1
|
Choromańska A, Szwedowicz U, Szewczyk A, Daczewska M, Saczko J, Kruszakin R, Pawlik KJ, Baczyńska D, Kulbacka J. Electroporation-derived melanoma extracellular particles activate fibroblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130723. [PMID: 39426760 DOI: 10.1016/j.bbagen.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Although the pulse electric field (PEF) has been used in electrochemotherapy (ECT) for many years, the kinetics and profile of extracellular particles (EPs) released as a result of reversible electroporation have yet to be studied. It also needs to be clarified whether and how the profile of released EPs depends on the parameters of the applied PEF. The presented studies investigated the effect of EPs released from human melanoma cells after various parameters of reversible electroporation on markers indicating EP-mediated transformation of normal fibroblasts into tumor-associated fibroblasts. The expression levels of the vascular cell adhesion molecule-1 (VCAM-1) and changes in the expression of phosphor-histone H3 (pHH3), a biomarker specific for cells in mitosis, cell viability, and the migration capacity of the studied fibroblast cells, were analyzed. EPs were isolated from two commercial malignant melanoma cell lines previously subjected to reversible electroporation. Human primary fibroblasts (HPFs) were selected for EPs exposure. It was observed that after incubation with melanoma-derived EPs, HPFs showed differences in cell viability, migration capacity, VCAM-1, pHH3, and N-cadherin expression, depending on PEF parameters and the grade of melanoma cells. This study highlights that small extracellular particles (sEPs) from cancer cells can promote metastasis by carrying specific signals that lead to the upregulation of molecules like FAK, MMP-9, and N-cadherin in recipient cells.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
2
|
Surman M, Jankowska U, Wilczak M, Przybyło M. Similarities and Differences in the Protein Composition of Cutaneous Melanoma Cells and Their Exosomes Identified by Mass Spectrometry. Cancers (Basel) 2023; 15:cancers15041097. [PMID: 36831440 PMCID: PMC9954195 DOI: 10.3390/cancers15041097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Intercellular transport of proteins mediated by extracellular vesicles (EVs)-exosomes and ectosomes-is one of the factors facilitating carcinogenesis. Therefore, the research on protein cargo of melanoma-derived EVs may provide a better understanding of the mechanisms involved in melanoma progression and contribute to the development of alternative biomarkers. Proteomic data on melanoma-derived EVs are very limited. The shotgun nanoLC-MS/MS approach was applied to analyze the protein composition of primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) cutaneous melanoma cells and exosomes released by them. All cells secreted homogeneous populations of exosomes that shared a characteristic set of proteins. In total, 3514 and 1234 unique proteins were identified in melanoma cells and exosomes, respectively. Gene ontology analysis showed enrichment in several cancer-related categories, including cell proliferation, migration, negative regulation of apoptosis, and angiogenesis. The obtained results broaden our knowledge on the role of selected proteins in exosome biology, as well as their functional role in the development and progression of cutaneous melanoma. The results may also inspire future studies on the clinical potential of exosomes.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Correspondence: ; Tel.: +48-12-664-6462
| |
Collapse
|
3
|
Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T, Wang B. The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol 2023; 13:1056903. [PMID: 36895489 PMCID: PMC9989165 DOI: 10.3389/fonc.2023.1056903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background B-cell receptor-associated protein 31 (BAP31) has been recognized as a tumor-associated protein and has largely been shown to promote metastasis in a variety of cancers. Cancer metastasis arises through multistep pathways, and the induction of angiogenesis is shown to be a rate-limiting step in the process of tumor metastasis. Methods and results This study explored the effect of BAP31 on colorectal cancer (CRC) angiogenesis by regulating the tumor microenvironment. First, exosomes from BAP31-regulated CRCs affected the transition of normal fibroblasts to proangiogenic cancer-associated fibroblasts (CAFs) in vivo and in vitro. Next, microRNA sequencing was performed to analyze the microRNA expression profile of exosomes secreted from BAP31- overexpressing CRCs. The results indicated that the expression of BAP31 in CRCs significantly altered the levels of exosomal microRNAs, such as miR-181a- 5p. Meanwhile, an in vitro tube formation assay showed that fibroblasts with high levels of miR-181a-5p significantly promoted endothelial cell angiogenesis. Critically, we first identified that miR-181a-5p directly targeted the 3'-untranslated region (3'UTR) of reversion-inducing cysteine-rich protein with kazal motifs (RECK) using the dual-luciferase activity assay, which drove fibroblast transformation into proangiogenic CAFs by upregulating matrix metalloproteinase-9 (MMP-9) and phosphorylation of mothers against decapentaplegic homolog 2/Mothers against decapentaplegic homolog 3 (Smad2/3). Conclusion Exosomes from BAP31-overexpressing/BAP31-knockdown CRCs are found to manipulate the transition of fibroblasts into proangiogenic CAFs by the miR-181a-5p/RECK axis.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Ruijia Li
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jingjing Liu
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jiyu Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
5
|
Di Vito Nolfi M, Vecchiotti D, Flati I, Verzella D, Di Padova M, Alesse E, Capece D, Zazzeroni F. EV-Mediated Chemoresistance in the Tumor Microenvironment: Is NF-κB a Player? Front Oncol 2022; 12:933922. [PMID: 35814425 PMCID: PMC9257640 DOI: 10.3389/fonc.2022.933922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- *Correspondence: Francesca Zazzeroni, ; Daria Capece,
| | | |
Collapse
|
6
|
Tan Y, Tang F, Li J, Yu H, Wu M, Wu Y, Zeng H, Hou K, Zhang Q. Tumor-derived exosomes: the emerging orchestrators in melanoma. Biomed Pharmacother 2022; 149:112832. [PMID: 35325853 DOI: 10.1016/j.biopha.2022.112832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Cutaneous melanoma is an aggressive cancer type derived from melanocytes and its incidence has rapidly increased worldwide. Despite the vast improvement in therapy, melanoma is still confronted with high invasion, metastasis, and recurrence rate. Recent studies have confirmed that the exosomes are naturally occurring membranous extracellular vesicles with nano-sized lipid bilayers, performing as information messagers within cellular reciprocal action. Exosomes are unquestionably endowed with multifaceted roles in various diseases, including melanoma. Notably, tumor-derived exosomes play a pivotal role in conditioning the tumor microenvironment to promote the growth, metastasis, immune escape, and even drug-resistance of melanoma by transferring carcinogenic nucleic acids and proteins. Clinically, the dynamic expressions of exosomal components and loadings in melanoma patients with different tumor stages confer the clinical application of melanoma exosomes as diagnostic biomarkers. Hence, this review highlights the recent complicated roles and mechanisms of melanoma exosomes, as well as their potential as diagnostic and therapeutic targets in melanoma. The in-depth insights into the properties and behaviors of melanoma exosomes are of great potential to yield attractive therapeutic methods for melanoma.
Collapse
Affiliation(s)
- Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jieming Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Li X, Jiang E, Zhao H, Chen Y, Xu Y, Feng C, Li J, Shang Z. Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis. Br J Cancer 2022; 127:449-461. [PMID: 35444287 PMCID: PMC9345921 DOI: 10.1038/s41416-022-01818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Angiogenesis is a key rate-limiting step in the process of tumour progression. Cancer-associated fibroblasts (CAFs), the most abundant component OSCC stroma, play important roles in pro-angiogenesis. Recently, the stroma "reverse Warburg effect" was proposed, and PFKFB3 has been brought to the forefront as a metabolic enzyme regulating glycometabolism. However, it remains unclear whether glycometabolism reprogramming is involved in promoting the angiogenesis of CAFs. METHODS CAFs and paracancerous fibroblasts (PFs) were isolated from OSCC and adjacent tissues. We detected the pro-angiogenesis and glycometabolism phenotype of three pairs of fibroblasts. Targeted blockage of PFKFB3 or activation of PGC-1α signal was used to investigate the effect of glycolysis on regulating angiogenesis of CAFs in vitro and vivo. RESULTS CAFs exhibited metabolic reprogramming and enhanced proangiogenic phenotype compared with PFs. Inhibition of PFKFB3-dependent glycolysis impaired proangiogenic factors (VEGF-A, PDGF-C and MMP9) expression in CAFs. Furthermore, CAFs proangiogenic phenotype was regulated by glycometabolism through the PGC-1α/PFKFB3 axis. Consistently, PGC-1α overexpression or PFKFB3 knockdown in CAFs slowed down tumour development by reducing tumour angiogenesis in the xenograft model. CONCLUSION CAFs of OSCC are characterised with glycometabolic reprogramming and enhanced proangiogenic phenotypes. Our findings suggest that activating PGC-1α signalling impairs proangiogenic phenotype of CAFs by blocking PFKFB3-driven glycolysis.
Collapse
Affiliation(s)
- Xiang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chunyu Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Tang H, Zhou X, Zhao X, Luo X, Luo T, Chen Y, Liang W, Jiang E, Liu K, Shao Z, Shang Z. HSP90/IKK‐rich small extracellular vesicles activate pro‐angiogenic melanoma‐associated fibroblasts via NF‐κB/CXCL1 axis. Cancer Sci 2022; 113:1168-1181. [PMID: 35043517 PMCID: PMC8990732 DOI: 10.1111/cas.15271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is a main feature of most solid tumors, but how melanoma cells under hypoxic conditions exploit tumor microenvironment (TME) to facilitate tumor progression remains poorly understood. In this study, we found that hypoxic melanoma‐derived small extracellular vesicles (sEVs) could improve the proangiogenic capability of cancer‐associated fibroblasts (CAFs). This improvement was due to the activation of the IKK/IκB/NF‐κB signaling pathway and upregulation of CXCL1 expression and secretion in CAFs. By proteomic analysis, we verified that hypoxia could promote enrichment of chaperone HSP90 and client protein phosphorylated IKKα/β (p‐IKKα/β) in melanoma‐derived sEVs. Delivery of the HSP90/p‐IKKα/β complex by sEVs could activate the IKK/IκB/NF‐κB/CXCL1 axis in CAFs and promote angiogenesis in vitro and in vivo. Taken together, these findings deepen the understanding of hypoxic response in melanoma progression and provide potential targets for melanoma treatment.
Collapse
Affiliation(s)
- Hokeung Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaocheng Zhou
- Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoping Zhao
- Center of Stomatology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xinyue Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Tingting Luo
- Shenzhen PKU‐HKUST Medical Center (Peking University Shenzhen Hospital) Shenzhen China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Weilian Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory for Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Erhui Jiang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Ke Liu
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhe Shao
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengjun Shang
- Department of Oral and Maxillofacial‐Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
9
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
10
|
Wang C, Wang Y, Chang X, Ba X, Hu N, Liu Q, Fang L, Wang Z. Melanoma-Derived Exosomes Endow Fibroblasts with an Invasive Potential via miR-21 Target Signaling Pathway. Cancer Manag Res 2020; 12:12965-12974. [PMID: 33364842 PMCID: PMC7751322 DOI: 10.2147/cmar.s273718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Tumor-derived exosomes are messengers that participate in tumor progression. Fibroblasts are associated with the metastasis of cancer depending on their cellular plasticity. We hypothesize that tumor-derived exosomes endow the fibroblasts in tumor microenvironment with invasive phenotype to the benefit of tumor metastasis. Materials and Methods Exosomes derived from B16-F10 cells were identified by nanoparticle tracking analyzer (NTA), dynamic light scattering (DLS), Western blot (WB), and transmission electron microscopy (TEM). Cell invasion and migration assays were performed using the xCELLigence real-time cell analyzer (RTCA). Role of tumor-derived exosomal miR-21 in cell invasion was determined by qPCR. Results The invasion analysis showed that exosome-treated fibroblast cells had greater invasive capability as compared to untreated fibroblast cells, with the higher expressions of MMP2 and MMP9. miR-21 is at least partially responsible for this effect. After ingestion of melanoma-derived exosomes during incubation, mouse embryonic fibroblasts cells emerged cellular invasiveness with the presentation of a marked increase in miR-21 expression. MiR-21 promoted invasion of fibroblasts by down-regulation of tissue inhibitor of metalloproteinase 3 (TIMP3) expression and increasing of matrix metalloprotein (MMP) expression in fibroblast cells via melanoma-derived exosomes in a time-dependent manner. Conclusion Our results suggest that tumor-derived exosomes may facilitate stromal fibroblasts an aggressive phenotype to equip the tumor progression.
Collapse
Affiliation(s)
- Chenmeiyi Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Yiting Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Xiulin Chang
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Xiaoyun Ba
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Na Hu
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, People's Republic of China
| |
Collapse
|
11
|
Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 2020; 18:474. [PMID: 33302971 PMCID: PMC7731629 DOI: 10.1186/s12967-020-02662-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
The solid tumor microenvironment possesses a hypoxic condition, which promotes aggressiveness and resistance to therapies. Hypoxic tumor cells undergo broadly metabolic and molecular adaptations and communicate with surrounding cells to provide conditions promising for their homeostasis and metastasis. Extracellular vesicles such as exosomes originating from the endosomal pathway carry different types of biomolecules such as nucleic acids, proteins, and lipids; participate in cell-to-cell communication. The exposure of cancer cells to hypoxic conditions, not only, increases exosomes biogenesis and secretion but also alters exosomes cargo. Under the hypoxic condition, different signaling pathways such as HIFs, Rab-GTPases, NF-κB, and tetraspanin are involved in the exosomes biogenesis. Hypoxic tumor cells release exosomes that induce tumorigenesis through promoting metastasis, angiogenesis, and modulating immune responses. Exosomes from hypoxic tumor cells hold great potential for clinical application and cancer diagnosis. Besides, targeting the biogenesis of these exosomes may be a therapeutic opportunity for reducing tumorigenesis. Exosomes can serve as a drug delivery system transferring therapeutic compounds to cancer cells. Understanding the detailed mechanisms involved in biogenesis and functions of exosomes under hypoxic conditions may help to develop effective therapies against cancer.
Collapse
Affiliation(s)
- Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran.
| |
Collapse
|
12
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
13
|
Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. CURRENT TOPICS IN MEMBRANES 2020; 86:255-278. [PMID: 33837695 DOI: 10.1016/bs.ctm.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvesicles are small, membrane-bound vesicles that are shed from the plasma membrane of cells into the extracellular space. Microvesicles contain a variety of cargo not typically thought to be released from cells, including receptor tyrosine kinases, cytosolic signaling proteins, and microRNAs, which are transferred from donor cells to recipient cells. The transfer of microvesicle cargo can result in the transformation of recipient cells thereby supporting disease progression, including modified fibroblast metabolism, epithelial cell contractility, vascular remodeling, and immune cell inflammatory signaling. Additionally, microvesicles are believed to play prominent roles in cell-cell communication and disease progression as they are detected at elevated concentrations in diseased tissues. As microvesicle uptake by recipient cells can modulate cell function to promote disease progression, understanding the mechanisms and mechanosensitivity of microvesicle release, internalization, and the resulting signaling is crucial to fully comprehend their functions in disease. Here, we review recent advances in the understanding of actomyosin-regulated microvesicle biogenesis, microvesicle uptake via pinocytosis, and the resulting cellular transformation. We discuss the effects of altered cell contractility, mode of cell migration, and extracellular matrix compliance on microvesicle signaling, with direct implications in disease progression and identifying future therapeutic targets.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
14
|
Zebrowska A, Widlak P, Whiteside T, Pietrowska M. Signaling of Tumor-Derived sEV Impacts Melanoma Progression. Int J Mol Sci 2020; 21:ijms21145066. [PMID: 32709086 PMCID: PMC7404104 DOI: 10.3390/ijms21145066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEV or exosomes) are nanovesicles (30–150 nm) released both in vivo and in vitro by most cell types. Tumor cells produce sEV called TEX and disperse them throughout all body fluids. TEX contain a cargo of proteins, lipids, and RNA that is similar but not identical to that of the “parent” producer cell (i.e., the cargo of exosomes released by melanoma cells is similar but not identical to exosomes released by melanocytes), possibly due to selective endosomal packaging. TEX and their role in cancer biology have been intensively investigated largely due to the possibility that TEX might serve as key component of a “liquid tumor biopsy.” TEX are also involved in the crosstalk between cancer and immune cells and play a key role in the suppression of anti-tumor immune responses, thus contributing to the tumor progression. Most of the available information about the TEX molecular composition and functions has been gained using sEV isolated from supernatants of cancer cell lines. However, newer data linking plasma levels of TEX with cancer progression have focused attention on TEX in the patients’ peripheral circulation as potential biomarkers of cancer diagnosis, development, activity, and response to therapy. Here, we consider the molecular cargo and functions of TEX as potential biomarkers of one of the most fatal malignancies—melanoma. Studies of TEX in plasma of patients with melanoma offer the possibility of an in-depth understanding of the melanoma biology and response to immune therapies. This review features melanoma cell-derived exosomes (MTEX) with special emphasis on exosome-mediated signaling between melanoma cells and the host immune system.
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Piotr Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Pathology, University of Pittsburgh School of Medicine Pittsburgh, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
- Correspondence: ; Tel.: +48-32-278-9627
| |
Collapse
|
15
|
Surman M, Kędracka-Krok S, Hoja-Łukowicz D, Jankowska U, Drożdż A, Stępień EŁ, Przybyło M. Mass Spectrometry-Based Proteomic Characterization of Cutaneous Melanoma Ectosomes Reveals the Presence of Cancer-Related Molecules. Int J Mol Sci 2020; 21:E2934. [PMID: 32331267 PMCID: PMC7215915 DOI: 10.3390/ijms21082934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC-MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial-mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (M.S.); (D.H.-Ł.)
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (M.S.); (D.H.-Ł.)
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Anna Drożdż
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland; (A.D.); (E.Ł.S.)
| | - Ewa Ł. Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland; (A.D.); (E.Ł.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (M.S.); (D.H.-Ł.)
| |
Collapse
|
16
|
Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, Li B, Peng J, Li D, Shen L, Cao Y, Yang L. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett 2020; 473:62-73. [PMID: 31904479 DOI: 10.1016/j.canlet.2019.12.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Several studies have indicated that cancer-associated fibroblasts (CAFs) could promote cancer progression in many malignancies. However, the mechanism by which CAFs promote the growth and metastasis of lung cancer remains poorly defined. In the present study, CAFs and normal fibroblasts (NFs) were isolated from human lung cancer and adjacent tissue. The data showed that the conditional medium (CM) of CAFs could increase the proliferation, migration and invasion of lung cancer cells. Vascular cell adhesion molecule-1 (VCAM-1) showed a higher expression in CAF-CM than NF-CM, and blocking VCAM-1 in CAF-CM attenuated the proliferation and invasion of cancer cells. Further, the results showed that VCAM-1 secreted from CAFs activated AKT and MAPK signaling via receptor α4β1 integrin (very-late antigen (VLA)-4) in lung cancer cells. Moreover, CAFs promoted VCAM-1 expression and tumor growth in vivo. Additionally, bioinformatics analysis indicated a positive correlation on the CAF marker protein alpha-smooth muscle actin (α-SMA) and VCAM-1 expression, which was associated with a poor prognosis in lung cancer patients. These findings demonstrate that the VCAM-1 secreted from CAFs enhances growth and invasion by activating the AKT and MAPK signaling of lung cancer cells.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Qin Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China
| | - Xia Wu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - San Xu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Xiaohong Hu
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410082, China
| | - Xuxiu Tao
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Bo Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410082, China
| | - Liangfang Shen
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China
| | - Ya Cao
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, 40078, China; Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
17
|
Surman M, Stępień E, Przybyło M. Melanoma-Derived Extracellular Vesicles: Focus on Their Proteome. Proteomes 2019; 7:proteomes7020021. [PMID: 31086060 PMCID: PMC6630787 DOI: 10.3390/proteomes7020021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Malignant melanoma is one of the most aggressive types of cancer, and its incidence is increasing rapidly each year. Despite the extensive research into improved diagnostic and treatment methods, early detection and disease constraint still present significant challenges. As successful isolation protocols have been developed, extracellular vesicles (EVs) have become the subject of extensive investigation in terms of their role in cancer progression and as a possible source of disease biomarkers. Besides functional studies, quantitative and qualitative proteomics have recently emerged as promising tools for the advancement of melanoma biomarkers. Nevertheless, the amount of data concerning the proteome of melanoma-derived EVs is still very limited. In this review we cover the current knowledge on protein content of melanoma-derived EVs, with a focus on their potential role in the development and progression of melanomas.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Effects of Microvesicles on Cell Apoptosis under Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5972152. [PMID: 31178970 PMCID: PMC6501227 DOI: 10.1155/2019/5972152] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
Hypoxia, as one of the severe cellular stresses, can cause cellular injury and even cell death. Apoptosis is the main mechanism of regulating cell death and is closely related to the cell death caused by hypoxia. However, hypoxia-induced apoptosis is not entirely the result of direct hypoxic stimulus of cells. In recent years, it has been found that cells injured by hypoxia can shed a kind of membranous vesicles, which are called microvesicles (MVs). MVs can carry bioactive molecules from injured mother cells and appear in blood, cerebrospinal fluid, and other body fluids. MVs can induce normal cell apoptosis by transferring bioactive molecules into adjacent cells and amplifying the hypoxic injury in an organism. This review summarizes the characteristic changes of MVs derived from hypoxic cells and the mechanism of normal cell apoptosis mediated by hypoxic cell-derived MVs. Finally, we introduce the significance of this apoptosis-apoptosis cascade reaction in hypoxic diseases.
Collapse
|
19
|
Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, Shang Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 2019; 33:5690-5703. [PMID: 30698991 DOI: 10.1096/fj.201802226r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer. Stromal cells could function as providers of energy metabolites for tumor cells by undergoing the "reverse Warburg effect," but the mechanism has not been fully elucidated. The interaction between the tumoral microvesicles (TMVs) and stroma in the tumor microenvironment plays a critical role in facilitating cancer progression. In this study, we demonstrated a novel mechanism for the TMV-mediated glycometabolic reprogramming of stromal cells. After being incubated with TMVs, normal human gingival fibroblasts exhibited a phenotype switch to cancer-associated fibroblasts and underwent a degradation of caveolin 1 (CAV1) through the ERK1/2-activation pathway. CAV1 degradation further induced the metabolic switch to aerobic glycolysis in the fibroblasts. The microvesicle-activated fibroblasts absorbed more glucose and produced more lactate. The migration and invasion of oral squamous cell carcinoma (OSCC) were promoted after being cocultured with the activated fibroblasts. Fibroblast-cancer cell glycometabolic coupling ring mediated by monocarboxylate transporter (MCT) 4 and MCT1 was then proved in the tumor microenvironment. Results indicated a mechanism for tumor progression by the crosstalk between tumor cells and stromal cells through the reverse Warburg effect via TMVs, thereby identifying potential targets for OSCC prevention and treatment.-Jiang, E., Xu, Z., Wang, M., Yan, T., Huang, C., Zhou, X., Liu, Q., Wang, L., Chen, Y., Wang, H., Liu, K., Shao, Z., Shang, Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Tinglin Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Chunming Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Qing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Hui Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:242. [PMID: 30285793 PMCID: PMC6169013 DOI: 10.1186/s13046-018-0911-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) have been widely reported to promote tumor angiogenesis. However, the underlying mechanisms of the proangiogenic switch of CAFs remain poorly understood. This study aims to clarify the mechanisms underlying the proangiogenic switch of CAFs. Methods NIH/3T3 cells were treated with B16 and B16F10-derived exosomes. Then the CAFs markers and proangiogenic factors were detected by RT-PCR and Western blot. CCK-8 assay, transwell migration assay, tube formation assay, and in vivo Matrigel plug assay were conducted to determine the proangiogenic capability of CAFs. Western blot and AG490 were used to investigate the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in the proangiogenic switch of CAFs. Bioinformatics analysis, luciferase reporter assay, microRNA mimic and inhibitor, and xenograft models were used to investigate the role of mmu-miR-155-5p (miR-155) in the proangiogenic switch of CAFs. Results In this study, we show that melanoma cell-secreted exosomes can induce reprogramming of fibroblasts into CAFs and that exosomal miR-155 can trigger the proangiogenic switch of CAFs. Mechanistically exosomal miR-155 can be delivered into fibroblasts and promote the expression of proangiogenic factors, including vascular endothelial growth factor A (VEGFa), fibroblast growth factor 2 (FGF2), and matrix metalloproteinase 9 (MMP9), by directly targeting suppressor of cytokine signaling 1 (SOCS1). Downregulation of SOCS1 activates JAK2/STAT3 signaling pathway and elevates the expression levels of VEGFa, FGF2, and MMP9 in fibroblasts. Treatment with exosomes containing overexpressed miR-155 can promote angiogenesis, and the reduction of miR-155 in melanoma cell-secreted exosomes alleviates angiogenesis in vitro and in vivo. Conclusions These results demonstrate that by promoting the expression of proangiogenic factors in recipient fibroblasts via SOCS1/JAK2/STAT3 signaling pathway, melanoma cell-secreted exosomal miR-155 can induce the proangiogenic switch of CAFs. Although tumor angiogenesis is modulated by various factors, exosomal miR-155 may be a potential target for controlling melanoma angiogenesis and used to set up novel strategies to treat melanoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0911-3) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Sun L, Liu L, Yu T, Wang Q, Fu H. VCAM1-targeted RNA interference inhibits the proliferation of human oral squamous carcinoma HN12 cells. Oncol Lett 2018; 15:5650-5654. [PMID: 29552201 PMCID: PMC5840534 DOI: 10.3892/ol.2018.8034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
In the present study, RNA interference (RNAi) was used to investigate the effect of vascular cell adhesion molecule 1 (VCAM1) silencing on the proliferation of human oral squamous carcinoma HN12 cells. HN12 cells were divided into three groups: The untreated blank control cell group (CK), the negative control group transfected with non-homologous vector (NC) and the positive group transfected with the target sequence VCAM1 small hairpin RNA (KD). Reverse-transcription polymerase chain reaction and western blot analysis were used to examine the effects of VCAM1-knockdown on the mRNA expression of VCAM1 and subsequent protein expression. Furthermore, the HN12 cell growth inhibition rate was detected using the cell counting kit-8 method. The VCAM1-targeted lentiviral vector RNAi significantly inhibited VCAM1 mRNA, and subsequent protein, expression. Compared with the NC group, the VCAM1 gene knockdown efficiency was ~85%, while the expression level of VCAM1 protein was reduced by ~74% in KD group cells. In addition, cell growth was significantly inhibited in the KD group, with a growth inhibition rate of ~34%. Therefore, this targeted lentiviral vector RNAi effectively inhibited VCAM1 gene, and subsequent protein, expression, as well as the proliferation of oral squamous carcinoma cells. These results may provide an experimental reference for the diagnosis and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Legang Sun
- Department of Oral Surgery, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Ling Liu
- Room of Gastroscopy, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Tingting Yu
- Department of Oral Surgery, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Qiuqin Wang
- Department of Rehabilitation, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Honghai Fu
- Department of Oral Surgery, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
22
|
Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment. Oncotarget 2018; 7:14350-65. [PMID: 26885608 PMCID: PMC4924720 DOI: 10.18632/oncotarget.7320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023] Open
Abstract
The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement.
Collapse
|
23
|
Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim Biophys Acta Rev Cancer 2017; 1868:538-563. [PMID: 29054476 DOI: 10.1016/j.bbcan.2017.10.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as important players of cancer initiation and progression through cell-cell communication. They have been recognized as critical mediators of extracellular communications, which promote transformation, growth invasion, and drug-resistance of cancer cells. Interestingly, the secretion and uptake of EVs are regulated in a more controlled manner than previously anticipated. EVs are classified into three groups, (i) exosomes, (ii) microvesicles (MVs), and (iii) apoptotic bodies (ABs), based on their sizes and origins, and novel technologies to isolate and distinguish these EVs are evolving. The biologically functional molecules harbored in these EVs, including nucleic acids, lipids, and proteins, have been shown to induce key signaling pathways in both tumor and tumor microenvironment (TME) cells for exacerbating tumor development. While tumor cell-derived EVs are capable of reprogramming stromal cells to generate a proper tumor cell niche, stromal-derived EVs profoundly affect the growth, resistance, and stem cell properties of tumor cells. This review summarizes and discusses these reciprocal communications through EVs in different types of cancers. Further understanding of the pathophysiological roles of different EVs in tumor progression is expected to lead to the discovery of novel biomarkers in liquid biopsy and development of tumor specific therapeutics. This review will also discuss the translational aspects of EVs and therapeutic opportunities of utilizing EVs in different cancer types.
Collapse
Affiliation(s)
- Kerui Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Fei Xing
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Shih-Ying Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kounosuke Watabe
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
24
|
Huaitong X, Yuanyong F, Yueqin T, Peng Z, Wei S, Kai S. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway. Cancer Biol Ther 2017; 18:783-791. [PMID: 28886265 DOI: 10.1080/15384047.2017.1373213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the significance of hedgehog signaling pathway in association with clinicopathology parameters and its effect on angiogenesis in oral squamous cell carcinoma (OSCC). The expression of Sonic Hh (Shh) and Gli1 were done on primary tumors and metastatic lymph nodes in OSCC samples from 80 patients by immunohistochemical analysis. The western blot was used to examine the expression of Shh in OSCC cell lines and OSCC-derived microvesicles (MVs). The role of Shh carried by MVs to induce endothelial cell angiogenesis was further investigated by matrigel assay. Our results indicated that the expression of Shh was positive associated with microvesseldentisty(MVD), TNM stage, tumor recurrence and lymph node metastasis. Moreover, Shh and Gli1 expression were higher in paired metastatic lymph nodes compared with expression of their primary tumors. The expression of Shh was abundant in Cal27, and present in SCC4, SCC9, and the amount of Shh protein in Cal27 targeting MVs was increased significantly than Cal27 cell group, up to ∼ fifth-fold. The Cal27 derived MVs increased significantly angiogenesis of HUVECs in vitro, and this effect was blocked with exoenzyme C3 transferase (C3) and shRNA targeting RhoA by suppressing RhoA expression and activation. The data suggested that OSCC derived Shh carried by MVs may facilitate the tumor growth and modulate the preparation of a vascular network in primary tumor and/or premetastatic niche.
Collapse
Affiliation(s)
- Xiao Huaitong
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Feng Yuanyong
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Tao Yueqin
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Zhao Peng
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Shang Wei
- a School of Stomatology , Qingdao University , Shandong Province , China.,b Department of Oral & Maxillofacial Surgery , the Affiliated Hospital of Qingdao University , Shandong Province , China
| | - Song Kai
- a School of Stomatology , Qingdao University , Shandong Province , China.,b Department of Oral & Maxillofacial Surgery , the Affiliated Hospital of Qingdao University , Shandong Province , China
| |
Collapse
|
25
|
Zanotelli MR, Bordeleau F, Reinhart-King CA. Subcellular regulation of cancer cell mechanics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Kreger BT, Dougherty AL, Greene KS, Cerione RA, Antonyak MA. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem 2016; 291:19774-85. [PMID: 27440046 PMCID: PMC5025668 DOI: 10.1074/jbc.m116.725705] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), have emerged as a major form of intercellular communication, playing important roles in several physiological processes and diseases, including cancer. EVs generated by cancer cells contain a variety of proteins and RNA species that can be transferred between cancer cells as well as between cancer and non-transformed (normal) cells, thereby impacting a number of aspects of cancer progression. Here we show how oncogenic transformation influences the biogenesis and function of EVs using a mouse embryonic fibroblast (MEF) cell line that can be induced to express an oncogenic form of diffuse B cell lymphoma (Dbl). Although MEFs induced to express onco-Dbl generated a similar amount of MVs as uninduced control cells, we found that MVs isolated from onco-Dbl-transformed cells contain a unique signaling protein, the ubiquitously expressed non-receptor tyrosine kinase focal adhesion kinase. The addition of MVs isolated from MEFs expressing onco-Dbl to cultures of fibroblasts strongly promoted their survival and induced their ability to grow under anchorage-independent conditions, outcomes that could be reversed by knocking down focal adhesion kinase and depleting it from the MVs or by inhibiting its kinase activity using a specific inhibitor. We then showed the same to be true for MVs isolated from aggressive MDAMB231 breast cancer cells. Together, these findings demonstrate that the induction of oncogenic transformation gives rise to MVs, which uniquely contain a signaling protein kinase that helps propagate the transformed phenotype and thus may offer a specific diagnostic marker of malignant disease.
Collapse
Affiliation(s)
| | | | | | - Richard A Cerione
- From the Departments of Molecular Medicine and Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
27
|
Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, Qu J, McMasters KM, Hao H. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett 2016; 376:318-27. [PMID: 27063098 DOI: 10.1016/j.canlet.2016.03.050] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Deyi Xiao
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA
| | - Samantha Barry
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA
| | - Daniel Kmetz
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA
| | - Michael Egger
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shesh N Rai
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jifu Qu
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA.
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville School of Medicine, Kosair Charities Clinical & Translational Research Building, 505 S. Hancock St, Room 407, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Fu H, Yang H, Zhang X, Xu W. The emerging roles of exosomes in tumor-stroma interaction. J Cancer Res Clin Oncol 2016; 142:1897-907. [PMID: 26987524 DOI: 10.1007/s00432-016-2145-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE The tumor-stroma interaction is critical for the development and progression of cancer. Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, can promote tumor growth and metastasis. Exosomes are secreted microvesicles that mediate cell-to-cell communication. Exosomal contents, including proteins, nucleic acids, and lipids, can be shuttled from donor cells to target cells. Recent studies suggest that exosomes play important roles in the tumor-stroma interaction. Herein, we review the multifaceted roles of exosomes in the tumor-stroma interaction and the underlying molecular mechanisms. METHODS Literature search for all relevant publications was performed on PubMed databases. The keywords of exosomes, tumor, stroma, CAFs, mesenchymal stem cells (MSCs) and other closely related terms were used for searching. RESULTS Tumor cell-derived exosomes induce the differentiation of fibroblasts and MSCs into CAFs. In turn, exosomes secreted by CAFs promote tumor growth, metastasis, and drug resistance through distinct mechanisms. Moreover, exosomes from stromal cells can be used as therapeutic vehicles for the delivery of anticancer drugs. CONCLUSIONS Tumor cells communicate with CAFs through exosomes, which establishes a bidirectional cross talk to promote tumor growth, metastasis, and drug resistance. Targeting exosomes in tumor-stroma interaction may have important implications for anticancer therapy.
Collapse
Affiliation(s)
- Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,The Affiliated Hospital, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
29
|
Yang X, Du T, Wang X, Zhang Y, Hu W, Du X, Miao L, Han C. IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Lett 2015; 365:201-10. [PMID: 26049021 DOI: 10.1016/j.canlet.2015.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
Abstract
Isocitrate dehydrogenase1 (IDH1) is of great importance in cell metabolism and energy conversion. However, alterations in IDH1 in response to stress and excise-regulated mechanisms are not well described. Here we investigated gene expression profiles under ER stress in melanoma cells and found that IDH1 was dramatically increased with ER stress induced by tunicamycin. Elevated IDH1 subsequently sensitized human melanoma cells to hypoxia-induced apoptosis and promoted HIF-1α degradation. In addition, we revealed that CHOP and C/EBPβ were involved in hypoxia-induced apoptosis via transcriptional regulation of IDH1 expression. Our data indicate that IDH1, regulated by CHOP and C/EBPβ in response to ER stress treatment, inhibits survival of melanoma cells under hypoxia and promotes HIF-1α degradation. Therefore, we propose that IDH1 may serve as a valuable target for melanoma therapy.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Tongde Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaofeng Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lin Miao
- Oncology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|