1
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Neonatal corticosterone administration increases p27-positive Sertoli cell number and decreases Sertoli cell number in the testes of mice at prepuberty. Sci Rep 2022; 12:19402. [PMID: 36371473 PMCID: PMC9653474 DOI: 10.1038/s41598-022-23695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cortisol and corticosterone (CORT) are steroid, antistress hormones and one of the glucocorticoids in humans and animals, respectively. This study evaluated the effects of CORT administration on the male reproductive system in early life stages. CORT was subcutaneously injected at 0.36 (low-), 3.6 (middle-), and 36 (high-dosed) mg/kg body weight from postnatal day (PND) 1 to 10 in ICR mice. We observed a dose-dependent increase in serum CORT levels on PND 10, and serum testosterone levels were significantly increased only in high-dosed-CORT mice. Triiodothyronine levels were significantly higher in the low-dosed mice but lower in the middle- and high-dosed mice. However, testicular weights did not change significantly among the mice. Sertoli cell numbers were significantly reduced in low- and middle-dosed mice, whereas p27-positive Sertoli cell numbers increased in low- and middle-dosed mice. On PND 16, significant increases in testicular and relative testicular weights were observed in all-dosed-CORT mice. On PND 70, a significant decrease in testicular weight, Sertoli cell number, and spermatozoa count was observed. These results revealed that increased serum CORT levels in early life stages could induce p27 expression in Sertoli cells and terminate Sertoli cell proliferation, leading to decreased Sertoli cell number in mouse testes.
Collapse
|
3
|
Li L, Hu X, Nkwocha J, Sharma K, Zhou L, Grant S. Functional role of DNMT1 in the anti-leukemic effects of hypomethylating agents in AML cells. Leuk Res 2022; 121:106944. [DOI: 10.1016/j.leukres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
|
4
|
He L, Boulant S, Stanifer M, Guo C, Nießen A, Chen M, Felix K, Bergmann F, Strobel O, Schimmack S. The link between menin and pleiotrophin in the tumor biology of pancreatic neuroendocrine neoplasms. Cancer Sci 2022; 113:1575-1586. [PMID: 35179814 PMCID: PMC9128182 DOI: 10.1111/cas.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
MEN1, which encodes menin protein, is the most frequently mutated gene in pancreatic neuroendocrine neoplasms (pNEN). Pleiotrophin (PTN) was reported being a downstream factor of menin and to promote metastasis in different tumor entities. In this study, the effect of menin and its link to PTN were assessed on features of pNEN cells and outcome of pNEN patients. The expression of menin and PTN in pNEN patient tissues were examined by qRT-PCR and western blot and compared to their metastasis status. Functional assays, including transwell migration/invasion and scratch wound healing assays, were performed on specifically designed CRISPR/Cas9-mediated MEN1-knockout (MEN1-KO) pNEN cell lines (BON1MEN1-KO and QGP1MEN1-KO ) to study the metastasis of pNEN. Among 30 menin negative pNEN patients, 21 revealed a strong protein expression of PTN. This combination was associated with metastasis and shorter disease-free survival. Accordingly, in BON1MEN1-KO and QGP1MEN1-KO cells, PTN protein expression was positively associated with enhanced cell migration and invasion, which could be reversed by PTN silencing. PTN is a predicting factor of metastatic behavior of menin-deficient-pNEN. In vitro, menin is able to both promote and suppress the metastasis of pNEN by regulating PTN expression depending on the tumoral origin of pNEN cells.
Collapse
Affiliation(s)
- Liping He
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Steeve Boulant
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Megan Stanifer
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Cuncai Guo
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Anna Nießen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mingyi Chen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Schimmack
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Zhou M, Mao Y, Yu S, Li Y, Yin R, Zhang Q, Lu T, Sun R, Lin S, Qian Y, Xu Y, Fan H. LINC00673 Represses CDKN2C and Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells by EZH2-Mediated H3K27 Trimethylation. Front Oncol 2020; 10:1546. [PMID: 33014799 PMCID: PMC7461945 DOI: 10.3389/fonc.2020.01546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), some of the most abundant epigenetic regulators, play an important role in esophageal squamous cell carcinoma (ESCC). In the current study, the functions and mechanisms of the lncRNA LINC00673 were investigated. The expression levels of LINC00673 and its potential target genes were assessed by quantitative real-time polymerase chain reaction (qPCR) in ESCC surgical specimens and ESCC cell lines. RNA fluorescence in situ hybridization (RNA FISH) was employed to detect the subcellular location and the levels of LINC00673 in ESCC samples from patients with different survival times. LINC00673 function in ESCC carcinogenesis was also evaluated in vivo and in vitro. Cell cycle synchronization was performed using serum withdrawal; the cell cycle was monitored by fluorescence analysis and cellular DNA was detected by flow cytometry. The molecular mechanisms underlying LINC00673 were explored via Western blotting, chromatin immunoprecipitation (ChIP), and ChIP-PCR. Up-regulated LINC00673 was associated with poor prognosis in ESCC patients and promoted the proliferation of ESCC cells both in vitro and in vivo. Compared to the control group, depletion of LINC00673 in ESCC cells arrested the cell cycle, at least, at the G1/S checkpoint. Knockdown of LINC00673 significantly enhanced posttranscriptional expression of CDKN2C, and histone 3 lysine 27 trimethylation (H3K27me3) was enriched at the promoter region of CDKN2C. After inhibiting EZH2, the CDKN2C expression levels were increased. The present findings are the first to reveal that LINC00673 represses CDKN2C expression and promotes ESCC cell proliferation by elevating EZH2-mediated H3K27me3 levels. These data suggest that LINC00673 regulates the cell cycle in ESCC and that it is a promising target for clinical therapy.
Collapse
Affiliation(s)
- Menghan Zhou
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China.,School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuhang Mao
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Shenling Yu
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Lu
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Rui Sun
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Shaofeng Lin
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yanyan Qian
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Ying Xu
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Hong Fan
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
6
|
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43:779-792. [PMID: 32504382 DOI: 10.1007/s13402-020-00526-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
7
|
Chen P, Wang Q, Xie J, Kwok HF. Signaling networks and the feasibility of computational analysis in gastroenteropancreatic neuroendocrine tumors. Semin Cancer Biol 2019; 58:80-89. [DOI: 10.1016/j.semcancer.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
|
8
|
Cheng P, Chen Y, He TL, Wang C, Guo SW, Hu H, Ni CM, Jin G, Zhang YJ. Menin Coordinates C/EBPβ-Mediated TGF-β Signaling for Epithelial-Mesenchymal Transition and Growth Inhibition in Pancreatic Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:155-165. [PMID: 31546150 PMCID: PMC6796682 DOI: 10.1016/j.omtn.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022]
Abstract
Menin displays either tumor suppression or promotion functions in a context-dependent manner. Previously, we proposed that Menin acts as a tumor suppressor by inhibiting cell growth in pancreatic ductal adenocarcinoma (PDAC), whereas the relationship between the Menin expression and overall survival rate of PDAC patients has not been completely elucidated, indicating the complexity of Menin functions in PDAC progression. Here, we identify Menin as a promoter of epithelial-mesenchymal transition (EMT), which is largely associated with cell migration or metastasis, with modest activity in cell growth inhibition. Ectopic expression of Menin suppresses the expression of CCAAT/enhancer-binding protein beta (CEBPB) and epithelial-specific genes by histone deacetylation and further enhances the TGF-β signaling-related EMT process. We also demonstrate that CCAAT/enhancer binding protein (C/EBP) beta (C/EBPβ; encoded by CEBPB) acts downstream of Menin and TGF-β signaling for balancing growth inhibition and EMT, and C/EBPβ overexpression could restore the anti-cancer functions of Menin in pancreatic cancer by cooperatively activating CDKN2A/B genes and antagonizing EMT processes. Taken together, our results suggest that Menin functions as an oncogene for cancer metastasis upon C/EBPβ depletion or acts as a tumor suppressor by cooperation with C/EBPβ to activate CDKN2A transcription.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China.
| | - Ying Chen
- Department of Pathology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Tian-Lin He
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chao Wang
- The Second Military Medical University, Shanghai 200433, P.R. China
| | - Shi-Wei Guo
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hao Hu
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chen-Ming Ni
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Gang Jin
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China.
| | - Yi-Jie Zhang
- Department of Pancreatic Hepatobiliary Surgery, Changhai Hospital, Shanghai 200433, P.R. China.
| |
Collapse
|
9
|
Qiaoqiao C, Li H, Liu X, Yan Z, Zhao M, Xu Z, Wang Z, Shi K. MiR-24-3p regulates cell proliferation and milk protein synthesis of mammary epithelial cells through menin in dairy cows. J Cell Physiol 2019; 234:1522-1533. [PMID: 30221364 PMCID: PMC6282567 DOI: 10.1002/jcp.27017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023]
Abstract
MiR-24-3p, a broadly conserved, small, noncoding RNA, is abundantly expressed in mammary tissue. However, its regulatory role in this tissue remains poorly understood. It was predicted that miR-24-3p targets the 3' untranslated region (3'-UTR) of multiple endocrine neoplasia type 1 (MEN1), an important regulatory factor in mammary tissue. The objective of this study was to investigate the function of miR-24-3p in mammary cells. Using a luciferase assay in mammary epithelial cells (MAC-T), miR-24-3p was confirmed to target the 3'-UTR of MEN1. Furthermore, miR-24-3p negatively regulated the expression of the MEN1 gene and its encoded protein, menin. miR-24-3p enhanced proliferation of MAC-T by promoting G1/S phase progression. MiR-24-3p also regulated the expression of key factors involved in phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin and Janus kinase/signal transducer and activators of transcription signaling pathways, therefore controlling milk protein synthesis in epithelial cells. Thus, miR-24-3p appears to act on MAC-T by targeting MEN1. The expression of miR-24-3p was controlled by MEN1/menin, indicating a negative feedback loop between miR-24-3p and MEN1/menin. The negatively inhibited expression pattern of miR-24-3p and MEN1 was active in mammary tissues at different lactation stages. The feedback mechanism is a new concept to further understand the lactation cycle of mammary glands and can possibly to be manipulated to improve milk yield and quality.
Collapse
Affiliation(s)
- Cao Qiaoqiao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Honghui Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Xue Liu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhengui Yan
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhongjin Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhonghua Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| |
Collapse
|
10
|
Wei W, Zhang HY, Gong XK, Dong Z, Chen ZY, Wang R, Yi JX, Shen YN, Jin SZ. Mechanism of MEN1 gene in radiation-induced pulmonary fibrosis in mice. Gene 2018; 678:252-260. [PMID: 30099020 DOI: 10.1016/j.gene.2018.08.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanism of MEN1 gene in radiation-induced lung fibrosis in mice and provide a new theoretical basis for the clinical treatment of radiation pulmonary fibrosis. METHODS First, 80 C57BL/6 mice aged 8 weeks and weighing 18-22 g were selected, half of them were male and the other half were female. The mice were divided into control group and irradiation group (40 mice in each group) according to the method of the random number table. A radiation-induced lung fibrosis mouse model was established in which a single X-ray irradiation of 20 Gy was applied to the right lung in the irradiation group; H&E and Masson staining were used to verify whether the model was successful at 4, 8, 16 and 24 weeks after irradiation. The expression of MEN1, smooth muscle actin (α-SMA), Collagen-1 and transforming growth factor (TGF-β) in lung tissue were detected by Western blot and qPCR. Secondly, in the mouse embryonic fibroblast cell line (MEF) and mouse lung epithelial cell line (MLE-12), we constructed cell models of MEN1 knockout and interference separately with the irradiation of 10 Gy X-rays. The expression of α-SMA, Collagen-1, and TGF-β/Smads signaling pathway molecules was detected by qPCR. Finally, using the immunoprecipitation (IP) method, we can detect the interaction between Smad2 and the protein menin encoded by the MEN1 gene. RESULTS The results of the radiation pulmonary fibrosis model in mice showed that compared with the control group, the alveolar septum widens, the alveolar integrity decreases, the lung tissue slightly thickens, and a small amount of collagen deposits appear after 4-8 weeks in the model group. At twenty-fourth weeks, a large number of cells in the interstitial space of the lung tissue and a localized focal fibrosis area were observed. Further study found that radiation induced fibrogenic inflammatory cytokines TGF-β up-regulation, down-regulation of MEN1 gene expression, and then enhanced the expression of α-SMA and promotes the transformation of fibroblasts to myofibroblasts; At the same time, the expression of Collagen-1 was enhanced, which suggested that the extracellular matrix was overconcentrated and eventually promoted the formation of pulmonary fibrosis. In vitro, we found that knockout and interference of MEN1 gene can significantly enhance radiation-induced fibrosis, and up-regulate the expression of downstream molecules Smad2 and Smad3 of TGF-β signaling pathway, and down-regulate the expression of Smad7. Furthermore, it played an important role in regulating the process of radionuclide fibrosis. CONCLUSION MEN1 plays a key role in the formation of pulmonary fibrosis by regulating the secretion of TGF-β and the activation of TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- Wei Wei
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China
| | - Hai-Yang Zhang
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China; Department of Prosthodontics Dentistry, Hospital of Stomatology, Jilin University, China
| | - Xin-Kou Gong
- Department of Radiology, The 2nd Hospital Affiliated of Jilin University, China
| | - Zhuo Dong
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China
| | - Zhi-Yuan Chen
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China
| | - Rui Wang
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China
| | - Jun-Xuan Yi
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China
| | - Yan-Nan Shen
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China.
| | - Shun-Zi Jin
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, China.
| |
Collapse
|
11
|
Cui X, Li Z, Gao J, Gao PJ, Ni YB, Zhu JY. Elevated CXCL1 increases hepatocellular carcinoma aggressiveness and is inhibited by miRNA-200a. Oncotarget 2018; 7:65052-65066. [PMID: 27542259 PMCID: PMC5323138 DOI: 10.18632/oncotarget.11350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the value of measurement of the chemokine CXCL1 in clinical management of hepatocellular carcinoma (HCC) and its possible role in the molecular pathogenesis of HCC. High CXCL1 expression predicted recurrence in HCC patients and promoted tumor progression in both in vivo and in vitro experimental systems. Overexpression of CXCL1 increased mitochondrial metabolism and activated the epithelial-to-mesenchymal transition (EMT). Using computational analysis we identified the microRNA miR-200a as a putative post-transcriptional regulator of CXCL1. We found that levels of miR-200a were inversely correlated with CXCL1 expression in HCC patient tissue samples by northern blot and qRT-PCR. Furthermore, CXCL1 was identified as a direct target which was bound and inhibited by miR- 200a. These findings provide new insights into the role of CXCL1 in HCC and its post-transcriptional regulation and suggest it may be a prognostic indicator for poor outcomes and a potential target for therapy.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China.,Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhao Li
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China
| | - Jie Gao
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China
| | - Peng-Ji Gao
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China
| | - Yan-Bing Ni
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China
| | - Ji-Ye Zhu
- Department of Hepatobilliary Surgery, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
12
|
Xiang S, Zou P, Tang Q, Zheng F, Wu J, Chen Z, Hann SS. HOTAIR-mediated reciprocal regulation of EZH2 and DNMT1 contribute to polyphyllin I-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim Biophys Acta Gen Subj 2017; 1862:589-599. [PMID: 29221985 DOI: 10.1016/j.bbagen.2017.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Polyphyllin I (PPI), one of the steroidal saponins in paris polyphylla, has been reported to exhibit antitumor effects. However, the detailed molecular mechanism underlying this has not been elucidated. METHODS Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Flow cytometry assays, respectively. Cell invasion and migration were examined by Transwell invasion and wound healing assays. Western blot analysis was performed to examine the protein expressions of zeste homolog 2 (EZH2), DNA methyltransferase 1 (DNMT1). QRT-PCR was used to examine the levels of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR). Small interfering RNAs (siRNAs) method was used to knockdown HOTAIR. Exogenously expressions of HOTAIR, DNMT1 and EZH2 were carried out by Transient transfection assays. EZH2 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. A nude mice xenograft model was used to confirm the findings in vitro. RESULTS We showed that PPI significantly inhibited growth, induced cell cycle arrest of castration-resistant prostate cancer (CRPC) cells. In addition, PPI also reduced the migration and invasion in CRPC cells. In mechanism, we found that PPI decreased the protein expressions of EZH2, DNMT1 and levels of HOTAIR. Interestingly, silenced HOTAIR reduced EZH2 and DNMT1 protein expressions. On the contrary, exogenously expressed HOTAIR resisted PPI-inhibited EZH2 and DNMT1 protein expressions, EZH2 promoter activity and cell growth. Moreover, excessive EZH2 antagonized PPI-suppressed DNMT1 protein expression or vice versa. Consistent with this, PPI inhibited tumor growth, HOTAIR, the protein expressions of DNMT1 and EZH2 in vivo. CONCLUSION Our results show that PPI inhibits growth of CRPC cells through inhibition of HOTAIR expression, subsequently; this results in the repression of DNMT1 and EZH2 expressions. The interactions among HOTAIR, DNMT1 and EZH2, and reciprocal regulation of DNMT1 and EZH2 contribute to the overall responses of PPI. This study reveals a novel mechanism for HOTAIR-mediated regulating DNMT1 and EZH2 in response to PPI in inhibition of the growth of CRPC cells.
Collapse
Affiliation(s)
- SongTao Xiang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - PeiLiang Zou
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China; Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - ZhiQiang Chen
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
13
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Zheng F, Wu J, Tang Q, Xiao Q, Wu W, Hann SS. The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1. J Cell Mol Med 2017; 22:600-612. [PMID: 28840963 PMCID: PMC5742731 DOI: 10.1111/jcmm.13347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Berberine (BBR), one of active alkaloid found in the rhizome, exhibited anti‐cancer properties. We have showed that BBR inhibited growth of non‐small cell lung cancer (NSCLC) cells through mitogen‐activated protein kinase (MAPK)‐mediated increase in forkhead box O3a (FOXO3a). However, the in‐depth mechanism underlying the anti‐tumor effects still remained to be elucidated. Herein, we further confirmed that BBR not only induced cell cycle arrest, but also reduced migration and invasion of NSCLC cells. Mechanistically, we observed that BBR reduced 3‐phosphoinositide‐dependent protein kinase‐1 (PDPK1) and transcription factor SP1 protein expressions. Exogenously expressed SP1 overcame BBR‐inhibited PDPK1 expression. Moreover, BBR inhibited DNA methyltransferase 1 (DNMT1) gene expression and overexpressed DNMT1 resisted BBR‐inhibited cell growth. Intriguingly, overexpressed PDPK1 antagonized BBR‐inhibited SP1 and DNMT1 expressions. Finally, metformin enhanced the effects of BBR both in vitro and in vivo. Collectively, we observe that BBR inhibits proliferation of NSCLC cells through inhibition of SP1 and PDPK1; this results in a reduction of DNMT1 expression. The interplay of PDPK1 and SP1 contributes to the inhibition of DNMT1 in response to BBR. In addition, there is a synergy of BBR and metformin. This study uncovers a new mechanism of BBR in combination with metformin for NSCLC‐associated therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qian Xiao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Swei Sunny Hann
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Subramani R, Gonzalez E, Nandy SB, Arumugam A, Camacho F, Medel J, Alabi D, Lakshmanaswamy R. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget 2017; 8:10891-10904. [PMID: 26988754 PMCID: PMC5355232 DOI: 10.18632/oncotarget.8055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/25/2016] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti–proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti–metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti–metastatic effect through inhibition of sonic hedgehog signaling. The anti–cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Elizabeth Gonzalez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Sushmita Bose Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Fernando Camacho
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Joshua Medel
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Damilola Alabi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| |
Collapse
|
17
|
Ehrlich L, Hall C, Meng F, Lairmore T, Alpini G, Glaser S. A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology. Gene Expr 2017; 17:251-263. [PMID: 28485270 PMCID: PMC5765438 DOI: 10.3727/105221617x695744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome with neuroendocrine tumorigenesis of the parathyroid glands, pituitary gland, and pancreatic islet cells. The MEN1 gene codes for the canonical tumor suppressor protein, menin. Its protein structure has recently been crystallized, and it has been investigated in a multitude of other tissues. In this review, we summarize recent advancements in understanding the structure of the menin protein and its function as a scaffold protein in histone modification and epigenetic gene regulation. Furthermore, we explore its role in hepatobiliary autoimmune diseases, cancers, and metabolic diseases. In particular, we discuss how menin expression and function are regulated by extracellular signaling factors and nuclear receptor activation in various hepatic cell types. How the many signaling pathways and tissue types affect menin's diverse functions is not fully understood. We show that small-molecule inhibitors affecting menin function can shed light on menin's broad role in pathophysiology and elucidate distinct menin-dependent processes. This review reveals menin's often dichotomous function through analysis of its role in multiple disease processes and could potentially lead to novel small-molecule therapies in the treatment of cholangiocarcinoma or biliary autoimmune diseases.
Collapse
Affiliation(s)
- Laurent Ehrlich
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Chad Hall
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Terry Lairmore
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Gianfranco Alpini
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Shannon Glaser
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
18
|
Li H, Wang X, Fang Y, Huo Z, Lu X, Zhan X, Deng X, Peng C, Shen B. Integrated expression profiles analysis reveals novel predictive biomarker in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:52571-52583. [PMID: 28881752 PMCID: PMC5581051 DOI: 10.18632/oncotarget.16732] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal human malignant tumor, with a dismal 5-year survival rate of less than 5%. The lack of specific symptoms at early tumor stages and the paucity of biomarkers contribute to the poor diagnosis of pancreatic ductal adenocarcinoma. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. We searched the databases of expression profiling by array on GEO, aiming at comparing gene expression profile of matched pairs of pancreatic tumor and adjacent non-tumor tissues, and we screen out 4 suitable series of gene expression microarray data (“GSE15471”, “GSE18670”, “GSE28735” and “GSE58561”). After carefully analyzing, 13 DEGs (MYOF, SLC6A6, S100P, HK2, IFI44L, OSBPL3, IGF2BP3, PDK4, IL1R2, ERO1A, EGLN3, PLAC8 and ACSL5) are significantly differentially expressed in four microarray databases in common. After analyzing mRNA expression data and clinical follow-up survey provided in the TCGA database and clinicopathological data of 137 pancreatic ductal adenocarcinoma patients, we carefully demonstrated that three of these differentially expressed genes (ERO1A, OSBPL3 and IFI44L) are correlated with poor prognosis of pancreatic ductal adenocarcinoma patients. In addition, we revealed that cell–matrix adhesion and extracellular matrix were top significantly regulated pathways in pancreatic ductal adenocarcinoma and depicted two protein-protein interactions networks of extracellular matrix related Genes which are dysregulated according to 4 gene expression microarray data mentioned above (“GSE15471”, “GSE18670”, “GSE28735” and “GSE58561”), hoping to shed light on the etiology of PDAC and mechanisms of drug resistance in PDAC in this study.
Collapse
Affiliation(s)
- Hongzhe Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xinjing Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuan Fang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhen Huo
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiongxiong Lu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xi Zhan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaxin Deng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
19
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
20
|
Chen Y, Tang Q, Xiao Q, Yang L, Hann SS. Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. J Cell Mol Med 2016; 21:222-233. [PMID: 27620163 PMCID: PMC5264151 DOI: 10.1111/jcmm.12958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. We previously showed that solamargine, one natural phytochemicals from traditional plants, inhibited the growth of lung cancer cells through inhibition of prostaglandin E2 (PGE2 ) receptor EP4. However, the potential downstream effectors of EP4 involving in the anti-lung cancer effects of solamargine still remained to be determined. In this study, we further verified that solamargine inhibited growth of non-small-cell lung cancer (NSCLC) cells in multiple cell lines. Mechanistically, solamargine increased phosphorylation of ERK1/2. Moreover, solamargine inhibited the protein expression of DNA methyltransferase 1 (DNMT1) and c-Jun, which were abrogated in cells treated with MEK/ERK1/2 inhibitor (PD98059) and transfected with exogenously expressed DNMT1 gene, respectively. Interestingly, overexpressed DNMT1 gene antagonized the effect of solamargine on c-Jun protein expression. Intriguingly, overexpressed c-Jun blocked solamargine-inhibited lung cancer cell growth, and feedback resisted the solamargine-induced phosphorylation of ERK1/2. A nude mouse xenograft model implanted with lung cancer cells in vivo confirmed the results in vitro. Collectively, our results show that solamargine inhibits the growth of human lung cancer cells through reduction of EP4 protein expression, followed by increasing ERK1/2 phosphorylation. This results in decrease in DNMT1 and c-Jun protein expressions. The inter-correlations between EP4, DNMT1 and c-Jun and feedback regulation of ERK1/2 by c-Jun contribute to the overall responses of solamargine in this process. This study uncovers an additional novel mechanism by which solamargine inhibits growth of human lung cancer cells.
Collapse
Affiliation(s)
- Yuqing Chen
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| | - Qian Xiao
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| | - LiJun Yang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| | - Swei S Hann
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Li L, Wu J, Zheng F, Tang Q, Wu W, Hann SS. Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:112. [PMID: 27421653 PMCID: PMC4947306 DOI: 10.1186/s13046-016-0388-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Background Polyphyllin I (PPI), a bioactive phytochemical extracted from the Rhizoma of Paris polyphylla, has been reported to exhibit anti-cancer activity. However, the detailed mechanism underlying this remains to be elucidated. Methods Cell viability and cell cycle distribution were measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The expression of enhancer of zeste homolog 2 (EZH2) mRNA was measured by quantitative real time PCR (qRT-PCR). Western blot analysis was performed to examine the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p65, DNA methyltransferase 1 (DNMT1) and EZH2. Exogenous expression of p65, DNMT1, and EZH2 were carried out by transient transfection assays. Promoter activity of EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. A xenografted tumor model in nude mice and bioluminescent imaging system were used to further test the effect of PPI in vivo. Results We showed that PPI significantly inhibited growth and induced cell cycle arrest of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Mechanistically, we found that PPI increased the phosphorylation of SAPK/JNK, reduced protein expression of p65 and DNMT1. The inhibitor of SAPK/JNK (SP600125) blocked the PPI-inhibited p65 and DNMT1 protein expression. Interestingly, exogenously expressed p65 overcame PPI-inhibited protein expression of DNMT1. Moreover, PPI reduced EZH2 protein, mRNA, and promoter activity; overexpression of EZH2 resisted the PPI-inhibited cell growth, and intriguingly, negative feedback regulation of SAPK/JNK signaling. Finally, exogenous expression of DNMT1 antagonized the PPI-suppressed EZH2 protein expression. Consistent with this, PPI inhibited tumor growth, protein expression levels of p65, DNMT1 and EZH2, and increased phosphorylation of SAPK/JNK in vivo. Conclusion Our results show that PPI inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of p65 and DNMT1 protein levels, subsequently; this results in the reduction of EZH2 gene expression. The interactions among p65, DNMT1 and EZH2, and feedback regulation of SAPK/JNK by EZH2 converge on the overall responses of PPI. This study reveals a novel mechanism for regulating EZH2 gene in response to PPI and suggests a new strategy for NSCLC associated therapy.
Collapse
Affiliation(s)
- Longmei Li
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China.,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China. .,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|