selective antagonists for triheteromeric GluN2A- and GluN2B-containing NMDA receptors, and establishing new molecular biological methods, for example, engineering photoswitchable NMDA receptors, may be useful for clarifying the signaling differences between GluN2A and GluN2B.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yingge Xu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaokun Cheng
- Department of Physical and Chemical Analysis, North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, College of Basic Medical Science, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, California
| | - Jie Hu
- Nursing Research Center, School of Nursing, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| |
Collapse
|
35
|
Chen KL, Li L, Yang FX, Li CM, Wang YR, Wang GL. SIRT7 depletion inhibits cell proliferation, migration, and increases drug sensitivity by activating p38MAPK in breast cancer cells. J Cell Physiol 2018; 233:6767-6778. [PMID: 29231244 DOI: 10.1002/jcp.26398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/10/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
SIRT7 is a member of the sirtuin family of proteins that are known to be associated with tumor development. However, the functional roles and molecular mechanisms underlying the function of SIRT7 in breast cancer cell survival and tumor development remain unclear. Recent studies demonstrated that SIRT7 is upregulated in breast cancer cells and tissues. In the present study, we systematically explored the roles of SIRT7 in the growth of breast cancer cells and tumors both in vitro and in vivo. Our results showed that SIRT7 plays a major role in facilitating cell survival by promoting cell proliferation and inhibiting apoptosis. SIRT7 depletion significantly inhibited cell invasion and wound healing by blocking cell cycle progression and inducing cell apoptosis. Meanwhile, SIRT7 depletion can increase the sensitivity of breast cancer cells to doxorubicin (DOX). Xenograft model studies showed that stable silencing of SIRT7 inhibited tumor growth and enhanced tumor sensitivity to DOX. Further research revealed that p38MAPK is involved in SIRT7-mediated regulation of breast cancer cell proliferation and tumor growth. Taken together, our results showed that SIRT7 plays a critical role in breast cancer cell survival, migration, and tumor growth, and increased the efficiency of DOX treatment both in vitro and in vivo. Therefore, SIRT7 is a promising therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fang-Xiao Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Min Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Ru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gen-Lin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Fang Z, Lin A, Chen J, Zhang X, Liu H, Li H, Hu Y, Zhang X, Zhang J, Qiu L, Mei L, Shao J, Chen X. CREB1 directly activates the transcription of ribonucleotide reductase small subunit M2 and promotes the aggressiveness of human colorectal cancer. Oncotarget 2018; 7:78055-78068. [PMID: 27801665 PMCID: PMC5363643 DOI: 10.18632/oncotarget.12938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
As the small subunit of Ribonucleotide reductase (RR), RRM2 displays a very important role in various critical cellular processes such as cell proliferation, DNA repair, and senescence, etc. Importantly, RRM2 functions like a tumor driver in most types of cancer but little is known about the regulatory mechanism of RRM2 in cancer development. In this study, we found that the cAMP responsive element binding protein 1 (CREB1) acted as a transcription factor of RRM2 gene in human colorectal cancer (CRC). CREB1 directly bound to the promoter of RRM2 gene and induced its transcriptional activation. Knockdown of CREB1 decreased the expression of RRM2 at both mRNA and protein levels. Moreover, knockdown of RRM2 attenuated CREB1-induced aggressive phenotypes of CRC cells in vitro and in vivo. Analysis of the data from TCGA database and clinical CRC specimens with immunohistochemical staining also demonstrated a strong correlation between the co-expression of CREB1 and RRM2. Decreased disease survivals were observed in CRC patients with high expression levels of CREB1 or RRM2. Our results indicate CREB1 as a critical transcription factor of RRM2 which promotes tumor aggressiveness, and imply a significant correlation between CREB1 and RRM2 in CRC specimens. These may provide the possibility that CREB1 and RRM2 could be used as biomarkers or targets for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Aifen Lin
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Jiaoe Chen
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Xiaomin Zhang
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Hong Liu
- Zhejiang Normal University - Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, Zhejiang, 321004, China
| | - Hongzhang Li
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Yanyan Hu
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Xia Zhang
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Jiangang Zhang
- Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Lanlan Qiu
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Lingming Mei
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiang Chen
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, 317100, China
| |
Collapse
|
37
|
Li H, Huang K, Gao L, Wang L, Niu Y, Liu H, Wang Z, Wang L, Wang G, Wang J. TES inhibits colorectal cancer progression through activation of p38. Oncotarget 2018; 7:45819-45836. [PMID: 27323777 PMCID: PMC5216763 DOI: 10.18632/oncotarget.9961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Zhuang H, Meng X, Li Y, Wang X, Huang S, Liu K, Hehir M, Fang R, Jiang L, Zhou JX, Wang P, Ren Y. Cyclic AMP responsive element-binding protein promotes renal cell carcinoma proliferation probably via the expression of spindle and kinetochore-associated protein 2. Oncotarget 2017; 7:16325-37. [PMID: 26824422 PMCID: PMC4941317 DOI: 10.18632/oncotarget.7017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/01/2016] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows that the aberrantly expressed cyclic AMP responsive element-binding protein (CREB) is associated with tumor development and progression in several cancers. Spindle and kinetochore-associated protein 2 (SKA2) is essential for regulating the progress of mitosis. In this study, we evaluate in vitro and in vivo the functional relationship between CREB and SKA2 in renal cell carcinoma (RCC). Suppressing and replenishing CREB levels were used to manipulate SKA2 expression, observing the effects on RCC cell lines. Computational prediction and ChIP assay identified that CREB targeted ska2 by binding its CRE sequence in the human genome. Overexpression of CREB reversed the inhibited cell growth following siSKA2 treatment, and reduced the number of cells holding in mitosis. Decreased expression of CREB suppressed RCC cell growth and xenograft tumor formation, accompanied by reduced expression of SKA2. In RCC tumor samples from patients, mRNA for SKA2 were plotted near those of CREB in each sample, with significantly increased immunohistochemical staining of higher SKA2 and CREB in the higher TNM stages. The study adds evidence that CREB, a tumor oncogene, promotes RCC proliferation. It probably achieves this by increasing SKA2 expression.
Collapse
Affiliation(s)
- Haihui Zhuang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Xiangyu Meng
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Yanyuan Li
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo 315000, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Shuaishuai Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo 315000, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Kaitai Liu
- Ningbo Medical Center, LiHuiLi Hospital, Medical School, Ningbo University, Ningbo 315041, China
| | - Michael Hehir
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Rong Fang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Jeff X Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Ping Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| | - Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo 315000, China.,Laboratory of Kidney Carcinoma, Ningbo Urology and Nephrology Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo 315000, China
| |
Collapse
|
39
|
Wang Y, Xia C, Lun Z, Lv Y, Chen W, Li T. Crosstalk between p38 MAPK and caspase-9 regulates mitochondria-mediated apoptosis induced by tetra-α-(4-carboxyphenoxy) phthalocyanine zinc photodynamic therapy in LoVo cells. Oncol Rep 2017; 39:61-70. [PMID: 29115534 PMCID: PMC5783605 DOI: 10.3892/or.2017.6071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Photodynamic therapy (PDT) is considered to be an advancing antitumor technology. PDT using hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc (TαPcZn-PDT) has exhibited antitumor activity in Bel-7402 hepatocellular cancer cells. However, the manner in which p38 MAPK and caspase-9 are involved in the regulation of mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo human colon carcinoma cells remains unclear. Therefore, in the present study, a siRNA targeting p38 MAPK (siRNA-p38 MAPK) and the caspase-9 specific inhibitor z-LEHD-fmk were used to examine the crosstalk between p38 MAPK and caspase-9 during mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells. The findings revealed that the TαPcZn-PDT treatment of LoVo cells resulted in the induction of apoptosis, the formation of p38 MAPK/caspase-9 complexes, the activation of p38 MAPK, caspase-9, caspase-3 and Bid, the downregulation of Bcl-2, the reduction of mitochondrial membrane potential (ΔΨm), the upregulation of Bax and the release of apoptosis-inducing factor (AIF) and cytochrome c (Cyto c). By contrast, siRNA-p38 MAPK or z-LEHD-fmk both attenuated the effects of TαPcZn-PDT in the LoVo cells. Furthermore, the results revealed that siRNA-p38 MAPK had more significant inhibitory effects on apoptosis and mitochondria compared with the effects of z-LEHD-fmk in TαPcZn-PDT-treated LoVo cells. These findings indicated that p38 MAPK plays the major regulatory role in the crosstalk between p38 MAPK and caspase-9 and that direct interaction between p38 MAPK and caspase-9 may regulate mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chunhui Xia
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhiqiang Lun
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yanxin Lv
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tao Li
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
40
|
Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget 2017; 8:18832-18847. [PMID: 27902968 PMCID: PMC5386651 DOI: 10.18632/oncotarget.13600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Glutaminolysis is important for metabolism and biosynthesis of cancer cells, and GLS is essential in the process. Selenite is widely regarded as a chemopreventive agent against cancer risk. Emerging evidence suggests that it also has chemotherapeutic potential in various cancer types, but the mechanism remains elusive. We demonstrate for the first time that supranutritional dose of selenite suppresses glutaminolysis by promoting GLS1 protein degradation and apoptosis. Mechanistically, selenite promotes association of APC/C-CDH1 with GLS1 and leads to GLS1 degradation by ubiquitination, this process is related to induction of PTEN expression. In addition, GLS1 expression is increased in human colorectal cancer tissues compared with normal mucosae. Our data provide a novel mechanistic explanation for the anti-cancer effect of selenite from a perspective of cell metabolism. Moreover, our results indicate that glutaminolysis especially GLS1 could be an attractive therapeutic target in colorectal cancer.
Collapse
|
41
|
Dai X, Li M, Geng F. Omega-3 Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid Enhance Dexamethasone Sensitivity in Multiple Myeloma Cells by the p53/miR-34a/Bcl-2 Axis. BIOCHEMISTRY (MOSCOW) 2017; 82:826-833. [PMID: 28918747 DOI: 10.1134/s0006297917070082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dexamethasone is widely used in multiple myeloma (MM) for its cytotoxic effects on lymphoid cells. However, many MM patients are resistant to dexamethasone, although some can benefit from dexamethasone treatment. In this study, we noted that ω-3 polyunsaturated fatty acids (PUFAs) enhanced the dexamethasone sensitivity of MM cells by inducing cell apoptosis. q-PCR analysis revealed that miR-34a could be significantly induced by PUFAs in U266 and primary MM cells. Transfection with miR-34a antagonist or miR-34a agomir could restore or suppress the dexamethasone sensitivity in U266 cells. Both luciferase reporter assay and Western blot showed that Bcl-2 is the direct target of miR-34a in MM cells. In addition, we observed that PUFAs induced p53 protein expression in MM cells under dexamethasone administration. Furthermore, suppressing p53 by its inhibitor, Pifithrin-α, regulated the miR-34a expression and modulated the sensitivity to dexamethasone in U266 cells. In summary, these results suggest that PUFAs enhance dexamethasone sensitivity to MM cells through the p53/miR-34a axis with a likely contribution of Bcl-2 suppression.
Collapse
Affiliation(s)
- Xianping Dai
- Binzhou Medical University, School of Pharmacy, Yantai, Shandong, 264003, PR China.
| | | | | |
Collapse
|
42
|
Caso S, Maric D, Arambasic M, Cotecchia S, Diviani D. AKAP-Lbc mediates protection against doxorubicin-induced cardiomyocyte toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2336-2346. [PMID: 28923249 DOI: 10.1016/j.bbamcr.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is a chemotherapic agent that is widely used to treat hematological and solid tumors. Despite its efficacy, DOX displays significant cardiac toxicity associated with cardiomyocytes death and heart failure. Cardiac toxicity is mainly associated with the ability of DOX to alter mitochondrial function. The current lack of treatments to efficiently prevent DOX cardiotoxicity underscores the need of new therapeutic approaches. Our current findings show that stimulation of cardiomyocytes with the α1-adrenergic receptor (AR) agonist phenylephrine (PE) significantly inhibits the apoptotic effect of DOX. Importantly, our results indicate that AKAP-Lbc is critical for transducing protective signals downstream of α1-ARs. In particular, we could show that suppression of AKAP-Lbc expression by infecting primary cultures of ventricular myocytes with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly impairs the ability of PE to reduce DOX-induced apoptosis. AKAP-Lbc-mediated cardiomyocyte protection requires the activation of anchored protein kinase D1 (PKD1)-dependent prosurvival pathways that promote the expression of the anti-apoptotic protein Bcl2 and inhibit the translocation of the pro-apoptotic protein Bax to mitochondria. In conclusion, AKAP-Lbc emerges as a coordinator of signals that protect cardiomyocytes against the toxic effects of DOX.
Collapse
Affiliation(s)
- Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| |
Collapse
|
43
|
Cheng MJ, Cao YG. TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase. Biol Res 2017; 50:24. [PMID: 28673331 PMCID: PMC5496143 DOI: 10.1186/s40659-017-0129-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the present study was to investigate the potential effects of the 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. Results After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen-activated protein kinase (MAPK), phosphated p38 MAPK (p-p38 MAPK), capase-3, MAPKAPK2 (MK-2) and poly ADP-ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose-dependent manner. In addition, the up-regulation of p-p38 MAPK expression levels was detected in TMPyP4-treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. Conclusions It was indicated that TMPyP4-inhibited proliferation and -induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ming-Jun Cheng
- Department of Gynaecology, Shanghai Jiading District Maternal and Child Care Hospital, No. 1216, Gaotai Road, Jiading District, Shanghai, 201821, China
| | - Yun-Gui Cao
- Department of Gynaecology, Shanghai Jiading District Maternal and Child Care Hospital, No. 1216, Gaotai Road, Jiading District, Shanghai, 201821, China.
| |
Collapse
|
44
|
Feng S, Zhang J, Su W, Bai S, Xiao L, Chen X, Lin J, Reddy RM, Chang AC, Beer DG, Chen G. Overexpression of LINC00152 correlates with poor patient survival and knockdown impairs cell proliferation in lung cancer. Sci Rep 2017; 7:2982. [PMID: 28592840 PMCID: PMC5462773 DOI: 10.1038/s41598-017-03043-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
We employed RNA sequencing analysis to reveal dysregulated lncRNAs in lung cancer utilizing 461 lung adenocarcinomas and 156 normal lung tissues from 3 separate cohorts. We found that LINC00152 was highly overexpressed in lung tumors as compared to their adjacent normal tissues. Patients with high LINC00152 expression demonstrate a significantly poorer survival than those with low expression. We verified the diagnostic/prognostic potential of LINC00152 expression in an independent cohort of lung tumor tissues using quantitative RT-PCR. After knockdown of LINC00152 using siRNAs in lung cancer cell lines, both cell proliferation and colony formation were decreased. Cell fractionation and qRT-PCR analysis indicated that LINC00152 is found mainly in the cytoplasm. Treatment with Trichostatin A in cell lines having low LINC00152 expression indicated that histone acetylation may be one mechanism underlying LINC00152 overexpression in NSCLC. Western blot analyses indicated that p38a, STAT1, STAT3, CREB1, CCNE1 and c-MYC proteins were decreased after LINC00152 siRNA treatment. Our study indicates LINC00152 plays an important role in lung tumor growth and is potentially a diagnostic/prognostic marker. Further characterization of LINC00152 in regulating its target proteins may provide a novel therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Shumei Feng
- Xinjiang Medical University, Urumqi, China.,Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Zhang
- Xian Jiaotong University, Xi'an, China
| | - Wenmei Su
- Guangdong Medical University, Zhanjiang, China
| | | | - Lei Xiao
- Xinjiang Medical University, Urumqi, China
| | - Xiuyuan Chen
- Peking University People's Hospital, Beijing, China
| | - Jules Lin
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Rishindra M Reddy
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew C Chang
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Beer
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoan Chen
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
45
|
Xiang Y, Ye W, Huang C, Lou B, Zhang J, Yu D, Huang X, Chen B, Zhou M. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochem Biophys Res Commun 2017; 487:820-826. [PMID: 28455228 DOI: 10.1016/j.bbrc.2017.04.133] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/18/2022]
Abstract
Brusatol, isolated from brucea, has been proved to exhibit anticancer influence on various kind of human malignancies. However, the role that brusatol plays in pancreatic cancer is seldom known by the public. Through researches brusatol was proved to inhibit growth and induce apoptosis in both PATU-8988 and PANC-1 cells by decreasing the expression level of Bcl-2 and increasing the expression levels of Bax, Cleaved Caspase-3. Then we found the activation of the JNK, p38 MAPK and inactivation of the NF-κb, Stat3 are related with the potential pro-apoptotic signaling pathways. However, SP600125 could not only abrogated the JNK activation caused by brusatol, but also reverse the p38 activation and the decrease of Bcl-2 as SB203580 did. Besides, SP600125 and SB203580 also reversed the inactivation of NF-κb and Stat3. Furthermore, BAY 11-7082 and S3I-201 indeed had the similar effect as brusatol had on the expression of Phospho-Stat3 and Bcl-2. To sum up, we came to a conclusion that in pancreatic cancer, brusatol do inhibit growth and induce apoptosis. And we inferred that brusatol illustrates anticancer attribution via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Yukai Xiang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wen Ye
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chaohao Huang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bin Lou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Zhang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Dinglai Yu
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xince Huang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China; Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
46
|
Manuel-Manresa P, Korrodi-Gregório L, Hernando E, Villanueva A, Martínez-García D, Rodilla AM, Ramos R, Fardilha M, Moya J, Quesada R, Soto-Cerrato V, Pérez-Tomás R. Novel Indole-based Tambjamine-Analogues Induce Apoptotic Lung Cancer Cell Death through p38 Mitogen-Activated Protein Kinase Activation. Mol Cancer Ther 2017; 16:1224-1235. [DOI: 10.1158/1535-7163.mct-16-0752] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
|
47
|
Lin X, Zhao Y, Li S. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. Eur J Pharmacol 2017; 806:43-51. [PMID: 28400209 DOI: 10.1016/j.ejphar.2017.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress.
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China.
| | - Shanhe Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| |
Collapse
|
48
|
Liu Y, Gong W, Yang ZY, Zhou XS, Gong C, Zhang TR, Wei X, Ma D, Ye F, Gao QL. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis 2017; 22:544-557. [DOI: 10.1007/s10495-016-1334-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Tsai YF, Huang CW, Chiang JH, Tsai FJ, Hsu YM, Lu CC, Hsiao CY, Yang JS. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncol Rep 2016; 36:3421-3426. [PMID: 27748868 DOI: 10.3892/or.2016.5174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/10/2016] [Indexed: 11/06/2022] Open
Abstract
Gadolinium (Gd) compounds are important as magnetic resonance imaging (MRI) contrast agents, and are potential anticancer agents. However, no report has shown the effect of gadolinium chloride (GdCl3) on osteosarcoma in vitro. The present study investigated the apoptotic mechanism of GdCl3 on human osteosarcoma U-2 OS cells. Our results indicated that GdCl3 significantly reduced cell viability of U-2 OS cells in a concentration-dependent manner. GdCl3 led to apoptotic cell shrinkage and DNA fragmentation in U-2 OS cells as revealed by morphologic changes and TUNEL staining. Colorimetric assay analyses also showed that activities of caspase-3, caspase-8, caspase-9 and caspase-4 occurred in GdCl3-treated U-2 OS cells. Pretreatment of cells with pan-caspase inhibitor (Z-VAD-FMK) and specific inhibitors of caspase-3/-8/-9 significantly reduced cell death caused by GdCl3. The increase of cytoplasmic Ca2+ level, ROS production and the decrease of mitochondria membrane potential (ΔΨm) were observed by flow cytometric analysis in U-2 OS cells after GdCl3 exposure. Western blot analyses demonstrated that the levels of Fas, FasL, cytochrome c, Apaf-1, GADD153 and GRP78 were upregulated in GdCl3-treated U-2 OS cells. In conclusion, death receptor, mitochondria-dependent and endoplasmic reticulum (ER) stress pathways contribute to GdCl3-induced apoptosis in U-2 OS cells. GdCl3 might have potential to be used in treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Yuh-Feng Tsai
- Department of Diagnostic Radiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Ching-Wen Huang
- Department of Diagnostic Radiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
50
|
Sun H, Luo G, Chen D, Xiang Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front Pharmacol 2016; 7:247. [PMID: 27582705 PMCID: PMC4987408 DOI: 10.3389/fphar.2016.00247] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Rhein is a major medicinal ingredient isolated from several traditional Chinese medicines, including Rheum palmatum L., Aloe barbadensis Miller, Cassia angustifolia Vahl., and Polygonum multiflorum Thunb. Rhein has various pharmacological activities, such as anti-inflammatory, antitumor, antioxidant, antifibrosis, hepatoprotective, and nephroprotective activities. Although more than 100 articles in PubMed are involved in the pharmacological mechanism of action of rhein, only a few focus on the relationship of crosstalk among multiple pharmacological mechanisms. The mechanism of rhein involves multiple pathways which contain close interactions. From the overall perspective, the pathways which are related to the targets of rhein, are initiated by the membrane receptor. Then, MAPK and PI3K-AKT parallel signaling pathways are activated, and several downstream pathways are affected, thereby eventually regulating cell cycle and apoptosis. The therapeutic effect of rhein, as a multitarget molecule, is the synergistic and comprehensive result of the involvement of multiple pathways rather than the blocking or activation of a single signaling pathway. We review the pharmacological mechanisms of action of rhein by consulting literature published in the last 100 years in PubMed. We then summarize these pharmacological mechanisms from a comprehensive, interactive, and crosstalk perspective. In general, the molecular mechanism of action of drug must be understood from a systematic and holistic perspective, which can provide a theoretical basis for precise treatment and rational drug use.
Collapse
Affiliation(s)
- Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Guangwen Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|