1
|
Wang X, Yin X, Li Y, Zhang S, Hu M, Wei M, Li Z. Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer. J Nanobiotechnology 2024; 22:771. [PMID: 39696302 DOI: 10.1186/s12951-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
Collapse
Affiliation(s)
- Xinqiao Wang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, P.R. China
| | - Xue Yin
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yuxin Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Shuhui Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Meie Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| |
Collapse
|
2
|
Wei C, Zhang C, Zhou Y, Wang J, Jin Y. Progress of Exosomal LncRNAs in Pancreatic Cancer. Int J Mol Sci 2024; 25:8665. [PMID: 39201351 PMCID: PMC11354448 DOI: 10.3390/ijms25168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a prevalent malignant tumor with rising medication resistance and mortality. Due to a dearth of specific and trustworthy biomarkers and therapeutic targets, pancreatic cancer early detection and treatment are still not at their best. Exosomal LncRNAs have been found to be plentiful and persistent within exosomes, and they are capable of functioning whether the exosomes are traveling to close or distant cells. Furthermore, increasing evidence suggests that exosomal LncRNA, identified as an oncogene or tumor suppressor-control the growth, metastasis, and susceptibility of pancreatic cancer to chemotherapy and radiation therapy. Promising prospects for both antitumor targets and diagnostic biomarkers are exosomal LncRNAs. The primary features of exosomal LncRNAs, their biological roles in the onset and progression of pancreatic cancer, and their potential as therapeutic targets and diagnostic molecular markers are outlined in this review.
Collapse
Affiliation(s)
| | | | | | | | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
4
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Li S, Jiang F, Chen F, Deng Y, Huang H. Silencing long noncoding RNA LINC01133 suppresses pancreatic cancer through regulation of microRNA-1299-dependent IGF2BP3. J Biochem Mol Toxicol 2024; 38:e23534. [PMID: 37718503 DOI: 10.1002/jbt.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The deregulation of long noncoding RNAs (lncRNAs) holds great potential in the treatment of multiple cancers, including pancreatic cancer (PC). However, the specific molecular mechanisms by which LINC01133 contributes to pancreatic cancer remain unknown. Subsequent to bioinformatics analysis, we predicted and analyzed differentially expressed lncRNAs, microRNAs, and genes in pancreatic cancer. We determined the expression patterns of LINC01133, miR-1299, and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in pancreatic cancer cells, and validated their interactions through luciferase reporter and RNA immunoprecipitation assays. We implemented loss-of-function and gain-of-function experiments for LINC01133, miR-1299, and IGF2BP3 to assay their potential effects on pancreatic cancer cell functions. We observed high expression of LINC01133 and IGF2BP3, but low expression of miR-1299, in pancreatic cancer cells. Furthermore, we found that LINC01133 enhances IGF2BP3 through binding with miR-1299. Silencing LINC01133 or IGF2BP3 and/or overexpressing miR-1299 limited pancreatic cancer cell proliferation, invasion, epithelial-mesenchymal transition, and suppressed tumorigenic abilities in mice lacking T cells (nude mice). Overall, our findings identified that silencing LINC01133 downregulates IGF2BP3 by upregulating miR-1299 expression, ultimately leading to the prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Sumei Li
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Fengru Jiang
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Feiyu Chen
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Yinzhao Deng
- Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, People's Republic of China
| | - Haiying Huang
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Liu Y, Qi W, Yin J, He X, Duan S, Bao H, Li C, Shi M, Wang J, Song S. High CTCF expression mediated by FGD5-AS1/miR-19a-3p axis is associated with immunosuppression and pancreatic cancer progression. Heliyon 2023; 9:e22584. [PMID: 38144356 PMCID: PMC10746436 DOI: 10.1016/j.heliyon.2023.e22584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The most common reason for cancer-related death globally is predicted to be pancreatic cancer (PC), one of the deadliest cancers. The CCCTC-binding factor (CTCF) regulates the three-dimensional structure of chromatin, was reported to be highly regulated in various malignancies. However, the underlying biological functions and possible pathways via which CTCF promotes PC progression remain unclear. Herein, we examined the CTCF function in PC and discovered that CTCF expression in PC tissues was significantly raised compared to neighboring healthy tissues. Additionally, Kaplan-Meier survival analysis demonstrated a strong connection between elevated CTCF expression and poor patient prognosis. A study of the ROC curve (receiver operating characteristic) revealed an AUC value for CTCF of 0.968. Subsequent correlation analysis exhibited a strong relationship between immunosuppression and CTCF expression in PC. CTCF knockdown significantly inhibited the malignant biological process of PC in vitro and in vivo, suggesting that CTCF may be a potential PC treatment target. We also identified the FGD5 antisense RNA 1 (FGD5-AS1)/miR-19a-3p axis as a possible upstream mechanism for CTCF overexpression. In conclusion, our data suggest that ceRNA-mediated CTCF overexpression contributes to the suppression of anti-tumor immune responses in PC and could be a predictive biomarker and potential PC treatment target.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxin Yin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Xirui He
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Songqi Duan
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071 China
| | - Haili Bao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Chen Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaohua Song
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Pancreatic Neoplams Translational Medicine
| |
Collapse
|
7
|
Bin Wang, Yuan C, Qie Y, Dang S. Long non-coding RNAs and pancreatic cancer: A multifaceted view. Biomed Pharmacother 2023; 167:115601. [PMID: 37774671 DOI: 10.1016/j.biopha.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with a 5-year survival rate of only 10%. Families with PC are at greater risk, as are type 2 diabetes, pancreatitis, and other factors. Insufficient early detection methods make this cancer have a poor prognosis. Additionally, the molecular mechanisms underlying PC development remain unclear. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to PC pathology,which may control gene expression by recruiting histone modification complexes to chromatin and interacting with proteins and RNAs. In recent studies, abnormal regulation of lncRNAs has been implicated in PC proliferation, metastasis, invasion, angiogenesis, apoptosis, and chemotherapy resistance suggesting potential clinical implications. The paper reviews the progress of lncRNA research in PC about diabetes mellitus, pancreatitis, cancer metastasis, tumor microenvironment regulation, and chemoresistance. Furthermore, lncRNAs may serve as potential therapeutic targets and biomarkers for PC diagnosis and prognosis. This will help improve PC patients' survival rate from a lncRNA perspective.
Collapse
Affiliation(s)
- Bin Wang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chang Yuan
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yinyin Qie
- General Surgery Department, Yixing People's Hospital, Wuxi, Jiangsu 214200, China
| | - Shengchun Dang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China; Siyang Hospital, Suqian, Jiangsu 223700, China.
| |
Collapse
|
8
|
Zhang Z, Chen L, Zhao C, Gong Q, Tang Z, Li H, Tao J. CASC9 potentiates gemcitabine resistance in pancreatic cancer by reciprocally activating NRF2 and the NF-κB signaling pathway. Cell Biol Toxicol 2023; 39:1549-1560. [PMID: 35913601 DOI: 10.1007/s10565-022-09746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Gemcitabine resistance is a frequently occurring and intractable obstacle in pancreatic cancer treatment. However, the underlying mechanisms require further investigation. Adaptive regulation of oxidative stress and aberrant activation of the NF-κB signaling pathway are associated with resistance to chemotherapy. Here, we found that gemcitabine upregulated the expression of CASC9 in a dose-dependent manner, partially via induction of reactive oxygen species, whereas inhibition of CASC9 expression enhanced gemcitabine-induced oxidative stress and apoptosis in pancreatic cancer cells. Furthermore, suppression of CASC9 level inhibited the expression of NRF2 and the downstream genes NQO1 and HO-1, and vice versa, indicating that CASC9 forms a positive feedback loop with NRF2 signaling and modulates the level of oxidative stress. Silencing CASC9 attenuated NF-κB pathway activation in pancreatic cancer cells and synergistically enhanced the cytotoxic effect of gemcitabine chemotherapy in vivo. In conclusion, our findings suggest that CASC9 plays a key role in driving resistance to gemcitabine through a reciprocal loop with the NRF2-antioxidant signaling pathway and by activating NF-κB signaling. Our study reveals potential targets that can effectively reverse resistance to gemcitabine chemotherapy.
Collapse
Affiliation(s)
- Zhengle Zhang
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Longjiang Chen
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Qiong Gong
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Zhigang Tang
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
9
|
Yao F, Huang X, Xie Z, Chen J, Zhang L, Wang Q, Long H, Jiang J, Wu Q. LINC02418 upregulates EPHA2 by competitively sponging miR-372-3p to promote 5-Fu/DDP chemoresistance in colorectal cancer. Carcinogenesis 2022; 43:895-907. [PMID: 35914269 PMCID: PMC9587682 DOI: 10.1093/carcin/bgac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Chemoresistance is a huge clinical challenge in the treatment of advanced colorectal cancer (CRC). Non-coding RNAs (ncRNAs) and messenger RNA (mRNA) are involved in CRC chemoresistance. However, the profiles of long ncRNAs (lncRNAs), microRNAs (miRNAs), mRNAs and competing endogenous RNA (ceRNA) networks in CRC chemoresistance are still largely unknown. Here, we compared the gene expression profiles in chemosensitive (HCT8) and chemoresistant [HCT8/5-fluorouracil (5-Fu) and HCT8/cisplatin (DDP)] cell lines by whole-transcriptome sequencing. The common differentially expressed RNAs in two drug-resistant cells were selected to construct lncRNA–miRNA–mRNA networks. The ceRNA network closely related to chemoresistance was further established based on the widely accepted drug resistance-associated genes enriched in three signaling pathways involved in chemoresistance. In total 52 lncRNA–miRNA–mRNA pathways were screened out, among which EPHA2 and LINC02418 were identified as hub genes; thus, LINC02418/miR-372-3p/EPHA2 were further selected and proved to affect the 5-Fu and DDP resistance of CRC. Mechanistically, LINC02418 upregulated EPHA2 by functioning as a ‘sponge’ of miR-372-3p to modulate the chemoresistance of CRC. Collectively, our study uncovered the underlying mechanism of LINC02418/miR-372-3p/EPHA2 in 5-Fu and DDP resistance of CRC, which may provide potential therapeutic targets for improving the chemosensitivity of CRC.
Collapse
Affiliation(s)
- Fei Yao
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Xiaoying Huang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhufu Xie
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jie Chen
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430064, China
| | - Ling Zhang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hui Long
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430064, China
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
10
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
11
|
Chen D, Gao W, Zang L, Zhang X, Li Z, Zhu H, Yu X. Ferroptosis-Related IncRNAs Are Prognostic Biomarker of Overall Survival in Pancreatic Cancer Patients. Front Cell Dev Biol 2022; 10:819724. [PMID: 35223846 PMCID: PMC8866714 DOI: 10.3389/fcell.2022.819724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, the mortality and morbidity of which have been increasing over the past decade. Ferroptosis, a newly identified iron-dependent cell death pattern, can be induced by iron chelators and small lipophilic antioxidants. Nonetheless, the prognostic significance of ferroptosis-related lncRNAs in PC remains to be clarified. We obtained the lncRNA expression matrix and clinicopathological information of PC patients from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) datasets in the current study. Firstly, we conducted Pearson correlation analysis to delve into the ferroptosis-related lncRNAs, and univariate Cox analysis was implemented to examine the prognostic values in PC patients. Twenty-three prognostic ferroptosis-related lncRNAs were confirmed and loaded into the least absolute shrinkage and selection operator Cox (LASSO-Cox) analysis, then a ferroptosis-related lncRNA prognostic marker (Fe-LPM) was established in the TCGA dataset. Risk scores of patients were calculated and segregated PC patients into low-risk and high-risk subgroups in each dataset. The prognostic capability of Fe-LPM was also confirmed in the ICGC dataset. Gene set enrichment analysis (GSEA) revealed that several ferroptosis-related pathways were enriched in low-risk subgroups. Furthermore, we adopted a multivariate Cox regression to establish a nomogram based on risk score, age, pathological T stage and primary therapy outcome. A competing endogenous RNA (ceRNA) network was also created relied on four of the twenty-three ferroptosis-related lncRNAs. In conclusion, the eight Fe-LPM can be utilized to anticipate the overall survival (OS) of PC patients, which are meaningful to guiding clinical strategies in PC.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Longjun Zang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hongwei Zhu, ; Xiao Yu,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hongwei Zhu, ; Xiao Yu,
| |
Collapse
|
12
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
van der Sijde F, Homs MYV, van Bekkum ML, van den Bosch TPP, Bosscha K, Besselink MG, Bonsing BA, de Groot JWB, Karsten TM, Groot Koerkamp B, Haberkorn BCM, Luelmo SAC, Mekenkamp LJM, Mustafa DAM, Wilmink JW, van Eijck CHJ, Vietsch EE. Serum miR-373-3p and miR-194-5p Are Associated with Early Tumor Progression during FOLFIRINOX Treatment in Pancreatic Cancer Patients: A Prospective Multicenter Study. Int J Mol Sci 2021; 22:ijms222010902. [PMID: 34681562 PMCID: PMC8535910 DOI: 10.3390/ijms222010902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we explored the predictive value of serum microRNA (miRNA) expression for early tumor progression during FOLFIRINOX chemotherapy and its association with overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC). A total of 132 PDAC patients of all disease stages were included in this study, of whom 25% showed progressive disease during FOLFIRINOX according to the RECIST criteria. MiRNA expression was analyzed in serum collected before the start and after one cycle of chemotherapy. In the discovery cohort (n = 12), a 352-miRNA RT-qPCR panel was used. In the validation cohorts (total n = 120), miRNA expression was detected using individual RT-qPCR miRNA primers. Before the start of FOLFIRINOX, serum miR-373-3p expression was higher in patients with progressive disease compared to patients with disease control after FOLFIRINOX (Log2 fold difference (FD) 0.88, p = 0.006). MiR-194-5p expression after one cycle of FOLFIRINOX was lower in patients with progressive disease (Log2 FD -0.29, p = 0.044). Both miRNAs were predictors of early tumor progression in a multivariable model including disease stage and baseline CA19-9 level (miR-373-3p odds ratio (OR) 3.99, 95% CI 1.10-14.49; miR-194-5p OR 0.91, 95% CI 0.83-0.99). MiR-373-3p and miR-194-5p did not show an association with OS after adjustment for disease stage, baseline CA19-9, and chemotherapy response. In conclusion, high serum miR-373-3p before the start and low serum miR-194-5p after one cycle are associated with early tumor progression during FOLFIRINOX.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | - Marjolein Y. V. Homs
- Department of Medical Oncology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Marlies L. van Bekkum
- Department of Medical Oncology, Reinier de Graaf Gasthuis, 2625 AD Delft, The Netherlands;
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Koop Bosscha
- Department of Surgery, Jeroen Bosch Hospital, 5223 GZ ‘s Hertogenbosch, The Netherlands;
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Thomas M. Karsten
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, 1061 AE Amsterdam, The Netherlands;
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | | | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Leonie J. M. Mekenkamp
- Department of Medical Oncology, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands;
| | - Dana A. M. Mustafa
- Tumor Immuno-Pathology Laboratory, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
- Correspondence: ; Tel.: +31-107-033-854
| | - Eveline E. Vietsch
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | | |
Collapse
|
14
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
15
|
Long noncoding RNA LINC00261 upregulates ITIH5 to impair tumorigenic ability of pancreatic cancer stem cells. Cell Death Discov 2021; 7:220. [PMID: 34446696 PMCID: PMC8390744 DOI: 10.1038/s41420-021-00575-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated tumor development in a range of different cancers, including pancreatic cancer (PC). Cancer stem cells (CSCs), a drug-resistant cancer cell subset, drive tumor progression in PC. In this work, we aimed to investigate the mechanism by which lncRNA LINC00261 affects the biological functions of CSCs during the progression of PC. Microarray analysis of differentially expressed genes and lncRNAs suggested that LINC00261 is downregulated in PC. Both LINC00261 and ITIH5 were confirmed to be downregulated in PC cells and PC stem cells. Gain-of-function and loss-of-function investigations were performed to analyze their effects on cell proliferation, drug resistance, cell cycle distribution, self-renewal, invasion, and ultimately overall tumorigenicity. These experiments revealed that the expression of stem cell markers was reduced, and cell proliferation, self-renewal ability, cell invasion, drug resistance, and tumorigenicity were all suppressed by upregulation of LINC00261 or ITIH5. The results of dual-luciferase reporter gene, ChIP, and RIP assays indicated that LINC00261 binds directly to GATA6, increasing its activity at the ITIH5 promoter. The presence of LINC00261 and GATA6 inhibited the self-renewal and tumorigenesis of PC stem cells, while silence of ITIH5 rescued those functions. Collectively, this study identifies the tumor suppressive activity of LINC00261 in PC, showing that this lncRNA limits the functions of PC stem through an ITIH5/GATA6 regulatory pathway.
Collapse
|
16
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
17
|
Ma Y, Zheng W. H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis. J Ovarian Res 2021; 14:76. [PMID: 34108034 PMCID: PMC8191132 DOI: 10.1186/s13048-021-00822-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
We aimed to explore role of lncRNA PAX-interacting protein 1-antisense RNA1 (PAXIP1-AS1) in ovarian cancer (OC). RT-qPCR analysis identified upregulation of PAXIP1-AS1 in OC cell lines. Functionally, PAXIP1-AS1 knockdown inhibited cell proliferation, accelerated cell apoptosis, and suppressed cell migration and epithelial-mesenchymal transition (EMT) process. Upregulation of PAXIP1-AS1 was induced by CBP-mediated H3K27 acetylation (H3K27ac) via bioinformatic analysis and ChIP assay. Furthermore, PAXIP1-AS1 served as a competing endogenous RNA (ceRNA) to regulate PCBP2 expression by sponging microRNA-6744-5p (miR-6744-5p). Restoration experiments showed that overexpressed PCBP2 rescued effects of silenced PAXIP1-AS1 on cell proliferation, apoptosis, migration and EMT. Overall, lncRNA PAXIP1-AS1 activated by H3K27ac functioned as a tumor promoter in OC via mediating miR-6744-5p/PCBP2 axis, which provided promising insight into exploration on OC therapy.
Collapse
Affiliation(s)
- Yimin Ma
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, Zhejiang, China.
| | - Wei Zheng
- Department of Gynecology, Xi'an Military Industry Hospital, Xi'an, 710065, Shaanxi, China
| |
Collapse
|
18
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
19
|
Crosstalk between miRNAs and signaling pathways involved in pancreatic cancer and pancreatic ductal adenocarcinoma. Eur J Pharmacol 2021; 901:174006. [PMID: 33711308 DOI: 10.1016/j.ejphar.2021.174006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide with 5-year survival rates below 8%. Most patients with PC and pancreatic ductal adenocarcinoma (PDAC) die after relapse and cancer progression as well as resistance to treatment. Pancreatic tumors contain a high desmoplastic stroma that forms a rigid mass and has a potential role in tumor growth and metastasis. PC initiates from intraepithelial neoplasia lesions leading to invasive cancer through various pathways. These lesions harbor particular changes in signaling pathways involved in the tumorigenesis process. These events affect both the epithelial cells, including the tumor and the surrounding stroma, and eventually lead to the formation of complex signaling networks. Genetic studies of PC have revealed common molecular features such as the presence of mutations in KRAS gene in more than 90% of patients, as well as the inactivation or deletion mutations of some tumor suppressor genes including TP53, CDKN2A, and SMAD4. In recent years, studies have also identified different roles of microRNAs in PC pathogenesis as well as their importance in PC diagnosis and treatment, and their involvement in various signaling pathways. In this study, we discussed the most common pathways involved in PC and PDAC as well as their role in tumorigenesis and progression. Furthermore, the miRNAs participating in the regulation of these signaling pathways in PC progression are summarized in this study. Therefore, understanding more about pathways involved in PC can help with the development of new and effective therapies in the future.
Collapse
|
20
|
Yang G, Guan W, Cao Z, Guo W, Xiong G, Zhao F, Feng M, Qiu J, Liu Y, Zhang MQ, You L, Zhang T, Zhao Y, Gu J. Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models. Clin Cancer Res 2021; 27:3383-3396. [PMID: 33674273 DOI: 10.1158/1078-0432.ccr-19-3975] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment. EXPERIMENTAL DESIGN In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes. RESULTS The comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance. CONCLUSIONS This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.
Collapse
Affiliation(s)
- Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenfang Guan
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
| | - Guangbing Xiong
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fangyu Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Mengyu Feng
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, P.R. China
- Department of Biological Sciences, Center for Systems Biology, the University of Texas at Dallas, Richardson, Texas
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China.
| |
Collapse
|
21
|
Rong Z, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Circular RNA in pancreatic cancer: a novel avenue for the roles of diagnosis and treatment. Am J Cancer Res 2021; 11:2755-2769. [PMID: 33456571 PMCID: PMC7806488 DOI: 10.7150/thno.56174] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC), an important cause of cancer-related deaths worldwide, is one of the most malignant cancers characterized by a dismal prognosis. Circular RNAs (circRNAs), a class of endogenous ncRNAs with unique covalently closed loops, have attracted great attention in regard to various diseases, especially cancers. Compelling studies have suggested that circRNAs are aberrantly expressed in different cancer tissues and cell types, including PC. More specifically, circRNAs can modify the proliferation, progression, tumorigenesis and chemosensitivity of PC, and some circRNAs could serve as biomarkers for diagnosis and prognosis. Herein, we summarize what is currently known to be related to the biogenesis, functions and potential roles of human circRNAs in PC and their application prospects for PC clinical treatments.
Collapse
|
22
|
Lin Z, Lu S, Xie X, Yi X, Huang H. Noncoding RNAs in drug-resistant pancreatic cancer: A review. Biomed Pharmacother 2020; 131:110768. [PMID: 33152930 DOI: 10.1016/j.biopha.2020.110768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths and is expected to be the second-leading cause of cancer-related deaths in Europe and the United States by 2030. The high fatality rate of pancreatic cancer is ascribed to untimely diagnosis, early metastasis and limited responses to both chemotherapy and radiotherapy. Although gemcitabine, 5-fluorouracil and some other drugs can profoundly improve patient prognosis, most pancreatic cancer patients eventually develop drug resistance, leading to poor clinical outcomes. The underlying mechanisms of pancreatic cancer drug resistance are complicated and inconclusive. Interestingly, accumulating evidence has demonstrated that different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play a crucial role in pancreatic cancer resistance to chemotherapy reagents. In this paper, we systematically summarize the molecular mechanism underlying the influence of ncRNAs on the generation and development of drug resistance in pancreatic cancer and discuss the potential role of ncRNAs as prognostic markers and new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xuyang Yi
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/ Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
23
|
Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer. Cancer Cell Int 2020; 20:457. [PMID: 32973402 PMCID: PMC7493950 DOI: 10.1186/s12935-020-01550-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
Collapse
|
24
|
Li L, He Z, Zhu C, Chen S, Yang Z, Xu J, Bi N, Yu C, Sun C. MiR-137 promotes anoikis through modulating the AKT signaling pathways in Pancreatic Cancer. J Cancer 2020; 11:6277-6285. [PMID: 33033511 PMCID: PMC7532504 DOI: 10.7150/jca.44037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022] Open
Abstract
Anoikis resistance is a fundamental feature of the survival of metastatic cancer cells during cancer progression. However, the mechanisms underlying anoikis resistance in pancreatic cancer (PC) are still unclear. MicroRNA-137 (miR-137) is a tumor suppressor that inhibits the proliferation and invasion of cancer cells through targeting multiple oncogenes. However, the effects and molecular mechanism of miR-137 on anoikis of PC are still unclear. Here we demonstrated that miR-137 was downregulated after the induction of anoikis model in time dependent. Function assays revealed that miR-137 promoted the pancreatic cancer cells anoikis in vitro and vivo. According to bioinformation analysis of clinical databases, we predicted that paxillin (PXN) was a target of miR-137. Further, TCGA analysis revealed that PXN was closely associated with the development of PC. Through loss-of-function studies, we demonstrated that PXN was a functional target of miR-137 on anoikis of PC cells. Moreover, we found that PXN promoted the activation of the AKT signaling pathways which was involving in the cancer cells anoikis. Together, our findings reveal that miR-137 plays a novel role during anoikis and may serve as a potential target for the detection and treatment of PC.
Collapse
Affiliation(s)
- Lin Li
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhiwei He
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Changhao Zhu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shiyu Chen
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhehao Yang
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Jing Xu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Ningrui Bi
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Chao Yu
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| | - Chengyi Sun
- Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery, Guiyang, China
| |
Collapse
|
25
|
Chen W, Yang J, Fang H, Li L, Sun J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front Cell Dev Biol 2020; 8:696. [PMID: 32850817 PMCID: PMC7432147 DOI: 10.3389/fcell.2020.00696] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the key components of non-coding RNAs (ncRNAs) with a length of 200 nucleotides. They are transcribed from the so-called “dark matter” of the genome. Increasing evidence have shown that lncRNAs play an important role in the pathophysiology of human diseases, particularly in the development and progression of tumors. Linc-ROR, as a new intergenic non-protein coding RNA, has been considered to be a pivotal regulatory factor that affects the occurrence and development of human tumors, including breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), and so on. Dysregulation of Linc-ROR has been closely related to advanced clinicopathological factors predicting a poor prognosis. Because linc-ROR can regulate cell proliferation, apoptosis, migration, and invasion, it can thus be used as a potential biomarker for patients with tumors and has potential clinical significance as a therapeutic target. This article reviewed the role of linc-ROR in the development of tumors, its related molecular mechanisms, and clinical values.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Ye Y, Gu J, Liu P, Wang H, Jiang L, Lei T, Yu S, Han G, Wang Z. Long Non-Coding RNA SPRY4-IT1 Reverses Cisplatin Resistance by Downregulating MPZL-1 via Suppressing EMT in NSCLC. Onco Targets Ther 2020; 13:2783-2793. [PMID: 32308413 PMCID: PMC7135170 DOI: 10.2147/ott.s232769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/08/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Long non-coding RNA (lncRNA) SPRY4 intronic transcript 1 (SPRY4-IT1) is reported to play important roles in the occurrence and development of many tumors. However, the possible role of SPRY4-IT1 in cisplatin (DDP) resistance of non-small-cell lung cancer (NSCLC) remains unclear. The aim of this study is to investigate the functions and molecular mechanisms underlying SPRY4-IT1 of cisplatin resistance in NSCLC. METHODS Expression of SPRY4-IT1 was analyzed in A549 and cisplatin-resistant A549/DDP cell lines by quantitative real-time polymerase chain reaction (RT-qPCR). Overexpression techniques were applied to investigate the biological functions of SPRY4-IT1 in cisplatin-resistant A549/DDP cells. The effects of SPRY4-IT1 on proliferation and apoptosis were evaluated using cell counting kit-8 (CCK8) assays, colony formation assay and flow-cytometric analysis. The expressions of epithelial-mesenchymal transition (EMT)-associated proteins, including E-cadherin and Vimentin, were detected by Western blot. Microarray analysis was performed to identify the putative targets of SPRY4-IT1, which were further verified by Western blotting and RT-qPCR. A549/DDP cells transfected with pCDNA-SPRY4-IT1 were injected into nude mice in order to verify the effect of SPRY4-IT1 on cisplatin resistance in vivo. RESULTS The present study demonstrated that SPRY4-IT1 expression was decreased in A549/DDP cells compared with parental A549 cells. Upregulation of SPRY4-IT1 suppressed cell proliferation and caused apoptosis of A549/DDP cells both in vitro and in vivo. MPZL-1 was negatively regulated by SPRY4-IT1. Furthermore, upregulation of SPRY4-IT1 and downregulation of MPZL-1 could suppress epithelial-mesenchymal transition (EMT), which was characterized by increased E-cadherin expression and decreased Vimentin expression. CONCLUSION Upregulation of SPRY4-IT1 reversed the cisplatin-resistant phenotype of NSCLC partially by downregulating MPZL-1 via inhibiting EMT process.
Collapse
Affiliation(s)
- Yunyao Ye
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Jingyao Gu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Pei Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Digestive Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - He Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lihua Jiang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Shanxun Yu
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
27
|
Makler A, Asghar W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn 2020; 20:387-400. [PMID: 32067543 PMCID: PMC7071954 DOI: 10.1080/14737159.2020.1731308] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Introduction: In recent years, extensive research has been conducted on using exosomes as biomarkers for cancer detection. Exosomes are 40-150 nm-sized extracellular vesicles released by all cell types, including tumor cells. Exosomes are stable in body fluids due to their lipid bilayer member and often contain DNA, RNA, and proteins. These exosomes can be harvested from blood, plasma, serum, urine, or saliva and analyzed for tumor-relevant mutations. Thus, exosomes provide an alternative to current methods of tumor detection.Areas covered: This review discusses the use of exosomal diagnostics in various tumor types as well as their examination in various clinical trials. The authors also discuss the limitations of exosome-based diagnostics in the clinical setting and provide examples of several studies in which the development and usage of microfluidic chips and nano-sensing devices have been utilized to address these obstacles.Expert commentary: In recent years, exosomes and their contents have exhibited potential as novel tumor detection markers despite the labor involved in their harvest and isolation. Despite this, much work is being done to optimize exosome capture and analysis. Thus, their roles as biomarkers in the clinical setting appear promising.
Collapse
Affiliation(s)
- Amy Makler
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
- Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
28
|
Yang S, Wang Y, Zhang S, Hu X, Ma Q, Tian Y. NCResNet: Noncoding Ribonucleic Acid Prediction Based on a Deep Resident Network of Ribonucleic Acid Sequences. Front Genet 2020; 11:90. [PMID: 32180792 PMCID: PMC7059790 DOI: 10.3389/fgene.2020.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
Noncoding RNA (ncRNA) is a kind of RNA that plays an important role in many biological processes, diseases, and cancers, while cannot translate into proteins. With the development of next-generation sequence technology, thousands of novel RNAs with long open reading frames (ORFs, longest ORF length > 303 nt) and short ORFs (longest ORF length ≤ 303 nt) have been discovered in a short time. How to identify ncRNAs more precisely from novel unannotated RNAs is an important step for RNA functional analysis, RNA regulation, etc. However, most previous methods only utilize the information of sequence features. Meanwhile, most of them have focused on long-ORF RNA sequences, but not adapted to short-ORF RNA sequences. In this paper, we propose a new reliable method called NCResNet. NCResNet employs 57 hybrid features of four categories as inputs, including sequence, protein, RNA structure, and RNA physicochemical properties, and introduces feature enhancement and deep feature learning policies in a neural net model to adapt to this problem. The experiments on benchmark datasets of 8 species shows NCResNet has higher accuracy and higher Matthews correlation coefficient (MCC) compared with other state-of-the-art methods. Particularly, on four short-ORF RNA sequence datasets, specifically mouse, Saccharomyces cerevisiae, zebrafish, and cow, NCResNet achieves greater than 10 and 15% improvements over other state-of-the-art methods in terms of accuracy and MCC. Meanwhile, for long-ORF RNA sequence datasets, NCResNet also has better accuracy and MCC than other state-of-the-art methods on most test datasets. Codes and data are available at https://github.com/abcair/NCResNet.
Collapse
Affiliation(s)
- Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China.,School of Artificial Intelligence, Jilin University, Changchun, China
| | - Shuangquan Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yuan Tian
- School of Artificial Intelligence, Jilin University, Changchun, China
| |
Collapse
|
29
|
Cao Z, Qiu J, Yang G, Liu Y, Luo W, You L, Zheng L, Zhang T. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biol Med 2020; 17:569-582. [PMID: 32944391 PMCID: PMC7476096 DOI: 10.20892/j.issn.2095-3941.2020.0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that affect posttranscriptional regulation by binding to the 3′-untranslated region of target messenger RNAs. MiR-135a is a critical miRNA that regulates gene expression, and many studies have focused on its function in cancer research. MiR-135a is dysregulated in various cancers and regulates cancer cell proliferation and invasion via several signaling pathways, such as the MAPK and JAK2/STAT3 pathways. MiR-135a has also been found to promote or inhibit the epithelial-mesenchymal transition and chemoresistance in different cancers. Several studies have discovered the value of miR-135a as a novel biomarker for cancer diagnosis and prognosis. These studies have suggested the potential of therapeutically manipulating miR-135a to improve the outcome of cancer patients. Although these findings have demonstrated the role of miR-135a in cancer progression and clinical applications, a number of questions remain to be answered, such as the dual functional roles of miR-135a in cancer. In this review, we summarize the available studies regarding miR-135a and cancer, including background on the biogenesis and expression of miR-135a in cancer and relevant signaling pathways involved in miR-135a-mediated tumor progression. We also focus on the clinical application of miR-135a as a biomarker in diagnosis and as a therapeutic agent or target in cancer treatment, which will provide a greater level of insight into the translational value of miR-135a.
Collapse
Affiliation(s)
- Zhe Cao
- Department of General Surgery
| | | | | | | | | | - Lei You
- Department of General Surgery
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
30
|
Behrmann O, Hügle M, Bronsert P, Herde B, Heni J, Schramm M, Hufert FT, Urban GA, Dame G. A lab-on-a-chip for rapid miRNA extraction. PLoS One 2019; 14:e0226571. [PMID: 31856234 PMCID: PMC6922460 DOI: 10.1371/journal.pone.0226571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
We present a simple to operate microfluidic chip system that allows for the extraction of miRNAs from cells with minimal hands-on time. The chip integrates thermoelectric lysis (TEL) of cells with native gel-electrophoretic elution (GEE) of released nucleic acids and uses non-toxic reagents while requiring a sample volume of only 5 μl. These properties as well as the fast process duration of 180 seconds make the system an ideal candidate to be part of fully integrated point-of-care applications for e.g. the diagnosis of cancerous tissue. GEE was characterized in comparison to state-of-the-art silica column (SC) based RNA recovery using the mirVana kit (Ambion) as a reference. A synthetic miRNA (miR16) as well as a synthetic snoRNA (SNORD48) were subjected to both GEE and SC. Subsequent detection by stem-loop RT-qPCR demonstrated a higher yield for miRNA recovery by GEE. SnoRNA recovery performance was found to be equal for GEE and SC, indicating yield dependence on RNA length. Coupled operation of the chip (TEL + GEE) was characterized using serial dilutions of 5 to 500 MCF7 cancer cells in suspension. Samples were split and cells were subjected to either on-chip extraction or SC. Eluted miRNAs were then detected by stem-loop RT-qPCR without any further pre-processing. The extraction yield from cells was found to be up to ~200-fold higher for the chip system under non-denaturing conditions. The ratio of eluted miRNAs is shown to be dependent on the degree of complexation with miRNA associated proteins by comparing miRNAs purified by GEE from heat-shock and proteinase-K based lysis.
Collapse
Affiliation(s)
- Ole Behrmann
- Department of Microbiology and Virology, Brandenburg Medical School Fontane, Neuruppin, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Matthias Hügle
- Department of Microbiology and Virology, Brandenburg Medical School Fontane, Neuruppin, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Bettina Herde
- Institute for Surgical Pathology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Heni
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Marina Schramm
- Department of Microbiology and Virology, Brandenburg Medical School Fontane, Neuruppin, Germany
| | - Frank T. Hufert
- Department of Microbiology and Virology, Brandenburg Medical School Fontane, Neuruppin, Germany
| | - Gerald A. Urban
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Gregory Dame
- Department of Microbiology and Virology, Brandenburg Medical School Fontane, Neuruppin, Germany
| |
Collapse
|
31
|
Cheng Y, Shen X, Zheng M, Zou G, Shen Y. Knockdown Of lncRNA NCK-AS1 Regulates Cisplatin Resistance Through Modulating miR-137 In Osteosarcoma Cells. Onco Targets Ther 2019; 12:11057-11068. [PMID: 31908475 PMCID: PMC6924660 DOI: 10.2147/ott.s228199] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) have been proved to act crucial parts in the progress of human tumor. However, the role of lncRNAs in drug resistance of tumor cells remains to be further elucidated. The present study aimed to explore whether lncRNA NCK-AS1 could affect the cisplatin (DDP) resistance in human osteosarcoma cell and the underlying molecular mechanism. Methods The expression of NCK1-AS1 and miR-137 in osteosarcoma cells was detected by qRT-PCR. CCK-8 assay, colony formation assay, Western blotting, wound healing assay and transwell assay were employed to assess the cell proliferation, migration and invasion. In addition, CCK-8 assay, flow cytometry, qRT-PCR and resistance gene activity analysis were performed to assess the DDP sensitivity of osteosarcoma cells. The interaction between NCK1-AS1 and miR-137 was identified using a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Results The results revealed that NCK1-AS1 was significantly upregulated in osteosarcoma cells, as well as in DDP-resistant osteosarcoma cells. NCK1-AS1 silence inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas enhanced the sensitivity of osteosarcoma cells to DDP. Furthermore, NCK1-AS1 directly interacted with miR-137 and overexpression of miR-137 suppressed the proliferation, migration and invasion of osteosarcoma cells. Most importantly, miR-137 overexpression enhanced the sensitivity of osteosarcoma cells to DDP, and high expression of NCK1-AS1 reversed the influences of miR-137 overexpression on DDP-resistant cells. Conclusion In short, NCK1-AS1 knockdown enhanced DDP sensitivity of osteosarcoma cells by regulating miR-137, which may be a novel potential target for anti-DDP resistance in human osteosarcoma.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China.,Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Xiaofei Shen
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Minqian Zheng
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Guoyou Zou
- Department of Orthopedics, Yancheng City No.1 People's Hospital, Yancheng 224005, People's Republic of China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
32
|
Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif 2019; 53:e12716. [PMID: 31774607 PMCID: PMC6985667 DOI: 10.1111/cpr.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) represent an important group of non-coding RNAs (ncRNAs) with more than 200 nucleotides in length that are transcribed from the so-called genomic "dark matter." Mounting evidence has shown that lncRNAs have manifested a paramount function in the pathophysiology of human diseases, especially in the pathogenesis and progression of cancers. Despite the exponential growth in lncRNA publications, our understanding of regulatory mechanism of lncRNAs is still limited, and a lot of controversies remain in the current lncRNA knowledge.The purpose of this article is to explore the clinical significance and molecular mechanism of SNHG15 in tumors. MATERIALS & METHODS We have systematically searched the Pubmed, Web of Science, Embase and Cochrane databases. We provide an overview of current evidence concerning the functional role, mechanistic models and clinical utilities of SNHG15 in human cancers in this review. RESULTS Small nucleolar RNA host gene 15 (SNHG15), a novel lncRNA, is identified as a key regulator in tumorigenesis and progression of various human cancers, including colorectal cancer (CRC), gastric cancer (GC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). Dysregulation of SNHG15 has been revealed to be dramatically correlated with advanced clinicopathological factors and predicts poor prognosis, suggesting its potential clinical value as a promising biomarker and therapeutic target for cancer patients. CONCLUSIONS LncRNA SNHG15 may serve as a prospective and novel biomarker for molecular diagnosis and therapeutics in patients with cancer.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Lei S, He Z, Chen T, Guo X, Zeng Z, Shen Y, Jiang J. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:470. [PMID: 31747939 PMCID: PMC6868788 DOI: 10.1186/s13046-019-1388-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. METHODS In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. RESULTS linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. CONCLUSION The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Shan Lei
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Zhirui Zeng
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Yiyi Shen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China. .,Hubei Key Laboratory of Digestive System Disease of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
34
|
Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12:97. [PMID: 31514732 PMCID: PMC6739963 DOI: 10.1186/s13045-019-0777-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoresistance is one of the main causes of poor prognosis in pancreatic cancer patients. Understanding the mechanisms implicated in chemoresistance of pancreatic cancer is critical to improving patient outcomes. Recent evidences indicate that the long noncoding RNAs (lncRNAs) are involving in chemoresistance of pancreatic cancer. However, the mechanisms of lncRNAs contribute to resistance in pancreatic cancer and remain largely unknown. The objective of this study is to construct a chemoresistance-related lncRNA-associated competing endogenous RNA (ceRNA) network of pancreatic cancer and identify the key lncRNAs in regulating chemoresistance of the network. METHODS Firstly, lncRNA expression profiling of gemcitabine-resistant pancreatic cancer cells was performed to identify lncRNAs related to chemoresistance by microarray analysis. Secondly, with insights into the mechanism of ceRNA, we used a bioinformatics approach to construct a chemoresistance-related lncRNAs-associated ceRNA network. We then identified the topological key lncRNAs in the ceRNA network and demonstrated its function or mechanism in chemoresistance of pancreatic cancer using molecular biological methods. Further studies evaluated its expression to assess its potential association with survival in patients with pancreatic cancer. RESULTS Firstly, we demonstrated that lncRNAs were dysregulated in gemcitabine-resistant pancreatic cancer cells. We then constructed a chemoresistance-related lncRNA-associated ceRNA network and proposed that lncRNA Homo sapiens glutathione S-transferase mu 3, transcript variant 2 and noncoding RNA (GSTM3TV2; NCBI Reference Sequence: NR_024537.1) might act as a key ceRNA to enhance chemoresistance by upregulating L-type amino acid transporter 2 (LAT2) and oxidized low-density lipoprotein receptor 1(OLR1) in pancreatic cancer. Further studies demonstrated that GSTM3TV2, overexpressed in gemcitabine-resistant cells, enhanced the gemcitabine resistance of pancreatic cancer cells in vitro and in vivo. Mechanistically, we identified that GSTM3TV2 upregulated LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance. In addition, we revealed that the expression levels of GSTM3TV2 were significantly increased in pancreatic cancer tissues and were associated with poor prognosis. CONCLUSION Our results suggest that GSTM3TV2 is a crucial oncogenic regulator involved in chemoresistance and could be a new therapeutic target or prognostic marker in pancreatic cancer.
Collapse
|
35
|
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184504. [PMID: 31514451 PMCID: PMC6770382 DOI: 10.3390/ijms20184504] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
36
|
Lan B, Zeng S, Grützmann R, Pilarsky C. The Role of Exosomes in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184332. [PMID: 31487880 PMCID: PMC6770781 DOI: 10.3390/ijms20184332] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers in the world, as a consequence of late diagnosis, early metastasis and limited response to chemotherapy, under which conditions the potential mechanism of pancreatic cancer progression requires further study. Exosomes are membrane vesicles which are important in the progression, metastasis and chemoresistance in pancreatic cancer. Additionally, they have been verified to be potential as biomarkers, targets and drug carriers for pancreatic cancer treatment. Thus, studying the role of exosomes in pancreatic cancer is significant. This paper focuses on the role of exosomes in the proliferation, metastasis and chemoresistance, as well as their potential applications for pancreatic cancer.
Collapse
Affiliation(s)
- Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
37
|
Lv Y, Huang S. Role of non-coding RNA in pancreatic cancer. Oncol Lett 2019; 18:3963-3973. [PMID: 31579086 PMCID: PMC6757267 DOI: 10.3892/ol.2019.10758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a malignant disease that develops rapidly and carries a poor prognosis. Currently, surgery is the only radical treatment. Non-coding RNAs (ncRNAs) are protein-free RNAs produced by genome transcription; they play important roles in regulating gene expression, participating in epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also play key roles in the development of cancer; microRNA (miRNA) and long non-coding RNA (lncRNA) may lead the way to new treatments for pancreatic cancer. miRNAs are short-chain ncRNAs (19–24 nt) that inhibit the degradation of protein translation or their target gene mRNAs to regulate gene expression. lncRNAs contain >200 nt of ncRNA and play important regulatory roles in a number of malignant tumors, in terms of tumor cell proliferation, apoptosis, invasion and distant metastasis. lncRNAs can be exploited for the diagnosis and treatment of pancreatic cancer and have substantial prospects for clinical application. Nevertheless, the molecular mechanism of their regulation and function, as well as the significance of other ncRNAs, such as piwi-interacting RNA, in the pathogenesis of pancreatic cancer, are largely unknown. In this review, the structures of ncRNAs with various classifications, as well as the functions and important roles of ncRNAs in the diagnosis and treatment of pancreatic cancer are reviewed.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
38
|
Siddique H, Al-Ghafari A, Choudhry H, AlTurki S, Alshaibi H, Al Doghaither H, Alsufiani H. Long Noncoding RNAs as Prognostic Markers for Colorectal Cancer in Saudi Patients. Genet Test Mol Biomarkers 2019; 23:509-514. [DOI: 10.1089/gtmb.2018.0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Halima Siddique
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, and King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, and King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suzan AlTurki
- University Medical Services Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Alshaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeil Alsufiani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
40
|
Chen Y, Liu L, Li J, Du Y, Wang J, Liu J. Effects of long noncoding RNA (linc-VLDLR) existing in extracellular vesicles on the occurrence and multidrug resistance of esophageal cancer cells. Pathol Res Pract 2018; 215:470-477. [PMID: 30606658 DOI: 10.1016/j.prp.2018.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the relationship between the expression of linc-VLDLR in extracellular vesicles (EVs) and esophageal carcinomas development and drug resistance. METHODS The expression of linc-VLDLR and ABCG2 mRNA in 60 cases of esophageal carcinoma tissue, para-carcinoma tissue and the normal esophagus tissue were detected using Fluorescence quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fifty percent inhibiting concentration (IC50) of adriamycin (ADM) to Eca109 cells was detected by MTT assay, after the treatment of different concentrations of adriamycin (ADM) on esophageal squamous cell carcinoma Eca109 cell line for 24 h. EVs were extracted from culture medium after the treatment of three concentrations of ADM (setting based on the IC50) on Eca109 cells for 24 h. Linc-VLDLR expression in EVs was detected by qRT-PCR. After the treatment of the extracted EVs on virgin Eca109 cells for 48 h, then intervening these cells for 24 h by different concentrations of ADM, the new values of IC50 were detected by MTT assay. Cell cycle, cell apoptosis and ABCG2 protein expression of these Eca109 cells were detected by flow cytometry (FCM). Linc-VLDLR and ABCG2 mRNA expression in these Eca109 cells were detected by qRT-PCR. RESULTS Expression of linc-VLDLR and ABCG2 mRNA in esophageal squamous cell carcinoma tissue were significantly higher than that in esophageal atypical hyperplasia and normal esophagus tissue, P < 0.01. After the treatment of ADM on Eca109 cells for 24 h, IC50 of Eca109 cells was detected as (0.44 ± 0.02) μg/mL, thus ADM concentrations of 0, 0.2, 0.4 and 0.8 μg/mL were selected to accomplish the following parts of this study. After four groups of Eca109 cells were treated by ADM in different concentrations separately, extracted EVs from the supernatant of all four groups, then labeling these four groups as EVs1, 2, 3 and 4. Linc-VLDLR expression in EVs4 was significantly higher than that in EVs1-3, P < 0.01. After the treatment of EVs1-4 on virgin Eca109 cells for 48 h, new values of IC50 of Eca109 to ADM were detected by MTT. It was found that the IC50 value of group EVs4 was significantly higher than that of other groups, P < 0.05. Flow cytometry results showed that the proliferation index of Eca109 cells in EVs4 was significantly higher than that in EVs1-3 and control groups, P < 0.01. Whereas, there was an obviously downward trend in the apoptosis rate of EVs4, compared to other three groups, P < 0.01. Linc-VLDLR and ABCG2 mRNA and protein expression level in Eca109 cells of EVs4 group were significantly higher than that of EVs1-3 and control groups, P < 0.05. CONCLUSIONS High expression of Linc-VLDLR and ABCG2 gene in esophageal cancer cells affected the formation of esophageal cancer drug resistance. EVs released by drug-resistant cells were proved that they could upregulate the expression of ABCG2 in esophageal cancer cells and thus regulate the drug resistance of esophageal cancer cells, which was related to the linc-VLDLR carried by EVs.
Collapse
Affiliation(s)
- YueTong Chen
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| | - Jie Li
- Division of Medical Affairs, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Yu Du
- Department of CT, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jing Wang
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - JiangHui Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
41
|
Ozik J, Collier N, Wozniak JM, Macal C, Cockrell C, Friedman SH, Ghaffarizadeh A, Heiland R, An G, Macklin P. High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow. BMC Bioinformatics 2018; 19:483. [PMID: 30577742 PMCID: PMC6302449 DOI: 10.1186/s12859-018-2510-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected results. Systematic investigation of mechanistic computational models can augment traditional laboratory and clinical studies, helping identify the factors driving a treatment's success or failure. However, given the uncertainties regarding the underlying biology, these multiscale computational models can take many potential forms, in addition to encompassing high-dimensional parameter spaces. Therefore, the exploration of these models is computationally challenging. We propose that integrating two existing technologies-one to aid the construction of multiscale agent-based models, the other developed to enhance model exploration and optimization-can provide a computational means for high-throughput hypothesis testing, and eventually, optimization. RESULTS In this paper, we introduce a high throughput computing (HTC) framework that integrates a mechanistic 3-D multicellular simulator (PhysiCell) with an extreme-scale model exploration platform (EMEWS) to investigate high-dimensional parameter spaces. We show early results in applying PhysiCell-EMEWS to 3-D cancer immunotherapy and show insights on therapeutic failure. We describe a generalized PhysiCell-EMEWS workflow for high-throughput cancer hypothesis testing, where hundreds or thousands of mechanistic simulations are compared against data-driven error metrics to perform hypothesis optimization. CONCLUSIONS While key notational and computational challenges remain, mechanistic agent-based models and high-throughput model exploration environments can be combined to systematically and rapidly explore key problems in cancer. These high-throughput computational experiments can improve our understanding of the underlying biology, drive future experiments, and ultimately inform clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Chase Cockrell
- Dept. of Surgery, University of Chicago, Chicago, IL, USA
| | | | - Ahmadreza Ghaffarizadeh
- Lawrence J. Ellison Center for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Randy Heiland
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Gary An
- Dept. of Surgery, University of Chicago, Chicago, IL, USA
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
42
|
Chen L, Liu J, Tang T, Zhang YC, Liu MZ, Xu LY, Zhang J. lncRNA differentiation antagonizing nonprotein coding RNA overexpression accelerates progression and indicates poor prognosis in pancreatic ductal adenocarcinoma. Onco Targets Ther 2018; 11:7955-7965. [PMID: 30519037 PMCID: PMC6235324 DOI: 10.2147/ott.s167065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background lncRNA differentiation antagonizing nonprotein coding RNA (lncRNA DANCR) has been suggested to play an oncogenic role in multiple cancers. However, to the best of our knowledge, the clinical significance and role of DANCR in pancreatic ductal adenocarcinoma (PDAC) has not been illuminated till now. The present study aims to identify the functional role of DANCR in PDAC. Methods The expression of DANCR was detected in PDAC cells and tissues. The correlation of DANCR expression and PDAC clinicopahological features was analysed. Kaplan-Meier method was used to depict the overall survival (OS) rate and shorter progression-free survival (PFS) of PDAC patients, and Log-rank test was performed to analyse the difference. Univariate and multivariate COX regression model were utilized to analyse the risk factors for prognosis. Transwell assay and Matrigel assay were conducted to detect the effect of DANCR on the migration and invasion of PDAC cells, respectively. Colony formation assay and Cell Counting Kit-8 (CCK-8) assay were performed to evaluate the function of DANCR on proliferation. The mechanisms of DANCR exerting its function were also explored. Results DANCR was revealed to promote PDAC progression, with relatively higher expression levels in PDAC cell lines and tissues. Correlation analysis of the clinicopathological features and DANCR expression found that high DANCR expression was statistically correlated with vascular invasion (P=0.013), advanced T stage (P=0.005), lymph node metastasis (P<0.001) and advanced TNM stage (P<0.001). Notably, survival analysis discovered that high DANCR expression predicted lower OS rate and shorter PFS period. In addition, high DANCR expression was identified as an independent risk factor for poor OS (HR=1.199, 95% CI=1.113–1.290, P<0.001) and PFS (HR=1.199, 95% CI=1.114–1.290, P<0.001) of PDAC. Moreover, in vitro assays detected that the migration and invasion of Panc1 cells with DANCR deficiency were significantly suppressed in the Transwell assay and the Matrigel assay. However, the motility of BxPC3 cells with DANCR overexpression was obviously increased. In addition, the loss of DANCR suppressed the proliferation of Panc1 cells in the CCK-8 assay and the colony formation assay, while ectopic expression of DANCR in BxPC3 cells promoted the proliferation. Besides, microRNA-33a-5p/AXL signaling pathway may be involved in mediating the function of DANCR. Conclusion Overexpression of lncRNA DANCR in PDAC is associated with cancer progression and predicts poor OS and PFS. DANCR could promote the proliferation and metastasis of PDAC cells. DANCR may serve as a potential prognostic marker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Lei Chen
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Jie Liu
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Tong Tang
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Yong-Chuan Zhang
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Ming-Zhong Liu
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Li-Ya Xu
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| | - Jun Zhang
- General Surgery Department, Dazhou Central Hospital, Dazhou 635000, Sichuan, China,
| |
Collapse
|
43
|
Deng YW, Hao WJ, Li YW, Li YX, Zhao BC, Lu D. Hsa-miRNA-143-3p Reverses Multidrug Resistance of Triple-Negative Breast Cancer by Inhibiting the Expression of Its Target Protein Cytokine-Induced Apoptosis Inhibitor 1 In Vivo. J Breast Cancer 2018; 21:251-258. [PMID: 30275853 PMCID: PMC6158160 DOI: 10.4048/jbc.2018.21.e40] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Multidrug resistance (MDR) remains a major obstacle in the treatment of triple-negative breast cancer (TNBC) with conventional chemotherapeutic agents. A previous study demonstrated that hsa-miRNA-143-3p plays a vital role in drug resistance of TNBC. Downregulation of hsa-miRNA-143-3p upregulated the expression of its target protein cytokine-induced apoptosis inhibitor 1 (CIAPIN1) in order to activate MDR, while upregulation of hsa-miRNA-143-3p effectively enhances the sensitivity of drug-resistant TNBC cells to chemotherapeutics. The present study aimed to further verify these findings in vivo. METHODS We established a hypodermic tumor nude mice model using paclitaxel-resistant TNBC cells. We expressed ectopic hsa-miRNA-143-3p under the control of a breast cancer-specific human mammaglobin promoter that guided the efficient expression of exogenous hsa-miRNA-143-3p only in breast cancer cells. Thereafter, we overexpressed hsa-miRNA-143-3p in xenografts using a recombinant virus system and quantified the expression of hsa-miRNA-143-3p, CIAPIN1 protein, and proteins encoded by related functional genes by western blot. RESULTS We successfully completed the prospective exploration of the intravenous virus injection pattern from extensive expression to targeted expression. The overexpression of hsa-miRNA-143-3p significantly alleviated chemoresistance of TNBC by inhibiting viability. In addition, we observed that the expression of CIAPIN1 as a hsa-miRNA-143-3p target protein was remarkably decreased. CONCLUSION We partly illustrated the mechanism underlying the hsa-miRNA-143-3p/CIAPIN1 drug resistance pathway. HsamiRNA-143-3p as a tumor suppressive microRNA may be a novel target to effectively reverse MDR of TNBC in vivo.
Collapse
Affiliation(s)
- Yu Wei Deng
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Jing Hao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Wen Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xin Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chen Zhao
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Kanat O, Ertas H. Shattering the castle walls: Anti-stromal therapy for pancreatic cancer. World J Gastrointest Oncol 2018; 10:202-210. [PMID: 30147846 PMCID: PMC6107476 DOI: 10.4251/wjgo.v10.i8.202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Despite the availability of potent chemotherapy regimens, such as 5-fluorouracil, folinic acid, irinotecan, and oxaliplatin (FOLFIRINOX) and nab-paclitaxel plus gemcitabine, treatment outcomes in metastatic pancreatic cancer (PC) remain unsatisfactory. The presence of an abundant fibrous stroma in PC is considered a crucial factor for its unfavorable condition. Apparently, stroma acts as a physical barrier to restrict intratumoral cytotoxic drug penetration and creates a hypoxic environment that reduces the efficacy of radiotherapy. In addition, stroma plays a vital supportive role in the development and progression of PC, which has prompted researchers to assess the potential benefits of agents targeting several cellular (e.g., stellate cells) and acellular (e.g., hyaluronan) elements of the stroma. This study aims to briefly review the primary structural properties of PC stroma and its interaction with cancer cells and summarize the current status of anti-stromal therapies in the management of metastatic PC.
Collapse
Affiliation(s)
- Ozkan Kanat
- Department of Medical Oncology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Hulya Ertas
- Department of Medical Oncology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| |
Collapse
|
45
|
Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett 2018; 433:76-85. [PMID: 29913236 DOI: 10.1016/j.canlet.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
There is currently limited knowledge regarding the involvement of long non-coding RNAs (lncRNAs) in cancer development. We aimed to identify lncRNAs with important roles in pancreatic cancer progression. We screened for lncRNAs that were differentially expressed in pancreatic cancer tissues. Among 349 differentially expressed lncRNAs, Linc01060 showed the lowest expression in pancreatic cancer tissues compared with normal pancreatic tissues. Lower Linc01060 expression in pancreatic cancer tissues was significantly associated with a poor prognosis. Linc01060 inhibited pancreatic cancer proliferation and invasion in vitro and in vivo. Vinculin overexpression inhibited Linc01060KD-mediated increases in FAK and paxillin phosphorylation, whereas vinculin knockdown reversed the Linc01060-mediated repression of FAK and inactivation of focal adhesion turnover. Vinculin knockdown also accelerated pancreatic cancer cell proliferation by upregulating ERK activity. In biological function analyses, vinculin overexpression abrogated Linc01060-mediated repression of pancreatic cancer cell proliferation and invasion, whereas vinculin counteracted the Linc01060-mediated repression of PC cell proliferation and invasion. These data demonstrate that Linc01060 plays a key role in suppressing pancreatic cancer progression by regulating vinculin expression. These findings suggest that the Linc01060-vinculin-focal adhesion axis is a therapeutic target for pancreatic cancer treatment.
Collapse
|
46
|
Yu Y, Feng X, Cang S. A two-microRNA signature as a diagnostic and prognostic marker of pancreatic adenocarcinoma. Cancer Manag Res 2018; 10:1507-1515. [PMID: 29942152 PMCID: PMC6005310 DOI: 10.2147/cmar.s158712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background and aim Some cancer-specific miRNAs are dysregulated in pancreatic adenocarcinoma (PAAD) and involved in cell autophagy, differentiation, proliferation, migration, invasion, and malignant transformation. The aim of our study was to determine a panel of new diagnostic and prognostic biomarkers for PAAD. Methods We conducted a comprehensive analysis of global miRNA-expression profiles and corresponding prognosis information of 168 PAAD patients from the Cancer Genome Atlas data set. A total of 16 differentially expressed miRNAs were identified as aberrantly expressed in PAAD, and six of these were evaluated for use as diagnostic markers for PAAD. Next, we confirmed a two-miRNA signature significantly associated with PAAD patient diagnosis and outcome prediction. Results The panel of two miRNAs showed outstanding diagnostic performance, with sensitivity of 100% and specificity of 87.5%. Finally, we divided the PAAD patients into high-risk and low-risk groups based on the expression profile of the two miRNAs. Kaplan–Meier analysis demonstrated that patients in the high-risk group had significantly worse prognosis than patients in the low-risk group. Univariate and multivariate Cox regression analysis showed that the two-miRNA signature was an independent prognostic factor for the overall survival of PAAD patients. Conclusion Taken together, the two-miRNA signature may serve as an accurate and sensitive biomarker for diagnosis and PAAD-outcome prediction, facilitating the diagnosis and potentially improving treatment outcome of PAAD.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Xiao Feng
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Xiong G, Huang H, Feng M, Yang G, Zheng S, You L, Zheng L, Hu Y, Zhang T, Zhao Y. MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:76. [PMID: 29615098 PMCID: PMC5883523 DOI: 10.1186/s13046-018-0739-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/18/2018] [Indexed: 12/22/2022]
Abstract
Background By regulating target genes, microRNAs play essential roles in carcinogenesis and drug resistance in human pancreatic ductal adenocarcinoma (PDAC). Previous studies have shown that microRNA-10a-5p (miR-10a-5p) is overexpressed in PDAC and acts as an oncogene to promote the metastatic behavior of PDAC cells. However, the role of miR-10a-5p in PDAC chemoresistance remains unclear. Methods The effects of miR-10a-5p on biological behaviors were analyzed. MiR-10a-5p and TFAP2C levels in tissues were detected, and the clinical value was evaluated. Results We found that miR-10a-5p is up-regulated in gemcitabine-resistant PDAC cells and enhances PDAC cell gemcitabine resistance in vitro and vivo. Meanwhile, we also determined that miR-10a-5p promotes the migratory and invasive ability of PDAC cells. Next, we confirmed that transcription factor activating protein 2 gamma (TFAP2C) is a target of miR-10a-5p, and TFAP2C overexpression resensitizes PDAC cells to gemcitabine, which is initiated by miR-10a-5p. Further studies revealed that TFAP2C also decreased PDAC cell migration and invasion capability. Finally, survival analysis demonstrated that high miR-10a-5p expression levels and low TFAP2C expression levels were both independent adverse prognostic factors in patients with PDAC. Conclusion Together, these results indicate that miR-10a-5p/TFAP2C may be new therapeutic target and prognostic marker in PDAC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Hua Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
48
|
Guo S, Xu X, Ouyang Y, Wang Y, Yang J, Yin L, Ge J, Wang H. Microarray expression profile analysis of circular RNAs in pancreatic cancer. Mol Med Rep 2018; 17:7661-7671. [PMID: 29620241 PMCID: PMC5983963 DOI: 10.3892/mmr.2018.8827] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer remains one of the most malignant tumors with a poor prognosis. Despite advances in diagnosis and treatment, no reliable biomarkers are available for clinical practice. Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNA, which are abundant, stable and conserved, and serve crucial roles in disease, particularly in cancer. The purpose of the present study was to investigate the expression profile of circRNAs in 20 pancreatic cancer tissues and corresponding paracancerous tissues using arraystar human circRNA array analysis, high‑throughput circRNA microarray, bioinformatic analysis and reverse transcription‑quantitative polymerase chain reaction. It was revealed that the circRNAs expression profile was significantly different between pancreatic cancer tissue and paracancerous tissue, which indicates a potential role in pancreatic cancer. It was predicted that circRNAs may act as a micro RNA sponge to modulate gene expression in pancreatic cancer. Additionally, microarray expression analysis data was submitted to the Gene Expression Omnibus under accession no. GSE79634. The present study revealed that circRNAs expression was visibly diverse in pancreatic cancer compared with paracancerous tissue and provides more reliable biomarkers and new insights into the mechanisms of pancreatic cancer.
Collapse
Affiliation(s)
- Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuejun Xu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yongsheng Ouyang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yunchao Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Liangyu Yin
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiayun Ge
- Institute of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
49
|
Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018; 22:2055-2061. [PMID: 29392896 PMCID: PMC5867120 DOI: 10.1111/jcmm.13515] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non-coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
50
|
Qiu J, Yang G, Feng M, Zheng S, Cao Z, You L, Zheng L, Zhang T, Zhao Y. Extracellular vesicles as mediators of the progression and chemoresistance of pancreatic cancer and their potential clinical applications. Mol Cancer 2018; 17:2. [PMID: 29304816 PMCID: PMC5756395 DOI: 10.1186/s12943-017-0755-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers worldwide due to its insidious symptoms, early metastasis, and chemoresistance. Hence, the underlying mechanisms contributing to pancreatic cancer progression require further exploration. Based on accumulating evidence, extracellular vesicles, including exosomes and microvesicles, play a crucial role in pancreatic cancer progression and chemoresistance. Furthermore, they also possess the potential to be promising biomarkers, therapy targets and tools for treating pancreatic cancer. Therefore, in-depth studies on the role of extracellular vesicles in pancreatic cancer are meaningful. In this review, we focus on the regulatory effects of extracellular vesicles on pancreatic cancer progression, metastasis, cancer-related immunity and chemoresistance, particularly their potential roles as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|