1
|
Qiu Y, Gao T, Smith BR. Mechanical deformation and death of circulating tumor cells in the bloodstream. Cancer Metastasis Rev 2024; 43:1489-1510. [PMID: 38980581 DOI: 10.1007/s10555-024-10198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
Collapse
Affiliation(s)
- Yunxiu Qiu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2024:10.1007/s12282-024-01635-w. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
5
|
Gasser E, Su E, Vaidžiulytė K, Abbade N, Cognart H, Manneville JB, Viovy JL, Piel M, Pierga JY, Terao K, Villard C. Deformation under flow and morphological recovery of cancer cells. LAB ON A CHIP 2024; 24:3930-3944. [PMID: 38993177 PMCID: PMC11302772 DOI: 10.1039/d4lc00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
The metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines - namely MCF-7, SK-BR3 and MDA-MB231 - as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.
Collapse
Affiliation(s)
- Emile Gasser
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| | - Emilie Su
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Kotryna Vaidžiulytė
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Nassiba Abbade
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Hamizah Cognart
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Jean-Louis Viovy
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Jean-Yves Pierga
- Département d'Oncologie Médicale de l'Institut Curie et Université Paris Cité, France
| | - Kyohei Terao
- Nano-Micro Structure Device Integrated Research Center, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan.
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| |
Collapse
|
6
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
García-Chamé M, Wadhwani P, Pfeifer J, Schepers U, Niemeyer CM, Domínguez CM. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions. Angew Chem Int Ed Engl 2024; 63:e202318805. [PMID: 38687094 DOI: 10.1002/anie.202318805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Miguel García-Chamé
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 2 (IBG 2), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juliana Pfeifer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Li W, Guo Z, Zhou Z, Zhou Z, He H, Sun J, Zhou X, Chin YR, Zhang L, Yang M. Distinguishing high-metastasis-potential circulating tumor cells through fluidic shear stress in a bloodstream-like microfluidic circulatory system. Oncogene 2024; 43:2295-2306. [PMID: 38858591 DOI: 10.1038/s41388-024-03075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Circulating tumor cells (CTCs) play a critical role as initiators in tumor metastasis, which unlocks an irreversible process of cancer progression. Regarding the fluid environment of intravascular CTCs, a comprehensive understanding of the impact of hemodynamic shear stress on CTCs is of profound significance but remains vague. Here, we report a microfluidic circulatory system that can emulate the CTC microenvironment to research the responses of typical liver cancer cells to varying levels of fluid shear stress (FSS). We observe that HepG2 cells surviving FSS exhibit a marked overexpression of TLR4 and TPPP3, which are shown to be associated with the colony formation, migration, and anti-apoptosis abilities of HepG2. Furthermore, overexpression of these two genes in another liver cancer cell line with normally low TLR4 and TPPP3 expression, SK-Hep-1 cells, by lentivirus-mediated transfection also confirms the critical role of TLR4 and TPPP3 in improving colony formation, migration, and survival capability under a fluid environment. Interestingly, in vivo experiments show SK-Hep-1 cells, overexpressed with these genes, have enhanced metastatic potential to the liver and lungs in mouse models via tail vein injection. Mechanistically, TLR4 and TPPP3 upregulated by FSS may increase FSS-mediated cell survival and metastasis through the p53-Bax signaling pathway. Moreover, elevated levels of these genes correlate with poorer overall survival in liver cancer patients, suggesting that our findings could offer new therapeutic strategies for early cancer diagnosis and targeted treatment development.
Collapse
Affiliation(s)
- Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Y Rebecca Chin
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
9
|
Yu A, Zhang W, Zhang Q, Yang K, Liu X, Liu H, Xie J, Feng Y, Li J, Jia C. A TICT-AIE activated dual-channel fluorescence-on probe to reveal the dynamics mechanosensing of lipid droplets during ferroptosis. Talanta 2024; 274:126028. [PMID: 38599126 DOI: 10.1016/j.talanta.2024.126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/18/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Mechanical forces play a crucial role in cellular processes, including ferroptosis, a form of regulated cell death associated with various diseases. However, the mechanical aspects of organelle lipid droplets (LDs) during ferroptosis are poorly understood. In this study, we designed and synthesized a fluorescent probe, TPE-V1, to enable real-time monitoring of LDs' viscosity using a dual-channel fluorescence-on model (red channel at 617 nm and NIR channel at 710 nm). The fluorescent imaging of using TPE-V1 was achieved due to the integrated mechanisms of the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE). Through dual-emission channel fluorescence imaging, we observed the enhanced mechanical energy of LDs triggering cellular mechanosensing, including ferroptosis and cell deformation. Theoretical calculations confirmed the probe's behavior, showing that high-viscosity media prevented the rotation processes and restored fluorescence quenching in low viscosity. These findings suggest that our TICT-TPE design strategy provides a practical approach to study LDs' mechanical properties during ferroptosis. This development enhances our understanding of the interplay between mechanical forces and LDs, contributing to the knowledge of ferroptotic cell death and potential therapeutic interventions targeting dysregulated cell death processes.
Collapse
Affiliation(s)
- Ao Yu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Wei Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Qiangsheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Kunlong Yang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Xiongbo Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China
| | - Jialin Xie
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China
| | - Yan Feng
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| | - Chunman Jia
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, 570228, China; Analytical & Testing Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Cuccia J, Ortega Quesada BA, Littlefield EP, Ham AM, Burow ME, Melvin AT, Martin EC. Loss of Hormone Receptor Expression after Exposure to Fluid Shear Stress in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:7119. [PMID: 39000231 PMCID: PMC11240898 DOI: 10.3390/ijms25137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Following metastatic spread, many hormone receptor positive (HR+) patients develop a more aggressive phenotype with an observed loss of the HRs estrogen receptor (ER) and progesterone receptor (PR). During metastasis, breast cancer cells are exposed to high magnitudes of fluid shear stress (FSS). Unfortunately, the role for FSS on the regulation of HR expression and function during metastasis is not fully understood. This study was designed to elucidate the impact of FSS on HR+ breast cancer. Utilizing a microfluidic platform capable of exposing breast cancer cells to FSS that mimics in situ conditions, we demonstrate the impact of FSS exposure on representative HR+ breast cancer cell lines through protein and gene expression analysis. Proteomics results demonstrated that 540 total proteins and 1473 phospho-proteins significantly changed due to FSS exposure and pathways of interest included early and late estrogen response. The impact of FSS on response to 17β-estradiol (E2) was next evaluated and gene expression analysis revealed repression of ER and E2-mediated genes (PR and SDF1) following exposure to FSS. Western blot demonstrated enhanced phosphorylation of mTOR following exposure to FSS. Taken together, these studies provide initial insight into the effects of FSS on HR signaling in metastatic breast cancer.
Collapse
Affiliation(s)
- Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (J.C.); (E.P.L.); (A.M.H.)
| | | | - Ethan P. Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (J.C.); (E.P.L.); (A.M.H.)
| | - Alejandra M. Ham
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (J.C.); (E.P.L.); (A.M.H.)
| | - Matthew E. Burow
- Department of Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118, USA;
- Tulane University Cancer Center, Tulane University, New Orleans, LA 70118, USA
| | - Adam T. Melvin
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634, USA; (B.A.O.Q.); (A.T.M.)
| | - Elizabeth C. Martin
- Department of Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118, USA;
- Tulane University Cancer Center, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
11
|
Xin Y, Hu B, Li K, Hu G, Zhang C, Chen X, Tang K, Du P, Tan Y. Circulating tumor cells with metastasis-initiating competence survive fluid shear stress during hematogenous dissemination through CXCR4-PI3K/AKT signaling. Cancer Lett 2024; 590:216870. [PMID: 38614386 DOI: 10.1016/j.canlet.2024.216870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bing Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
12
|
Clevenger AJ, McFarlin MK, Gorley JPM, Solberg SC, Madyastha AK, Raghavan SA. Advances in cancer mechanobiology: Metastasis, mechanics, and materials. APL Bioeng 2024; 8:011502. [PMID: 38449522 PMCID: PMC10917464 DOI: 10.1063/5.0186042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.
Collapse
Affiliation(s)
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
13
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Fish A, Kulkarni A. Flow-Induced Shear Stress Primes NLRP3 Inflammasome Activation in Macrophages via Piezo1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4505-4518. [PMID: 38240257 DOI: 10.1021/acsami.3c18645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The NLRP3 inflammasome is a crucial component of the innate immune system, playing a pivotal role in initiating and regulating the body's inflammatory response to various pathogens and cellular damage. Environmental stimuli, such as temperature, pH level, and nutrient availability, can influence the behavior and functions of innate immune cells, including immune cell activity, proliferation, and cytokine production. However, there is limited understanding regarding how mechanical forces, like shear stress, govern the intrinsic inflammatory reaction, particularly the activation of the NLRP3 inflammasome, and how shear stress impacts NLRP3 inflammasome activation through its capacity to induce alterations in gene expression and cytokine secretion. Here, we investigated how shear stress can act as a priming signal in NLRP3 inflammasome activation by exposing immortalized bone marrow-derived macrophages (iBMDMs) to numerous physiologically relevant magnitudes of shear stress before chemically inducing inflammasome activation. We demonstrated that shear stress of large magnitudes was able to prime iBMDMs more effectively for inflammasome activation compared to lower shear stress magnitudes, as quantified by the percentage of cells where ASC-CFP specks formed and IL-1β secretion, the hallmarks of inflammasome activation. Testing this in NLRP3 and caspase-1 knockout iBMDMs showed that the NLRP3 inflammasome was primarily primed for activation due to shear stress exposure. Quantitative polymerase chain reaction (qPCR) and a small-molecule inhibitor study mechanistically determined that shear stress regulates the NLRP3 inflammasome by upregulating Piezo1, IKKβ, and NLRP3. These findings offer insights into the mechanistic relationship among physiological shear stresses, inflammasome activation, and their impact on the progression of inflammatory diseases and their interconnected pathogenesis.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
16
|
KrishnaPriya S, Nair PS, Bhalla P, Karunagaran D, Suraishkumar GK. Shear stress and microRNAs for better metastatic cancer management. Biotechnol Prog 2024; 40:e3396. [PMID: 37843824 DOI: 10.1002/btpr.3396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
Metastasis is the process by which cancer cells move from the primary location to establish themselves in a new location in the human body. It is still a significant challenge in cancer management because it is responsible for 90% of cancer-related deaths. In this work, we present an idea to use shear stress encountered by all metastasizing cells as an elegant means to deactivate metastasizing cancer cells. Shear-induced ROS and cross-talk between ROS and miRNA play crucial roles in deactivating metastasizing cancer cells. In addition, there exists a vast therapeutic potential for miRNAs. Therefore, this study explores the effect of shear on miRNAs and reactive oxygen species (ROS), the two molecular mediators in the proposed {shear-stress}-{miRNA}-{metastasizing-cancer-cell-deactivation} approach. In this context, to understand the effect of defined shear on HCT116 colon cancer cells, they were cultivated in a defined shear environment provided by an appropriately designed and fabricated cone-and-plate device. Shear rate affected the culture growth characteristics and the specific intracellular reactive oxygen species level (si-ROS). HCT116 cell growth was observed at 0 and 0.63 s-1 but not at 1.57 s-1 or beyond. Shear rate induced upregulation of the hsa-miR-335-5p but induced downregulation of hsa-miR-34a-5p. Furthermore, the specific levels of hsa-miR-335-5p, hsa-miR-26b-5p, and hsa-miR-34a-5p negatively correlated with specific intracellular (si)-hydroxyl radical levels. In addition, some messenger RNAs (mRNAs) in HCT116 cells showed a differential expression under shear stress, notably the ROS-associated mRNA of PMAIP1. The above miRNAs (and possibly some mRNAs) could be targeted to manage colon cancer metastasis.
Collapse
Affiliation(s)
- Siluveru KrishnaPriya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building-1, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi S Nair
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building-1, Indian Institute of Technology Madras, Chennai, India
| | - Prerna Bhalla
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building-1, Indian Institute of Technology Madras, Chennai, India
| | - D Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building-1, Indian Institute of Technology Madras, Chennai, India
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building-1, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
17
|
Hao M, Huang B, Wu R, Peng Z, Luo KQ. The Interaction between Macrophages and Triple-negative Breast Cancer Cells Induces ROS-Mediated Interleukin 1α Expression to Enhance Tumorigenesis and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302857. [PMID: 37551997 PMCID: PMC10582438 DOI: 10.1002/advs.202302857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Triple-negative breast cancer (TNBC) has higher mortality than non-TNBC because of its stronger metastatic capacity. Increasing studies reported that TNBC tumors had more macrophage infiltration than non-TNBC tumors, which promoted the metastasis of TNBC cells. However, how TNBC cells become more malignant after interacting with macrophages is less reported. In this study, it is observed that when TNBC cells are co-cultured with macrophages, they display higher viability and stronger metastatic ability than non-TNBC cells. Mechanistic studies reveal that TNBC cells acquired these abilities via interactions with macrophages in three phases. First, within 12 h of co-culture with macrophages, some TNBC cells have significantly elevated levels of reactive oxygen species (ROS), which upregulate interleukin 1α (IL1α) expression in ERK1/2-c-Jun- and NF-κB-dependent manners at 24-48 h. Second, the secreted IL1α bound to IL1R1 activates the ERK1/2-ZEB1-VIM pathway which increases metastasis. Third, IL1α/IL1R1 facilitates its own synthesis and induces the expression of IL1β and IL8 at 72-96 h through the MKK4-JNK-c-Jun and NF-κB signaling pathways. Moreover, a higher level of IL1α is positively correlated with more macrophage infiltration and shorter overall survival in breast cancer patients. Thus, reducing ROS elevation or downregulating IL1α expression can serve as new strategies to decrease metastasis of TNBC.
Collapse
Affiliation(s)
- Meng Hao
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Bin Huang
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Renfei Wu
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Zheng Peng
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Kathy Qian Luo
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR99078China
| |
Collapse
|
18
|
Zhou M, Li K, Luo KQ. Shear Stress Drives the Cleavage Activation of Protease-Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301059. [PMID: 37395651 PMCID: PMC10477893 DOI: 10.1002/advs.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 07/04/2023]
Abstract
When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment-induced anoikis and fluidic shear stress (SS)-mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS-specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease-activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos-related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N-terminal inhibitory domain of PAR2 within 2 h. As a G protein-coupled receptor, PAR2 further activates the Gαi protein to turn on the Src-ERK/p38/JNK-FRA1/cJUN axis to promote the expression of epithelial-mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS-specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis-initiating CTCs.
Collapse
Affiliation(s)
- Muya Zhou
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Koukou Li
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Kathy Qian Luo
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
19
|
Hu B, Xin Y, Hu G, Li K, Tan Y. Fluid shear stress enhances natural killer cell's cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng 2023; 7:036108. [PMID: 37575881 PMCID: PMC10423075 DOI: 10.1063/5.0156628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Tumor cells metastasize to distant organs mainly via hematogenous dissemination, in which circulating tumor cells (CTCs) are relatively vulnerable, and eliminating these cells has great potential to prevent metastasis. In vasculature, natural killer (NK) cells are the major effector lymphocytes for efficient killing of CTCs under fluid shear stress (FSS), which is an important mechanical cue in tumor metastasis. However, the influence of FSS on the cytotoxicity of NK cells against CTCs remains elusive. We report that the death rate of CTCs under both NK cells and FSS is much higher than the combined death induced by either NK cells or FSS, suggesting that FSS may enhance NK cell's cytotoxicity. This death increment is elicited by shear-induced NK activation and granzyme B entry into target cells rather than the death ligand TRAIL or secreted cytokines TNF-α and IFN-γ. When NK cells form conjugates with CTCs or adhere to MICA-coated substrates, NK cell activating receptor NKG2D can directly sense FSS to induce NK activation and degranulation. These findings reveal the promotive effect of FSS on NK cell's cytotoxicity toward CTCs, thus providing new insight into immune surveillance of CTCs within circulation.
Collapse
Affiliation(s)
| | | | | | | | - Youhua Tan
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
21
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
22
|
Li Y, Zhang X, Wang Z, Li B, Zhu H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front Pharmacol 2023; 14:1156538. [PMID: 37033606 PMCID: PMC10073466 DOI: 10.3389/fphar.2023.1156538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer treatment is hampered by resistance to conventional therapeutic strategies, including chemotherapy, immunotherapy, and targeted therapy. Redox homeostasis manipulation is one of the most effective innovative treatment techniques for overcoming drug resistance. Reactive oxygen species (ROS), previously considered intracellular byproducts of aerobic metabolism, are now known to regulate multiple signaling pathways as second messengers. Cancer cells cope with elevated amounts of ROS during therapy by upregulating the antioxidant system, enabling tumor therapeutic resistance via a variety of mechanisms. In this review, we aim to shed light on redox modification and signaling pathways that may contribute to therapeutic resistance. We summarized the molecular mechanisms by which redox signaling-regulated drug resistance, including altered drug efflux, action targets and metabolism, enhanced DNA damage repair, maintained stemness, and reshaped tumor microenvironment. A comprehensive understanding of these interrelationships should improve treatment efficacy from a fundamental and clinical research point of view.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
23
|
Chen X, Xia Q, Sun N, Zhou H, Xu Z, Yang X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Liao X, Li S, Liu Y. Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radic Biol Med 2022; 193:95-107. [PMID: 36243211 DOI: 10.1016/j.freeradbiomed.2022.10.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) acquire enhanced anti-anoikis abilities after experiencing flow shear stress in the circulatory system. Our previous study demonstrated that low shear stress (LSS) promotes anoikis resistance of human breast carcinoma cells via caveolin-1 (Cav-1)-dependent extrinsic and intrinsic apoptotic pathways. However, the underlying mechanism how LSS enhanced Cav-1 expression in suspended cancer cells remains unclear. Herein, we found that LSS induced redox signaling was involved in the regulation of Cav-1 level and anoikis resistance in suspension cultured cancer cells. Exposure of human breast carcinoma MDA-MB-231 cells to LSS (2 dyn/cm2) markedly induced ROS and •NO generation, which promoted the cell viability and reduced the cancer cell apoptosis. Furthermore, ROS and •NO scavenging inhibited the upregulation of Cav-1 by interfering ubiquitination, and suppressed the anoikis resistance of suspended tumor cells. These findings provide new insight into the mechanism by which LSS-stimulated ROS and •NO generation increases Cav-1 stabilization in suspended cancer cells through inhibition of ubiquitination and proteasomal degradation, which could be a potential target for therapy of metastatic tumors.
Collapse
Affiliation(s)
- Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Qiong Xia
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ningwei Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hailei Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Zhihao Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xi Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
24
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
25
|
Lv Y, Wei C, Zhao B. Study on the mechanism of low shear stress restoring the viability of damaged breast tumor cells. Tissue Cell 2022; 79:101947. [DOI: 10.1016/j.tice.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
26
|
Yang H, Jia H, Zhao Q, Luo KQ. Visualization of natural killer cell-mediated killing of cancer cells at single-cell resolution in live zebrafish. Biosens Bioelectron 2022; 216:114616. [DOI: 10.1016/j.bios.2022.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
27
|
KrishnaPriya S, Omer S, Banerjee S, Karunagaran D, Suraishkumar GK. An integrated approach to understand fluid shear stress-driven and reactive oxygen species-mediated metastasis of colon adenocarcinoma through mRNA-miRNA-lncRNA-circRNA networks. Mol Genet Genomics 2022; 297:1353-1370. [PMID: 35831469 DOI: 10.1007/s00438-022-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Development of colon adenocarcinoma (COAD) metastasis involves several mediators including fluid shear stress (FSS), intracellular ROS levels, and non-coding RNAs. In our present study, we identified and investigated the role of regulatory non-coding RNA molecules specifically involved in COAD metastasis and their association with FSS and ROS. Interactions between the mRNAs associated with FSS and ROS, the corresponding microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in COAD metastasis were used to generate the mRNA-miRNA-lncRNA-circRNA network. Experimental validation of the identified RNA hubs using quantitative real-time PCR demonstrated a direct effect of the FSS on their expression levels in cancer cells. FSS resulted in the downregulation of HMGA1 and RAN, as well as the upregulation of HSP90AA1, PMAIP1 and BIRC5. Application of shear stress also led to downregulation of hsa-miR-26b-5p and hsa-miR-34a-5p levels in HCT116 cells. Further, functional enrichment and survival analysis of the significant miRNAs, as well as the OncoPrint and the survival analyses of the selected mRNAs were performed. Subsequently, their functional role was also corroborated with existing literature. Ten significant miRNA hubs were identified, out of which hsa-miR-17-5p and hsa-miR-20a-5p were found to interact with lncRNA (CCAT2) while hsa-miR-335 was found to interact with four circRNAs. Fifteen significant miRNAs were identified in 10 different modules suggesting their importance in FSS and ROS-mediated COAD metastasis. Finally, 10 miRNAs and 3 mRNAs associated with FSS and/or ROS were identified as significant overall survival markers; 33 mRNAs were also identified as metastasis-free survival markers whereas 15 mRNAs showed > 10% gene alterations in TCGA-COAD data and may serve as promising therapeutic biomarkers in the COAD metastasis.
Collapse
Affiliation(s)
- Siluveru KrishnaPriya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - Sonal Omer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India. .,School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, India
| |
Collapse
|
28
|
Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. BIOSENSORS 2022; 12:bios12070459. [PMID: 35884262 PMCID: PMC9313151 DOI: 10.3390/bios12070459] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Taking the life of nearly 10 million people annually, cancer has become one of the major causes of mortality worldwide and a hot topic for researchers to find innovative approaches to demystify the disease and drug development. Having its root lying in microelectronics, microfluidics seems to hold great potential to explore our limited knowledge in the field of oncology. It offers numerous advantages such as a low sample volume, minimal cost, parallelization, and portability and has been advanced in the field of molecular biology and chemical synthesis. The platform has been proved to be valuable in cancer research, especially for diagnostics and prognosis purposes and has been successfully employed in recent years. Organ-on-a-chip, a biomimetic microfluidic platform, simulating the complexity of a human organ, has emerged as a breakthrough in cancer research as it provides a dynamic platform to simulate tumor growth and progression in a chip. This paper aims at giving an overview of microfluidics and organ-on-a-chip technology incorporating their historical development, physics of fluid flow and application in oncology. The current applications of microfluidics and organ-on-a-chip in the field of cancer research have been copiously discussed integrating the major application areas such as the isolation of CTCs, studying the cancer cell phenotype as well as metastasis, replicating TME in organ-on-a-chip and drug development. This technology’s significance and limitations are also addressed, giving readers a comprehensive picture of the ability of the microfluidic platform to advance the field of oncology.
Collapse
Affiliation(s)
- Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur 44700, Nepal
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Chetan Poudel
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
- Correspondence:
| |
Collapse
|
29
|
Das J, Maiti TK. Fluid shear stress influences invasiveness of HeLa cells through the induction of autophagy. Clin Exp Metastasis 2022; 39:495-504. [PMID: 35211829 DOI: 10.1007/s10585-022-10156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Extravasation of metastatic cells from the blood or lymphatic circulation and formation of secondary tumor at a distant site is a key step of cancer metastasis. In this study, we report the role of hemodynamic shear stresses in fostering the release of pro-extravasation factors through the mediation of autophagy in cervical cancer HeLa cells. HeLa cells were exposed to physiological shear stress through the microfluidic approach adapted in our previous study on the role of hemodynamic shear stresses in survival of HeLa cells. Herein, an optimum number of passes through a cylindrical microchannel was chosen such that the viability of cells was unaffected by shear. Shear-exposed cells were then probed for their invasive and migratory potential through in vitro migration and invasion assays. The dependence of cancer cells on mechanically-induced autophagy for extravasation was further assessed through protein expression studies. Our results suggest that shear stress upregulates autophagy, which fosters paxillin turnover thereby leading to enhanced focal adhesion disassembly and in turn enhanced cell migration. Concurrently, shear stress-induced secretion of pro-invasive factors like MMP-2 and IL-6 were found to be autophagy-dependent thereby hinting at autophagy as a potential therapeutic target in metastatic cancer. Proposed model for mechano-autophagic modulation of extravasation.
Collapse
Affiliation(s)
- Joyjyoti Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
30
|
Dash SK, Patra B, Sharma V, Das SK, Verma RS. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression. LAB ON A CHIP 2022; 22:2200-2211. [PMID: 35544034 DOI: 10.1039/d1lc01139a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluid shear stress (FSS) is crucial in cancer cell survival and tumor development. Noteworthily, cancer cells are exposed to several degrees of FSS in the tumor microenvironment and during metastasis. Consequently, the stemness marker expression in cancer cells changes with the FSS signal, although it is unclear how it varies with different magnitudes and during metastasis. The current work explores the stemness and drug resistance characteristics of the cervical cancer cell line HeLa in a microfluidic device with a wide range of physiological FSS. Hence, the microfluidic device was designed to achieve a logarithmic flow distribution in four culture chambers, realizing four orders of biological shear stress on a single chip. The cell cycle analysis demonstrated altered cell proliferation and mitotic arrest after FSS treatment. In addition, EdU staining revealed increased cell proliferation with medium to low FSS, whereas high shear had a suppressing effect. FSS increased competence to withstand higher intracellular ROS and mitochondrial membrane potential in HeLa. Furthermore, stemness-related gene (Sox2, N-cadherin) and cell surface marker (CD44, CD33, CD117) expressions were enhanced by FSS mechanotransduction in a magnitude-dependent manner. In summary, these stemness-like properties were concurrent with the drug resistance capability of HeLa towards doxorubicin. Overall, our microfluidic device elucidates cancer cell survival and drug resistance mechanisms during metastasis and in cancer relapse patients.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
- Department of Biotechnology, Indian Institute of Technology, Madras, Room No. 201, Biotech Old Building, Chennai, India.
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology, Madras, Room No. 201, Biotech Old Building, Chennai, India.
| | - Vineeta Sharma
- Department of Biotechnology, Indian Institute of Technology, Madras, Room No. 201, Biotech Old Building, Chennai, India.
| | - Sarit K Das
- Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology, Madras, Room No. 201, Biotech Old Building, Chennai, India.
| |
Collapse
|
31
|
Xu Z, Li K, Xin Y, Tan K, Yang M, Wang G, Tan Y. Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. J Cell Sci 2022; 135:275517. [PMID: 35510498 DOI: 10.1242/jcs.259586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Distant metastasis mainly occurs through hematogenous dissemination, where suspended circulating tumor cells (CTCs) experience a considerable level of fluid shear stress. We recently reported that shear flow induced substantial apoptosis of CTCs, although a small subpopulation could still persist. However, how suspended tumor cells survive in shear flow remains poorly understood. This study finds that fluid shear stress eliminates the majority of suspended CTCs and increases nuclear size, whereas it has no effect on the viability of adherent tumor cells and decreases their nuclear size. Shear flow promotes histone acetylation in suspended tumor cells, the inhibition of which using one drug suppresses shear-induced nuclear expansion, suggesting that shear stress might increase nuclear size through histone acetylation. Suppressing histone acetylation-mediated nuclear expansion enhances shear-induced apoptosis of CTCs. These findings suggest that suspended tumor cells respond to shear stress through histone acetylation-mediated nuclear expansion, which protects CTCs from shear-induced destruction. Our study elucidates a unique mechanism underlying the mechanotransduction of suspended CTCs to shear flow, which might hold therapeutic promise for CTC eradication.
Collapse
Affiliation(s)
- Zichen Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.,Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.,Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
32
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
33
|
Zhao B, Tang M, Lv Y. Shear stress regulates the migration of suspended breast cancer cells by nuclear lamina protein A/C and large tumor suppressor through yes-associated protein. Hum Cell 2022; 35:583-598. [PMID: 34984662 DOI: 10.1007/s13577-021-00666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is life threatening among women because its migration by hematogenous metastasis, where, besides biochemical cues, breast circulating tumor cells (CTCs) expose to suspension state and shear stress. However, the combined effects of these mechanical factors on CTCs migration were unclear. Here, suspension state and shear stress were loaded to breast tumor cells (BTCs) to mimic two mechanical cues in the mechanical environment of breast CTCs and the mechanobiological mechanism of suspension state and shear stress regulating the migration of (BTCs) was investigated. The migration and nuclear lamina protein A/C (Lamin A/C) accumulation were enhanced in MDA-MB-231 and SK-BR-3 BTCs exposed to shear stress though lower than that of suspended cells with different yes-associated protein (YAP) subcellular localization. Knockdown of LMNA downregulated and upregulated YAP targets in suspended BTCs and BTCs exposed to shear stress, respectively, which inhibited MDA-MB-231 BTCs migration in vitro and in vivo. Large tumor suppressor (LATS) responded to suspension state and shear stress, knockdown of which decreased the migration of MDA-MB-231 BTCs. These findings uncover the mechanobiological mechanism that suspension state and shear stress antagonistically promote BTCs migration by Lamin A/C and LATS through YAP and the potential for targeting YAP in CTCs prognosis. Shear stress regulates suspended breast cancer cells migration by Lamin A/C and LATS through YAP.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Mei Tang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Jiangxia District, No. 1 Sunshine Avenue, Wuhan, 430200, Hubei Province, People's Republic of China.
| |
Collapse
|
34
|
Rab1A promotes IL-4R/JAK1/STAT6-dependent metastasis and determines JAK1 inhibitor sensitivity in non-small cell lung cancer. Cancer Lett 2021; 523:182-194. [PMID: 34627950 DOI: 10.1016/j.canlet.2021.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Rab1A overexpression has been observed in several cancer types, however, its significance and the underlying mechanisms in non-small cell lung cancer (NSCLC) remain largely unexplored. This study demonstrated that Rab1A overexpression in NSCLC was significantly correlated to short survival and metastasis. Rab1A overexpression promoted cancer cell migration, invasion, and metastasis both in vitro and in vivo, by activating JAK1/STAT6 signaling through stabilizing IL-4Rα protein. Strikingly, high Rab1A level was associated with sensitivity to JAK1 inhibitor, and Rab1A overexpression rendered cancer cells vulnerable to JAK1-targeted agents. JAK1 inhibitor, Itacitinib adipate, dramatically inhibited high Rab1A NSCLC metastasis, in both cell line and patient derived xenograft models. Collectively, these findings demonstrated that Rab1A plays a critical role in the aggressive properties of NSCLC, revealing a unique mechanism by which it promotes metastasis. In addition, we found that Rab1A is a determinant of JAK1 inhibitor sensitivity, which could be explored for improving JAK1-targeted cancer therapy.
Collapse
|
35
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
36
|
Huang K, Liu J, Chen Q, Feng D, Wu H, Aldanakh A, Jian Y, Xu Z, Wang S, Yang D. The effect of mechanical force in genitourinary malignancies. Expert Rev Anticancer Ther 2021; 22:53-64. [PMID: 34726963 DOI: 10.1080/14737140.2022.2000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mechanical force is attributed to the formation of tumor blood vessels, influences cancer cell invasion and metastasis, and promotes reprogramming of the energy metabolism. Currently, therapy strategies for the tumor microenvironment are being developed progressively. The purpose of this article is to discuss the molecular mechanism, diagnosis, and treatment of mechanical force in urinary tract cancers and outline the medications used in the mechanical microenvironment. AREAS COVERED This review covers the complex mechanical elements in the microenvironment of urinary system malignancies, focusing on mechanical molecular mechanisms for diagnosis and treatment. EXPERT OPINION The classification of various mechanical forces, such as matrix stiffness, shear force, and other forces, is relatively straightforward. However, little is known about the molecular process of mechanical forces in urinary tract malignancies. Because mechanical therapy is still controversial, it is critical to understand the molecular basis of mechanical force before adding mechanical therapy solutions.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqiang Liu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Chen
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China.,School of Information Science and Technology, Dalian Maritime University, Dalian City, China
| | - Dan Feng
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuli Jian
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Dombroski JA, Hope JM, Sarna NS, King MR. Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells 2021; 10:2815. [PMID: 34831037 PMCID: PMC8616475 DOI: 10.3390/cells10112815] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis is one of the leading causes of death worldwide, motivating research into identifying new methods of preventing cancer metastasis. Recently there has been increasing interest in understanding how cancer cells transduce mechanical forces into biochemical signals, as metastasis is a process that consists of a wide range of physical forces. For instance, the circulatory system through which disseminating cancer cells must transit is an environment characterized by variable fluid shear stress due to blood flow. Cancer cells and other cells can transduce physical stimuli into biochemical responses using the mechanosensitive ion channel Piezo1, which is activated by membrane deformations that occur when cells are exposed to physical forces. When active, Piezo1 opens, allowing for calcium flux into the cell. Calcium, as a ubiquitous second-messenger cation, is associated with many signaling pathways involved in cancer metastasis, such as angiogenesis, cell migration, intravasation, and proliferation. In this review, we discuss the roles of Piezo1 in each stage of cancer metastasis in addition to its roles in immune cell activation and cancer cell death.
Collapse
Affiliation(s)
| | | | | | - Michael R. King
- King Lab, Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA; (J.A.D.); (J.M.H.); (N.S.S.)
| |
Collapse
|
38
|
Li K, Wu R, Zhou M, Tong H, Luo KQ. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. SCIENCE ADVANCES 2021; 7:eabg7265. [PMID: 34586853 PMCID: PMC8480931 DOI: 10.1126/sciadv.abg7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To study how cancer cells can withstand fluid shear stress (SS), we isolated SS-resistant breast and lung cancer cells using a microfluidic circulatory system. These SS-resistant cells showed higher abilities to form clusters, survive in circulation, and metastasize in mice. These SS-resistant cells expressed 4.2- to 5.3-fold more desmocollin-2 (DSC2) and plakophilin-1 (PKP1) proteins. The high expression of DSC2 and PKP1 facilitated cancer cells to form clusters in circulation, and also activated PI3K/AKT/Bcl-2–mediated pathway to increase cell survival. The high levels of DSC2 and PKP1 are also important for maintaining high expression of vimentin, which stimulates fibronectin/integrin β1/FAK/Src/MEK/ERK/ZEB1–mediated metastasis. Moreover, higher levels of DSC2 and PKP1 were detected in tumor samples from patients with breast and lung cancer, and their high expression was correlated with lower overall survival and worse disease progression. DSC2 and PKP1 may serve as new biomarkers for detecting and targeting metastatic circulating tumor cells.
Collapse
Affiliation(s)
- Koukou Li
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Renfei Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Muya Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Q. Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
39
|
Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:722501. [PMID: 35047952 PMCID: PMC8757701 DOI: 10.3389/fmedt.2021.722501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack of in vitro models that recapitulate the mechanical aspects of the in vivo microenvironment hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms have recently emerged as a new generation of in vitro models that can mimic cell-cell interactions, enable control over fluid flow and allow the introduction of mechanical cues. Biomaterials used within OOAC platforms can determine the physical microenvironment that cells reside in and affect their behavior, adhesion, and localization. Refining the design of OOAC platforms to recreate microenvironmental regulation of metastasis and probe cell-matrix interactions will advance our understanding of breast cancer metastasis and support the development of next-generation metastasis-on-a-chip platforms. In this mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and bone-residing cells, summarize the current capabilities of OOAC platforms for modeling breast cancer metastasis to bone, and highlight design opportunities offered by the incorporation of mechanobiological cues in these platforms.
Collapse
Affiliation(s)
- Ellen E. Slay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Virginia Pensabene
- School of School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Cell specific variation in viability in suspension in in vitro Poiseuille flow conditions. Sci Rep 2021; 11:13997. [PMID: 34234155 PMCID: PMC8263586 DOI: 10.1038/s41598-021-91865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
The influence of Poiseuille flow on cell viability has applications in the areas of cancer metastasis, lab-on-a-chip devices and flow cytometry. Indeed, retaining cell viability is important in the emerging field of adoptive cell therapy, as cells need to be returned to patients’ bodies, while the viability of other cells, which are perhaps less accustomed to suspension in a fluidic environment, is important to retain in flow cytometers and other such devices. Despite this, it is unclear how Poiseuille flow affects cell viability. Following on from previous studies which investigated the viability and inertial positions of circulating breast cancer cells in identical flow conditions, this study investigated the influence that varying flow rate, and the corresponding Reynolds number has on the viability of a range of different circulating cells in laminar pipe flow including primary T-cells, primary fibroblasts and neuroblastoma cells. It was found that Reynolds numbers as high as 9.13 had no effect on T-cells while the viabilities of neuroblastoma cells and intestinal fibroblasts were significantly reduced in comparison. This indicates that in vitro flow devices need to be tailored to cell-specific flow regimes.
Collapse
|
41
|
Brown SR, Bates JC, Avera AD, Kim Y. Relationship between Stemness, Reactive Oxygen Species, and Epithelial-to-Mesenchymal Transition in Model Circulating Tumor Cells. Cells Tissues Organs 2021; 211:282-293. [PMID: 34077929 DOI: 10.1159/000516574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Most cancer deaths are caused by secondary metastasized tumors. The cells that spread these tumors are known as circulating tumor cells (CTCs). They exist in a dynamic environment, including exposure to fluid shear stress (FSS) that makes them susceptible to reactive oxygen species (ROS) generation. There are questions about the similarities of CTCs to cancer stem cells (CSCs) and whether the stem cell-like characteristics of CTCs allow them to proliferate and spread despite the biophysical obstacles during the metastatic process. One of those qualities is the ability to undergo the epithelial-to-mesenchymal transition (EMT). Here, MDA-MB-231 and MCF7 were modeled as CTCs by prolonged exposure to FSS using a spinner flask. They were tested for ROS generation, CSC, EMT, and Hippo pathway gene and protein markers using qRT-PCR and flow cytometry. MDA-MB-231 did not show significant changes in CSC markers, but did show significant changes in ROS, EMT, and Hippo markers (p < 0.05). Similarly, MCF7 showed significant changes in ROS and EMT markers (p < 0.05). Furthermore, both cell lines demonstrated the reverse mesenchymal-to-epithelial transition signature when allowed to recover after FSS. These results suggest that the degree of their stemness or aggressiveness affects their responses to externally applied biophysical forces and demonstrates a potential link between mechanotransduction, the Hippo pathway, and the induction of EMT in breast cancer cells.
Collapse
Affiliation(s)
- Spenser R Brown
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Juliana C Bates
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexandra D Avera
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
42
|
Del Favero G, Zeugswetter M, Kiss E, Marko D. Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells. Front Pharmacol 2021; 12:647350. [PMID: 34012396 PMCID: PMC8126838 DOI: 10.3389/fphar.2021.647350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of xenobiotics and waste metabolites in the urinary bladder is constantly accompanied by shear stress originating from the movement of the luminal fluids. Hence, both chemical and physical cues constantly modulate the cellular response in health and disease. In line, bladder cells have to maintain elevated mechanosensory competence together with chemical stress response adaptation potential. However, much of the molecular mechanisms sustaining this plasticity is currently unknown. Taking this as a starting point, we investigated the response of T24 urinary bladder cancer cells to shear stress comparing morphology to functional performance. T24 cells responded to the shear stress protocol (flow speed of 0.03 ml/min, 3 h) by significantly increasing their surface area. When exposed to deoxynivalenol-3-sulfate (DON-3-Sulf), bladder cells increased this response in a concentration-dependent manner (0.1-1 µM). DON-3-Sulf is a urinary metabolite of a very common food contaminant mycotoxin (deoxynivalenol, DON) and was already described to enhance proliferation of cancer cells. Incubation with DON-3-Sulf also caused the enlargement of the endoplasmic reticulum (ER), decreased the lysosomal movement, and increased the formation of actin stress fibers. Similar remodeling of the endoplasmic reticulum and area spread after shear stress were observed upon incubation with the autophagy activator rapamycin (1-100 nM). Performance of experiments in the presence of chloroquine (chloroquine, 30 μM) further contributed to shed light on the mechanistic link between adaptation to the biomechanical stimulation and ER stress response. At the molecular level, we observed that ER reshaping was linked to actin organization, with the two components mutually regulating each other. Indeed, we identified in the ER stress-cytoskeletal rearrangement an important axis defining the physical/chemical response potential of bladder cells and created a workflow for further investigation of urinary metabolites, food constituents, and contaminants, as well as for pharmacological profiling.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Zeugswetter
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
44
|
Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells. Oncogene 2021; 40:2165-2181. [PMID: 33627781 DOI: 10.1038/s41388-021-01691-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 01/06/2023]
Abstract
Cellular heterogeneity and the lack of metastatic biomarkers limit the diagnosis of and development of therapies for metastatic triple-negative breast cancer (TNBC). Thus, development of new clinically relevant markers is urgently needed. By using RNA-seq analysis, we found that nerve growth factor receptor (NGFR) was highly expressed in metastatic lung clones of MDA-MB-231 cells. This high level of NGFR expression was necessary for TNBC cells to grow into tumor spheres under nonadhesive conditions, resist anoikis, promote primary tumor growth and increase metastasis in mice. NGFR was also expressed at a high level in a greater number of TNBC patients (45%) than non-TNBC patients (23%), enriched in higher grade tumors, and negatively correlated with the overall survival of TNBC patients. Mechanistic analysis indicated that NGFR exerted its prometastatic effects by binding with neurotrophic receptor tyrosine kinase 3 (TrkC) mainly through a ligand-independent manner, which activated the MEK-ERK1-ZEB1 and PI3K-AKT signaling pathways, increased the level of fibronectin, and decreased the expression of PUMA. Notably, we observed that NGFR expression in TrkC-positive metastatic clones reduced cellular sensitivity to anti-Trk therapy. Moreover, WNT family member 5a (WNT5A) and TrkC activated NGFR transcription in a ZEB1-dependent manner. Taken together, this study identified NGFR as a novel driver for transforming TNBC into higher grade metastatic tumors. Our findings provide the basis for the future development of NGFR as a diagnostic and prognostic marker for determining the metastatic potential of TNBC and as a therapeutic target for treating TNBC patients.
Collapse
|
45
|
Amos SE, Choi YS. The Cancer Microenvironment: Mechanical Challenges of the Metastatic Cascade. Front Bioeng Biotechnol 2021; 9:625859. [PMID: 33644019 PMCID: PMC7907606 DOI: 10.3389/fbioe.2021.625859] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The metastatic cascade presents a significant challenge to patient survival in the fight against cancer. As metastatic cells disseminate and colonize a secondary site, stepwise exposure to microenvironment-specific mechanical stimuli influences and protects successful metastasis. Following cancerous transformation and associated cell recruitment, the tumor microenvironment (TME) becomes a mechanically complex niche, owing to changes in extracellular matrix (ECM) stiffness and architecture. The ECM mechanically reprograms the cancer cell phenotype, priming cells for invasion. 2D and 3D hydrogel-based culture platforms approximate these environmental variables and permit investigations into tumor-dependent shifts in malignancy. Following TME modification, malignant cells must invade the local ECM, driven toward blood, and lymph vessels by sensing biochemical and biophysical gradients. Microfluidic chips recreate cancer-modified ECM tracks, empowering studies into modes of confined motility. Intravasation and extravasation consist of complex cancer-endothelial interactions that modify an otherwise submicron-scale migration. Perfused microfluidic platforms facilitate the physiological culture of endothelial cells and thus enhance the translatability of basic research into metastatic transendothelial migration. These platforms also shed light on the poorly understood circulating tumor cell, which defies adherent cell norms by surviving the shear stress of blood flow and avoiding anoikis. Metastatic cancers possess the plasticity to adapt to new mechanical conditions, permitting their invasiveness, and ensuring their survival against anomalous stimuli. Here, we review the cellular mechanics of metastasis in the context of current in vitro approaches. Advances that further expose the mechanisms underpinning the phenotypic fluidity of metastatic cancers remain central to the development of novel interventions targeting cancer.
Collapse
Affiliation(s)
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
46
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
47
|
Thai VL, Griffin KH, Thorpe SW, Randall RL, Leach JK. Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone. J Biomech 2021; 115:110189. [PMID: 33385867 PMCID: PMC7855491 DOI: 10.1016/j.jbiomech.2020.110189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death in the United States, claiming more than 560,000 lives each year. Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and young adults, while bone is a common site of metastasis for tumors initiating from other tissues. The heterogeneity, continual evolution, and complexity of this disease at different stages of tumor progression drives a critical need for physiologically relevant models that capture the dynamic cancer microenvironment and advance chemotherapy techniques. Monolayer cultures have been favored for cell-based research for decades due to their simplicity and scalability. However, the nature of these models makes it impossible to fully describe the biomechanical and biochemical cues present in 3-dimensional (3D) microenvironments, such as ECM stiffness, degradability, surface topography, and adhesivity. Biomaterials have emerged as valuable tools to model the behavior of various cancers by creating highly tunable 3D systems for studying neoplasm behavior, screening chemotherapeutic drugs, and developing novel treatment delivery techniques. This review highlights the recent application of biomaterials toward the development of tumor models, details methods for their tunability, and discusses the clinical and therapeutic applications of these systems.
Collapse
Affiliation(s)
- Victoria L Thai
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
| | - Katherine H Griffin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States
| | - Steven W Thorpe
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - R Lor Randall
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States.
| |
Collapse
|
48
|
Marrella A, Fedi A, Varani G, Vaccari I, Fato M, Firpo G, Guida P, Aceto N, Scaglione S. High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS One 2021; 16:e0245536. [PMID: 33444361 PMCID: PMC7808575 DOI: 10.1371/journal.pone.0245536] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis represents a dynamic succession of events involving tumor cells which disseminate through the organism via the bloodstream. Circulating tumor cells (CTCs) can flow the bloodstream as single cells or as multicellular aggregates (clusters), which present a different potential to metastasize. The effects of the bloodstream-related physical constraints, such as hemodynamic wall shear stress (WSS), on CTC clusters are still unclear. Therefore, we developed, upon theoretical and CFD modeling, a new multichannel microfluidic device able to simultaneously reproduce different WSS characterizing the human circulatory system, where to analyze the correlation between SS and CTC clusters behavior. Three physiological WSS levels (i.e. 2, 5, 20 dyn/cm2) were generated, reproducing values typical of capillaries, veins and arteries. As first validation, triple-negative breast cancer cells (MDA-MB-231) were injected as single CTCs showing that higher values of WSS are correlated with a decreased viability. Next, the SS-mediated disaggregation of CTC clusters was computationally investigated in a vessels-mimicking domain. Finally, CTC clusters were injected within the three different circuits and subjected to the three different WSS, revealing that increasing WSS levels are associated with a raising clusters disaggregation after 6 hours of circulation. These results suggest that our device may represent a valid in vitro tool to carry out systematic studies on the biological significance of blood flow mechanical forces and eventually to promote new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Alessandra Marrella
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), Genoa, Italy
| | - Arianna Fedi
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), Genoa, Italy
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Gabriele Varani
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), Genoa, Italy
| | - Ivan Vaccari
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), Genoa, Italy
| | - Marco Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giuseppe Firpo
- Department of Physics, University of Genoa, Genoa, Italy
| | - Patrizia Guida
- Department of Physics, University of Genoa, Genoa, Italy
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Silvia Scaglione
- National Research Council (CNR), Institute of Electronic, Computer and Telecommunications (IEIIT), Genoa, Italy
| |
Collapse
|
49
|
Vitale C, Fedi A, Marrella A, Varani G, Fato M, Scaglione S. 3D Perfusable Hydrogel Recapitulating the Cancer Dynamic Environment to in Vitro Investigate Metastatic Colonization. Polymers (Basel) 2020; 12:E2467. [PMID: 33114344 PMCID: PMC7690854 DOI: 10.3390/polym12112467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a dynamic process involving the dissemination of circulating tumor cells (CTCs) through blood flow to distant tissues within the body. Nevertheless, the development of an in vitro platform that dissects the crucial steps of metastatic cascade still remains a challenge. We here developed an in vitro model of extravasation composed of (i) a single channel-based 3D cell laden hydrogel representative of the metastatic site, (ii) a circulation system recapitulating the bloodstream where CTCs can flow. Two polymers (i.e., fibrin and alginate) were tested and compared in terms of mechanical and biochemical proprieties. Computational fluid-dynamic (CFD) simulations were also performed to predict the fluid dynamics within the polymeric matrix and, consequently, the optimal culture conditions. Next, once the platform was validated through perfusion tests by fluidically connecting the hydrogels with the external circuit, highly metastatic breast cancer cells (MDA-MB-231) were injected and exposed to physiological wall shear stress (WSS) conditions (5 Dyn/cm2) to assess their migration toward the hydrogel. Results indicated that CTCs arrested and colonized the polymeric matrix, showing that this platform can be an effective fluidic system to model the first steps occurring during the metastatic cascade as well as a potential tool to in vitro elucidate the contribution of hemodynamics on cancer dissemination to a secondary site.
Collapse
Affiliation(s)
- Chiara Vitale
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
| | - Arianna Fedi
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Alessandra Marrella
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
| | - Gabriele Varani
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
| | - Marco Fato
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy; (C.V.); (A.F.); (G.V.); (M.F.); (S.S.)
| |
Collapse
|
50
|
O'Leary BR, Alexander MS, Du J, Moose DL, Henry MD, Cullen JJ. Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Sci Rep 2020; 10:17649. [PMID: 33077776 PMCID: PMC7572461 DOI: 10.1038/s41598-020-74806-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacological ascorbate (P-AscH−, high-dose, intravenous vitamin C) is cytotoxic to tumor cells in doses achievable in humans. Phase I studies in pancreatic cancer (PDAC) utilizing P-AscH− have demonstrated increases in progression free survival, suggesting a reduction in metastatic disease burden. The purpose of this study was to determine the effects of P-AscH− on metastatic PDAC. Several in vitro and in vivo mechanisms involved in PDAC metastases were investigated following treatment with P-AscH−. Serum from PDAC patients in clinical trials with P-AscH− were tested for the presence and quantity of circulating tumor cell-derived nucleases. P-AscH− inhibited invasion, basement membrane degradation, decreased matrix metalloproteinase expression, as well as clonogenic survival and viability during exposure to fluid shear stress. In vivo, P-AscH− significantly decreased formation of ascites, tumor burden over time, circulating tumor cells, and hepatic metastases. Both in vitro and in vivo findings were reversed with the addition of catalase suggesting that the effect of P-AscH− on metastatic disease is mediated by hydrogen peroxide. Finally, P-AscH− decreased CTC-derived nucleases in subjects with stage IV PDAC in a phase I clinical trial. We conclude that P-AscH− attenuates the metastatic potential of PDAC and may prove to be effective for treating advanced disease.
Collapse
Affiliation(s)
- Brianne R O'Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew S Alexander
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Devon L Moose
- Department of Molecular Physiology and Biophsics, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophsics, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, The University of Iowa Carver College of Medicine, 1528 JCP, 200 Hawkins Drive, Iowa City, IA, 52242, USA.,Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA, USA. .,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, The University of Iowa Carver College of Medicine, 1528 JCP, 200 Hawkins Drive, Iowa City, IA, 52242, USA. .,Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|