1
|
Wang X, Ji H, Yang Y, Zhang D, Kong X, Li X, Li H, Lu Y, Yang G, Liu J, Wu H, Hong J, Ma X. Moxibustion Regulates the BRG1/Nrf2/HO-1 Pathway by Inhibiting MicroRNA-222-3p to Prevent Oxidative Stress in Intestinal Epithelial Cells in Ulcerative Colitis and Colitis-Associated Colorectal Cancer. J Immunol Res 2024; 2024:8273732. [PMID: 39359694 PMCID: PMC11446618 DOI: 10.1155/2024/8273732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.
Collapse
Affiliation(s)
- Xuejun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Eye Institute and Department of Ophthalmology Eye and ENT Hospital Fudan University, Shanghai 200030, China
| | - Haiyang Ji
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongna Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yunqiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
Gao Y, Li H, Que Y, Chen W, Huang SY, Liu W, Ye X. Lycium barbarum polysaccharides (LBP) suppresses hypoxia/reoxygenation (H/R)-induced rat H9C2 cardiomyocytes pyroptosis via Nrf2/HO-1 signaling pathway. Int J Biol Macromol 2024; 280:135924. [PMID: 39322131 DOI: 10.1016/j.ijbiomac.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to explore the mechanism that Lycium barbarum polysaccharides (LBP) suppress hypoxia/reoxygenation (H/R)-caused pyroptosis in cardiomyocytes (H9C2) via the Nrf2/HO-1 pathway. Initially, we established the cell model of H/R (6 h hypoxia plus with 24 h reoxygenation), and found that 90 μg/mL LBP was the optimal concentration. Subsequently, we confirmed that LBP reduced the apoptosis rate of cells after H/R, the activity of LDH, the inflammatory factors IL-1β and IL-18, and the levels of pyroptosis-specific markers ASC, NLRP3, and Caspase-1 (mRNAs and proteins). It increased the cell survival rate and the mRNA levels of the Nrf2/HO-1 pathway markers Nrf2 and HO-1, and allowed cytoplasmic Nrf2 protein to enter the nucleus to activate HO-1 protein. The Nrf2 siRNA2 caused the following events in H/R model: (1) the increases of the apoptosis rate, LDH activity, the levels of inflammatory factors (IL-1β and IL-18), the levels of ACS, NLRP3, and Caspase-1 (mRNAs and proteins); and (2) the decreases of the cell survival rate, the mRNA levels of Nrf2 and HO-1, and the protein levels of cytoplasm-Nrf2, nucleus-Nrf2, and HO-1. Therefore we concluded that 90 μg/mL LBP suppressed H/R-induced H9C2 cardiomyocyte pyroptosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yi Gao
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Huangen Li
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yongkang Que
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Weiwen Chen
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China.
| | - Wenjie Liu
- Department of General Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Xiaotong Ye
- School of Medicine, Huaqiao University, Quanzhou 362000, China.
| |
Collapse
|
3
|
Song Y, Wang X, Sun Y, Yu N, Tian Y, Han J, Qu X, Yu X. PRDX1 inhibits ferroptosis by binding to Cullin-3 as a molecular chaperone in colorectal cancer. Int J Biol Sci 2024; 20:5070-5086. [PMID: 39430237 PMCID: PMC11489176 DOI: 10.7150/ijbs.99804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Peroxiredoxin 1 (PRDX1) is a potent antioxidant protein that displays a unique molecular chaperone activity. However, the role of overexpression of PRDX1 in colorectal cancer (CRC) was elusive. Herein, we found that the number of AOM/DSS-induced colitis-associated CRC in PRDX1 knockout mice was significantly lower than that in wild-type mice, concomitant with the downregulation of NRF2 and GPX4. Mechanistically, RNA sequencing results indicated that knockdown of PRDX1 resulted in a significant reduction of NRF2, which further triggered ROS-induced mitochondrial dysfunction and lipid peroxidation-induced ferroptosis in CRC cells. Notably, PRDX1 inhibited NRF2 degradation and promoted NRF2 nuclear translocation, thereby triggering the transcription of GPX4. Immunoprecipitation-mass spectrometry (IP-MS) and Co-immunoprecipitation (Co-IP) assays revealed that PRDX1 could act as a molecular chaperone by binding to CUL3 to inhibit NRF2 ubiquitination. Importantly, the binding of PRDX1 to CUL3 was enhanced by conoidin A but abolished by the PRDX1 Cys83Ser mutant. The inhibitory effects of PRDX1 knockdown on CRC could be attenuated by NRF2 activation or ferrostatin-1 administration in vivo. Collectively, these results provide a novel insight into the molecular chaperone activity of PRDX1 in promoting CRC progression through suppression of CUL3-mediated NRF2 degradation, suggesting PRDX1 Cys83 is a potential drug target in inhibiting CRC.
Collapse
Affiliation(s)
- Yujia Song
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqi Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nianhua Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yajie Tian
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinli Han
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Peng J, Abdulla R, Liu X, He F, Xin X, Aisa HA. Polyphenol-Rich Extract of Apocynum venetum L. Leaves Protects Human Retinal Pigment Epithelial Cells against High Glucose-Induced Damage through Polyol Pathway and Autophagy. Nutrients 2024; 16:2944. [PMID: 39275261 PMCID: PMC11397065 DOI: 10.3390/nu16172944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Diabetic retinopathy (DR) is a specific microvascular problem of diabetes, which is mainly caused by hyperglycemia and may lead to rapid vision loss. Dietary polyphenols have been reported to decrease the risk of DR. Apocynum venetum L. leaves are rich in polyphenolic compounds and are popular worldwide for their health benefits as a national tea drink. Building on previous findings of antioxidant activity and aldose reductase inhibition of A. venetum, this study investigated the chemical composition of polyphenol-rich extract of A. venetum leaves (AVL) and its protective mechanism on ARPE-19 cells in hyperglycemia. Ninety-three compounds were identified from AVL by LC-MS/MS, including sixty-eight flavonoids, twenty-one organic acids, and four coumarins. AVL regulated the polyol pathway by decreasing the expression of aldose reductase and the content of sorbitol, enhancing the Na+K+-ATPase activity, and weakening intracellular oxidative stress effectively; it also could regulate the expression of autophagy-related proteins via the AMPK/mTOR/ULK1 signaling pathway to maintain intracellular homeostasis. AVL could restore the polyol pathway, inhibit oxidative stress, and maintain intracellular autophagy to protect cellular morphology and improve DR. The study reveals the phytochemical composition and protective mechanisms of AVL against DR, which could be developed as a functional food and/or candidate pharmaceutical, aiming for retina protection in diabetic retinopathy.
Collapse
Affiliation(s)
- Jun Peng
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rahima Abdulla
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoyan Liu
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei He
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuelei Xin
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
6
|
Li X, Xu B, Long L, Li Y, Xiao X, Qiu S, Xu J, Tian LW, Wang H. Phelligridimer A enhances the expression of mitofusin 2 and protects against cerebral ischemia/reperfusion injury. Chem Biol Interact 2024; 398:111090. [PMID: 38825057 DOI: 10.1016/j.cbi.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 μM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.
Collapse
Affiliation(s)
- Xing Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China
| | - Li-Wen Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
7
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
8
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Gupta JK. The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological Target in Diabetic Complications and Associated Morbidities. Curr Pharm Biotechnol 2024; 25:1073-1081. [PMID: 37649296 DOI: 10.2174/1389201025666230830125147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The expression of aldose reductase leads to a variety of biological and pathological effects. It is a multifunctional enzyme which has a tendency to reduce aldehydes to the corresponding sugar.alcohol. In diabetic conditions, the aldose reductase enzyme converts glucose into sorbitol using nicotinamide adenine dinucleotide phosphate as a cofactor. It is a key enzyme in polyol pathway which is a surrogate course of glucose metabolism. The polyol pathway has a significant impact on the aetiology of complications in individuals with end-stage diabetes. The exorbitant level of sorbitol leads to the accumulation of intracellular reactive oxygen species in diabetic heart, neurons, kidneys, eyes and other vasculatures, leading to many complications and pathogenesis. Recently, the pathophysiological role of aldose reductase has been explored with multifarious perspectives. Research on aldose reductase suggest that besides implying in diabetic complications, the enzyme also turns down the lipid-derived aldehydes as well as their glutathione conjugates. Although aldose reductase has certain lucrative role in detoxification of toxic lipid aldehydes, its overexpression leads to intracellular accumulation of sorbitol which is involved in secondary diabetic complications, such as neuropathy, cataractogenesis, nephropathy, retinopathy and cardiovascular pathogenesis. Osmotic upset and oxidative stress are produced by aldose reductase via the polyol pathway. The inhibition of aldose reductase alters the activation of transcription factors like NF-ƙB. Moreover, in many preclinical studies, aldose reductase inhibitors have been observed to reduce inflammation-related impediments, such as asthma, sepsis and colon cancer, in diabetic subjects. Targeting aldose reductase can bestow a novel cognizance for this primordial enzyme as an ingenious strategy to prevent diabetic complications and associated morbidities. In this review article, the significance of aldose reductase is briefly discussed along with their prospective applications in other afflictions.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Zhao WL, Xu D, Wang JS. Torachrysone-8-O-β-d-glucoside mediates anti-inflammatory effects by blocking aldose reductase-catalyzed metabolism of lipid peroxidation products. Biochem Pharmacol 2023; 218:115931. [PMID: 37981172 DOI: 10.1016/j.bcp.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Aldose reductase (AR) is an important enzyme involved in the reduction of various aldehyde and carbonyl compounds, including the highly reactive and toxic 4-hydroxynonenal (4-HNE), which has been linked to the progression of various pathologies such as atherosclerosis, hyperglycemia, inflammation, and tumors. AR inhibitors have potential therapeutic benefits for these diseases by reducing lipid peroxidation and mitigating the harmful effects of reactive aldehydes. In this study, we found that torachrysone-8-O-β-d-glucoside (TG), a natural product isolated from Polygonum multiflorum Thunb., functions as an effective inhibitor of AR, exhibiting potent effects in clearing reactive aldehydes and reducing inflammation. TG up-regulated the mRNA levels of several antioxidant factors downstream of NRF2, especially glutathione S-transferase (GST), which is significantly increased, thus detoxifying 4-HNE by facilitating the conjugation of 4-HNE to glutathione, forming glutathione-4-hydroxynonenal (GS-HNE). By employing a combination of molecular docking, cellular thermal shift assay, and enzyme activity experiments, we demonstrated that TG exhibited strong binding affinity with AR and inhibited its activity and blocked the conversion of GS-HNE to glutathionyl-1,4-dihydroxynonene (GS-DHN), thereby preventing the formation of protein adducts and inducing severe cellular damage. This study provides novel insights into the anti-inflammatory mechanisms of AR inhibitors and offers potential avenues for developing therapeutic strategies for AR-related pathologies. Our findings suggest that TG, as an AR inhibitor, may hold promise as a therapeutic agent for treating conditions characterized by excessive lipid peroxidation and inflammation. Further investigations are needed to fully explore the clinical potential of TG and evaluate its efficacy in the treatment and management of these complex diseases.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
11
|
Liu L, Zhu L, Cheng Z, Sun Y, Zhou Y, Cao J. Aberrant expression of AKR1B1 indicates poor prognosis and promotes gastric cancer progression by regulating the AKT-mTOR pathway. Aging (Albany NY) 2023; 15:9661-9675. [PMID: 37751590 PMCID: PMC10564407 DOI: 10.18632/aging.205041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor in the digestive tract and a major cause of global cancer death. Due to the limited access to early screening, many patients are diagnosed with advanced GC. Therefore, postoperative radiotherapy and chemotherapy possess limited efficacy in treating GC. AKR1B1 has been associated with tumorigenesis and metastasis across various tumors, becoming a potential therapeutic target for GC. However, its role and mechanism in GC remain unclear. In this study, AKR1B1 was elevated in GC tissue, depicting a poor prognosis. AKR1B1 is closely related to age, vascular and neural invasion, lymph node metastasis, and the TNM stage of GC. The developed survival prediction model suggested that AKR1B1 expression level is crucial in the prognosis of GC patients. Moreover, the expression level of AKR1B1 in GC tissues is closely associated with the AKT-mTOR pathway. In vitro and in vivo assays functional assays helped determine the oncogenic role of AKR1B1. Additionally, the knockdown of AKR1B1 expression level in GC cell lines could effectively suppress the AKT-mTOR pathway and inhibit the proliferation and migration of tumor cells. In conclusion, this study provides a theoretical basis to establish the potential association and regulatory mechanism of AKR1B1 while offering a new strategy for GC-targeted therapy.
Collapse
Affiliation(s)
- Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215501, China
| | - Lihua Zhu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215501, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Yibin Sun
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| | - Jiwei Cao
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| |
Collapse
|
12
|
Chen J, Guo P, Han M, Chen K, Qin J, Yang F. Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis. Phytother Res 2023; 37:3323-3341. [PMID: 37036428 DOI: 10.1002/ptr.7807] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 04/11/2023]
Abstract
Recent years have witnessed a growing research interest in traditional Chinese medicine as a neuroprotective nutrient in the management of diabetic cognitive dysfunction. However, the underlying molecular mechanisms of sinomenine in mediating ferroptosis of hippocampal neurons have been poorly understood. This study sought to decipher the potential effect and molecular mechanism of sinomenine in the cognitive dysfunction following type 2 diabetes mellitus (T2DM). Multi-omics analysis was conducted to identify the microbiota-gut-brain axis in T2DM patient samples obtained from the publicly available database. In HT-22 cells, erastin was utilized to create a ferroptosis model, and streptozotocin was injected intraperitoneally to create a rat model of DM. It was noted that intestinal flora imbalance occurred in patients with T2DM-associated cognitive dysfunction. Sinomenine could reduce Erastin-induced hippocampus neuronal ferroptosis by increasing EGF expression. EGF protected hippocampal neurons against ferroptosis by activating the Nrf2/HO-1 signaling pathway. Furthermore, in vivo results confirmed that sinomenine blocked ferroptosis of hippocampal neurons and alleviated cognitive dysfunction in T2DM rats. Collectively, these results suggest that sinomenine confers neuroprotective effects by curtailing hippocampal neuron ferroptosis via the EGF/Nrf2/HO-1 signaling and microbiota-gut-brain axis. It may be a candidate for the treatment of diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Ji Chen
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua, P.R. China
| | - Peng Guo
- Department of Anesthesiology, The First People's Hospital of Huaihua, Huaihua, P.R. China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China|, Hefei, P.R. China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First People's Hospital of Huaihua, Huaihua, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| |
Collapse
|
13
|
Huang Q, Zhang Y, Jiang Y, Huang L, Liu Q, Ouyang D. Eucommia lignans alleviate the progression of diabetic nephropathy through mediating the AR/Nrf2/HO-1/AMPK axis in vivo and in vitro. Chin J Nat Med 2023; 21:516-526. [PMID: 37517819 DOI: 10.1016/s1875-5364(23)60427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Indexed: 08/01/2023]
Abstract
Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, China
| | - Yinfan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Operating Room, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Dongsheng Ouyang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410028, China.
| |
Collapse
|
14
|
Syamprasad NP, Rajdev B, Jain S, Panda SR, Puppala ER, Chaudhari P, Vaidya JR, Kumar GJ, Naidu VGM. Pivotal role of AKR1B1 in pathogenesis of colitis associated colorectal carcinogenesis. Int Immunopharmacol 2023; 119:110145. [PMID: 37044030 DOI: 10.1016/j.intimp.2023.110145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Identifying the target linking inflammation and oxidative stress to aggravate the disease progression will help to prevent colitis associated carcinogenesis. Since AKR1B1 overexpression is observed in inflammatory diseases and various cancers, we have investigated the role of AKR1B1 in colitis-associated colon carcinogenesis with the aid of epalrestat and its potent analogue NARI-29 (investigational molecule) as pharmacological probes. A TNF-α inducible NF-κB reporter cell line (GloResponse™ NF-κB-RE-luc2P HEK293) and dextran sodium sulfate (DSS) and 1,2 dimethyl hydrazine (DMH))-induced mouse model was used to investigate our hypothesis in vitro and in vivo. Clinically, an increased expression of AKR1B1 was observed in patients with ulcerative colitis. Our in vitro and in vivo findings suggest that the AKR1B1 modulated inflammation and ROS generation for the progression of colitis to colon cancer. AKR1B1 overexpression was observed in DSS + DMH-treated mice colons. Moreover, we could observe histopathological changes like immune cell infiltration, aberrant crypt foci, and tumour formation in DC groups. Mechanistically, we have witnessed modulation of the IKK/IκB/NF-κB and Akt/FOXO-3a/DR axis, increased inflammatory cytokines, increased expression of proliferative markers, Ki-67 and PCNA, and accumulation of β-catenin in the colon epithelium. However, pharmacological inhibition of AKR1B1 using NARI-29 or EPS has reversed the clinical, histopathological, and molecular alterations induced by DSS + DMH, confirming the obvious role of AKR1B1 in the promotion of colitis-associated carcinogenesis. In conclusion, our findings suggest that AKR1B1 targeted therapy could be a promising strategy for preventing CA-CRC and NARI-29 could be developed as a potent AKR1B1 inhibitor.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India
| | - Pradip Chaudhari
- Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, (ACTREC), Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana 500007, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam 781101, India.
| |
Collapse
|
15
|
Li BL, Zhao SZ, Zhou H, Li CC, Li LL, Yu XX, Sun LX. Synthesis and antitumor activity of erysolin and its metabolites. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:369-378. [PMID: 35763370 DOI: 10.1080/10286020.2022.2091989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Erysolin and its two metabolites which were found in blood, ERY-GSH and ERY-NAC, were synthesized by alkylation, amination, isothiocyanation and oxidation reactions from 1-bromo-4-chlorobutane and sodium methyl mercaptide. The reaction temperature, time, feed ratios and purification method were also optimized. The synthesis method was simple, green, safe and low-cost. Erysolin, ERY-GSH and ERY-NAC showed good antitumor activities against MCF-7, HeLa, HepG2, A549 and SW480 cells, which suggested that the antitumor mechanism of erysolin can also be clarified from its metabolites in addition to itself.
Collapse
Affiliation(s)
- Bing-Long Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Shi-Zhen Zhao
- School of Medicine, Henan University, Kaifeng 475000, China
| | - Hui Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng-Cheng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin-Lin Li
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xin-Xiang Yu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li-Xin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Syamprasad NP, Madje N, Bachannagari J, Jannu AK, Jain S, Tene K, Shantanu PA, Naidu V, Chella N. Niclosamide nanocrystal for enhanced in-vivo efficacy against gastrointestinal stromal tumor via regulating EGFR/STAT-3/DR-4 axis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat. Int J Mol Sci 2023; 24:ijms24032711. [PMID: 36769034 PMCID: PMC9917140 DOI: 10.3390/ijms24032711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness.
Collapse
|
18
|
Guo W, Liu Y, Ji X, Guo S, Xie F, Chen Y, Zhou K, Zhang H, Peng F, Wu D, Wang Z, Guo X, zhao Q, Gu X, Xing J. Mutational signature of mtDNA confers mechanistic insight into oxidative metabolism remodeling in colorectal cancer. Theranostics 2023; 13:324-338. [PMID: 36593960 PMCID: PMC9800724 DOI: 10.7150/thno.78718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutations and subsequent metabolic defects are closely involved in tumorigenesis and progression in a cancer-type specific manner. To date, the mutational pattern of mtDNA somatic mutations in colorectal cancer (CRC) tissues and its clinical implication are still not completely clear. Methods: In the present study, we generated a large mtDNA somatic mutation dataset from three CRC cohorts (432, 1,015, and 845 patients, respectively) and then most comprehensively characterized the CRC-specific evolutionary pattern and its clinical implication. Results: Our results showed that the mtDNA control region (mtCTR) with a high mutation density exhibited a distinct mutation spectrum characterizing a high enrichment of L-strand C > T mutations, which was contrary to the H-strand C > T mutational bias observed in the mtDNA coding region (mtCDR) (P < 0.001). Further analysis clearly confirmed the relaxed evolutionary selection of mtCTR mutations, which was mainly characterized by the similar distribution of hypervariable region (HVS) and non-HVS mutation density. Moreover, significant negative selection was identified in mutations of mtDNA complex V (ATP6/ATP8) and tRNA loop regions. Although our data showed that oxidative metabolism was commonly increased in CRC cells, mtDNA somatic mutations in CRC tissues were not closely associated with mitochondrial biogenesis, oxidative metabolism, and clinical progression, suggesting a cancer-type specific relationship between mtDNA mutations and mitochondrial metabolic functions in CRC cells. Conclusion: Our study identified the CRC-specific evolutionary mode of mtDNA mutations, which is possibly matched to specific mitochondrial metabolic remodeling and confers new mechanic insight into CRC tumorigenesis.
Collapse
Affiliation(s)
- Wenjie Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Fanfan Xie
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yanxing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Fan Peng
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhenni Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qi zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xiwen Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,✉ Corresponding authors: Jinliang Xing, Tel: +86-29-84774551; Fax: +86-29-84774551; E-mail: . Xiwen Gu, Tel: +86-29-84775497; Fax: +86-29-84775497; E-mail:
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.,✉ Corresponding authors: Jinliang Xing, Tel: +86-29-84774551; Fax: +86-29-84774551; E-mail: . Xiwen Gu, Tel: +86-29-84775497; Fax: +86-29-84775497; E-mail:
| |
Collapse
|
19
|
Li J, Wang D, Liu Y, Zhou Y. Role of NRF2 in Colorectal Cancer Prevention and Treatment. Technol Cancer Res Treat 2022; 21:15330338221105736. [PMID: 36476179 PMCID: PMC9742687 DOI: 10.1177/15330338221105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a basic leucine zipper protein that participates in a complex regulatory network in the body. The activation of NRF2 can prevent and treat colorectal cancer (CRC). A variety of natural compounds can activate NRF2 to inhibit oxidative stress and inflammation to prevent the occurrence and development of CRC, inhibit the proliferation of CRC cells and induce their apoptosis. However, some studies have also shown that it also has negative effects on CRC, such as overexpression of NRF2 can promote the growth of colorectal tumors and increase the drug resistance of chemotherapeutic drugs such as 5-fluorouracil and oxaliplatin. Therefore, inhibition of NRF2 can also be helpful in the treatment of CRC. In this study, we analyze the current research progress of NRF2 in CRC from various aspects to provide new ideas for prevention and treatment based on the NRF2 signaling pathway in CRC.
Collapse
Affiliation(s)
- Jiaxiang Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Dan Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yifei Liu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China,
Yifei Liu, School of Stomatology and Ophthalmology, Xianning medical college, Hubei University of Science and Technology, Xianning, Hubei, China.
| | - Yanhong Zhou
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China,Yanhong Zhou, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China.
| |
Collapse
|
20
|
Bailly C. Moving toward a new horizon for the aldose reductase inhibitor epalrestat to treat drug-resistant cancer. Eur J Pharmacol 2022; 931:175191. [PMID: 35964660 DOI: 10.1016/j.ejphar.2022.175191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Epalrestat (EPA) is a potent inhibitor of aldose reductases AKR1B1 and AKR1B10, used for decades in Japan for the treatment of diabetic peripheral neuropathy. This orally-active, brain-permeable small molecule, with a relatively rare and essential 2-thioxo-4-thiazolidinone motif, functions as a regulator intracellular carbonyl species. The repurposing of EPA for the treatment of pediatric rare diseases, brain disorders and cancer has been proposed. A detailed analysis of the mechanism of action, and the benefit of EPA to combat advanced malignancies is offered here. EPA has revealed marked anticancer activities, alone and in combination with cytotoxic chemotherapy and targeted therapeutics, in experimental models of liver, colon, and breast cancers. Through inhibition of AKR1B1 and/or AKR1B10 and blockade of the epithelial-mesenchymal transition, EPA largely enhances the sensitivity of cancer cells to drugs like doxorubicin and sorafenib. EPA has revealed a major anticancer effect in an experimental model of basal-like breast cancer and clinical trials have been developed in patients with triple-negative breast cancer. The repurposing of the drug to treat chemo-resistant solid tumors seems promising, but more studies are needed to define the best trajectory for the positioning of EPA in oncology.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
21
|
Sun M, Zhao H, Jin Z, Lei W, Deng C, Yang W, Lu C, Hou Y, Zhang Y, Tang R, Zhao L, Zhang S, Yang Y. Silibinin protects against sepsis and septic myocardial injury in an NR1H3-dependent pathway. Free Radic Biol Med 2022; 187:141-157. [PMID: 35640818 DOI: 10.1016/j.freeradbiomed.2022.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Cardiac dysfunction resulting from sepsis causes high morbidity and mortality. Silibinin (SIL) is a secondary metabolite isolated from the seed extract of the milk thistle plant with various properties, including anti-inflammatory, anti-fibrotic, and anti-oxidative activities. This study, for the first time, examined the effects and mechanisms of SIL pretreatment, posttreatment and in combination with classical antibiotics in septic myocardial injury. The survival rate, sepsis score, anal temperature, routine blood parameters, blood biochemical parameters, cardiac function indicators, pathological indicators of myocardial injury, NR1H3 signaling pathway, and several sepsis-related signaling pathways were detected 8 h following cecal ligation and puncture (CLP). Our results showed that SIL pretreatment showed a significant protective effect on sepsis and septic myocardial injury, which was explained by the attenuation of inflammation, inhibition of oxidative stress, improvement of mitochondrial function, regulation of endoplasmic reticulum stress (ERS), and activation of the NR1H3 pathway. SIL posttreatment and the combination of SIL and azithromycin (AZI) showed a certain therapeutic effect. RNA-seq detection further clarified the myocardial protective mechanisms of SIL. Taken together, this study provides a theoretical basis for the application strategy and combination of SIL in septic myocardial injury.
Collapse
Affiliation(s)
- Meng Sun
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, China; Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yuxuan Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Ran Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
22
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
23
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
24
|
Exopolysaccharides isolated from Rhizopus nigricans induced colon cancer cell apoptosis in vitro and in vivo via activating the AMPK pathway. Biosci Rep 2021; 40:221749. [PMID: 31894839 PMCID: PMC6960068 DOI: 10.1042/bsr20192774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related human deaths. The exopolysaccharide (EPS1-1), isolated from Rhizopus nigricans, has been described as exhibiting anti-tumor and pro-apoptotic activity against CRC, although the underlying mechanism is poorly understood. Herein, we investigate how EPS1-1 induces apoptosis of CRC cells in vitro and in vivo. Our results show that, in vitro, EPS1-1 suppressed cell growth and facilitated apoptosis in a dose- and time-dependent manner by activating the AMP-activated protein kinase (AMPK) pathway in mouse colon cancer CT26 cells. However, treatment with small interfering RNAs (siRNAs) targeting AMPKα or with compound C, an AMPK inhibitor, interfered with the pro-apoptosis effects of EPS1-1. We also show that EPS1-1 initiated the release of reactive oxygen species (ROS) and liver kinase B1 (LKB1), both of which are necessary signals for AMPK activation. Furthermore, EPS1-1-mediated apoptosis is regulated by inactivation of mammalian target of rapamycin complex 1 (mTORC1) and activation of the jun-NH2 kinase (JNK)-p53 signaling axis dependent on AMPK activation. In vivo, azoxymethane/dextran sulfate sodium (AOM/DSS)-treated CRC mice, when administered EPS1-1, exhibited activation of the AMPK pathway, inhibition of mTORC1, and accumulation of p53 in tumor tissues. Collectively, these findings suggest that EPS1-1-induced apoptosis relies on the activation of the AMPK pathway. The present study provides evidence suggesting that EPS1-1 may be an effective target for development of novel CRC therapeutic agents.
Collapse
|
25
|
Chen Y, Wu YY, Si HB, Lu YR, Shen B. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. Pharmacol Res 2021; 166:105497. [PMID: 33609697 DOI: 10.1016/j.phrs.2021.105497] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a major cause of disability in the elderly population and represents a significant public health problem and socioeconomic burden worldwide. However, no disease-modifying therapeutics are currently available for OA due to an insufficient understanding of the pathogenesis of this disability. As a unique cell type in cartilage, chondrocytes are essential for cartilage homeostasis and play a critical role in OA pathogenesis. Mitochondria are important metabolic centers in chondrocytes and contribute to cell survival, and mitochondrial quality control (MQC) is an emerging mechanism for maintaining cell homeostasis. An increasing number of recent studies have demonstrated that dysregulation of the key processes of chondrocyte MQC, which involve mitochondrial redox, biogenesis, dynamics, and mitophagy, is associated with OA pathogenesis and can be regulated by the chondroprotective molecules 5' adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 3 (SIRT3). Moreover, AMPK and SIRT3 regulate each other, and their expression and activity are always consistent in chondrocytes, which suggests the existence of an AMPK-SIRT3 positive feedback loop (PFL). Although the precise mechanisms are not fully elucidated and need further validation, the current literature indicates that this AMPK-SIRT3 PFL regulates OA development and progression, at least partially by mediating chondrocyte MQC. Therefore, understanding the mechanisms of AMPK-SIRT3 PFL-mediated chondrocyte MQC in OA pathogenesis might yield new ideas and potential targets for subsequent research on the OA pathomechanism and therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-Yao Wu
- West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hai-Bo Si
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yan-Rong Lu
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
27
|
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal Growth Factor Protects Against High Glucose-Induced Podocyte Injury Possibly via Modulation of Autophagy and PI3K/AKT/mTOR Signaling Pathway Through DNA Methylation. Diabetes Metab Syndr Obes 2021; 14:2255-2268. [PMID: 34045875 PMCID: PMC8149214 DOI: 10.2147/dmso.s299562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIM Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms. METHODS The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions. RESULTS EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury. CONCLUSION In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiangyang Lei
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Hao Ju
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Zhiming Liu
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaosu Bai
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Department of General Practice; Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Correspondence: Xiaosu Bai Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, No. 2, Jianshe East Road, Bao’an District, Shenzhen, 518109, People’s Republic of ChinaTel +86-755-27741585 Email
| |
Collapse
|
28
|
Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X, Fan S, Shen X, Wang Y, Liang G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Am J Cancer Res 2020; 10:10290-10308. [PMID: 32929349 PMCID: PMC7481428 DOI: 10.7150/thno.46728] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Oxidative stress from elevated reactive oxygen species (ROS) has been reported to induce cell apoptosis and may provide a means to target cancer cells. Celastrol is a natural bioactive compound that was recently shown to increase ROS levels and cause apoptosis in cancer cells. However, the underlying mechanism for this cytotoxic action remains unclear and direct molecular targets of Celastrol have not been identified. Methods: Proteome microarray, surface plasmon resonance, isothermal titration calorimetry and molecular simulation were used to identify the molecular target of Celastrol. Binding and activity assays were used to validate the interaction of Celastrol with target protein in cell-free and gastric cancer cell lysates. We then assessed target transcript levels in in biopsy specimens obtained from patients with gastric cancer. Gastric cancer growth-limiting and cytotoxic activity of Celastrol was evaluated in BALB/c nu/nu mice. Results: Our data show that Celastrol directly binds to an antioxidant enzyme, peroxiredoxin-2 (Prdx2), which then inhibits its enzyme activity at both molecular and cellular level. Inhibition of Prdx2 by Celastrol increased cellular ROS levels and led to ROS-dependent endoplasmic reticulum stress, mitochondrial dysfunction, and apoptosis in gastric cancer cells. Functional tests demonstrated that Celastrol limits gastric cancer cells, at least in part, through targeting Prdx2. Celastrol treatment of mice implanted with gastric cancer cells also inhibited tumor growth, associated with Prdx2 inhibition and increased ROS. Analysis of human gastric cancer also showed increased Prdx2 levels and correlation with survival. Conclusion: Our studies have uncovered a potential Celastrol-interacting protein Prdx2 and a ROS-dependent mechanism of its action. The findings also highlight Prdx2 as a potential target for the treatment of gastric cancer.
Collapse
|
29
|
Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways. Int Immunopharmacol 2020; 85:106629. [DOI: 10.1016/j.intimp.2020.106629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
|
30
|
Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med 2020; 24:8890-8902. [PMID: 32633024 PMCID: PMC7417692 DOI: 10.1111/jcmm.15581] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The role of aldo‐keto reductase family 1 member B1 (AKR1B1) in cancer is not totally clear but growing evidence is suggesting to have a great impact on cancer progression. AKR1B1 could participate in a complicated network of signalling pathways, proteins and miRNAs such as mir‐21 mediating mechanisms like inflammatory responses, cell cycle, epithelial to mesenchymal transition, cell survival and apoptosis. AKR1B1 has been shown to be mostly overexpressed in cancer. This overexpression has been associated with inflammatory mediators including nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB), cell cycle mediators such as cyclins and cyclin‐dependent kinases (CDKs), survival proteins and pathways like mammalian target of rapamycin (mTOR) and protein kinase B (PKB) or AKT, and other regulatory factors in response to reactive oxygen species (ROS) and prostaglandin synthesis. In addition, inhibition of AKR1B1 has been shown to mostly have anti‐cancer effects. Several studies have also suggested that AKR1B1 inhibition as an adjuvant therapy could render tumour cells more sensitive to anti‐cancer therapy or alleviate the adverse effects of therapy. AKR1B1 could also be considered as a potential cancer diagnostic biomarker since its promoter has shown high levels of methylation. Although pre‐clinical investigations on the role of AKR1B1 in cancer and the application of its inhibitors have shown promising results, the lack of clinical studies on AKR1B1 inhibitors has hampered the use of these drugs to treat cancer. Thus, there is a need to conduct more clinical studies on the application of AKR1B1 inhibitors as adjuvant therapy on different cancers.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Hashemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| |
Collapse
|
31
|
Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020; 152:255-270. [PMID: 32222469 PMCID: PMC7276298 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Radiation therapy is a frequently used treatment for prostate cancer patients. Manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP or T2E or BMX-010) and other similar manganese porphyrin compounds that scavenge superoxide molecules have been demonstrated to be effective radioprotectors and prevent the development of radiation-induced fibrosis (RIF). However, understanding the molecular pathway changes associated with these compounds remains limited for radioprotection. Recent RNA-sequencing data from our laboratory revealed that MnTE-2-PyP treatment activated the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Therefore, we hypothesize that MnTE-2-PyP protects the prostate from RIF by activating the NRF2 signaling pathway. We identified that MnTE-2-PyP is a post-translational activator of NRF2 signaling in prostate fibroblast cells, which plays a major role in fibroblast activation and myofibroblast differentiation. The mechanism of NRF2 activation involves an increase in hydrogen peroxide and a corresponding decrease in kelch-like ECH-associated protein 1 (KEAP1) levels. Activation of NRF2 signaling leads to an increase in expression of NAD(P)H dehydrogenase [quinone] 1 (NQO1), nicotinamide adenine dinucleotide (NAD+) levels, sirtuin activity (nuclear and mitochondrial), and superoxide dismutase 2 (SOD2) expression/activity. Increase in mitochondrial sirtuin activity correlates with a decrease in SOD2 (K122) acetylation. This decrease in SOD2 K122 acetylation correlates with an increase in SOD2 activity and mitochondrial superoxide scavenging capacity. Further, in human primary prostate fibroblast cells, the NRF2 pathway plays a major role in the fibroblast to myofibroblast transformation, which is responsible for the fibrotic phenotype. In the context of radiation protection, MnTE-2-PyP fails to prevent fibroblast to myofibroblast transformation in the absence of NRF2 signaling. Collectively, our results indicate that the activation of the NRF2 signaling pathway by MnTE-2-PyP is at least a partial mechanism of radioprotection in prostate fibroblast cells.
Collapse
Affiliation(s)
- Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - J Tyson McDonald
- Department of Physics, Hampton University, Hampton, VA, 23668, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
32
|
Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules 2020; 10:biom10050791. [PMID: 32443774 PMCID: PMC7277620 DOI: 10.3390/biom10050791] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| | - Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Balgat, Ankara, Turkey;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.P.); (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
| |
Collapse
|
33
|
The Inhibition of Aldose Reductase Accelerates Liver Regeneration through Regulating Energy Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3076131. [PMID: 32190170 PMCID: PMC7064854 DOI: 10.1155/2020/3076131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Objectives Our previous study showed that aldose reductase (AR) played key roles in fatty liver ischemia-reperfusion (IR) injury by regulating inflammatory response and energy metabolism. Here, we aim to investigate the role and mechanism of AR in the regeneration of normal and fatty livers after liver surgery. Methods The association of AR expression with liver regeneration was studied in the rat small-for-size liver transplantation model and the mice major hepatectomy and hepatic IR injury model with or without fatty change. The direct role and mechanism of AR in liver regeneration was explored in the AR knockout mouse model. Results Delayed regeneration was detected in fatty liver after liver surgery in both rat and mouse models. Furthermore, the expression of AR was increased in liver after liver surgery, especially in fatty liver. In a functional study, the knockout of AR promoted liver regeneration at day 2 after major hepatectomy and IR injury. Compared to wild-type groups, the expressions of cyclins were increased in normal and fatty livers of AR knockout mice. AR inhibition increased the expressions of PPAR-α and PPAR-γ in both normal liver and fatty liver groups after major hepatectomy and IR injury. In addition, the knockout of AR promoted the expressions of SDHB, AMPK, SIRT1, and PGC1-α and PPAR- Conclusions The knockout of AR promoted the regeneration of normal and fatty livers through regulating energy metabolism. AR may be a new potential therapeutic target to accelerate liver regeneration after surgery.
Collapse
|
34
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
35
|
The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel) 2019; 11:cancers11111755. [PMID: 31717324 PMCID: PMC6896028 DOI: 10.3390/cancers11111755] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Nrf2 is a transcription factor that stimulates the expression of genes which have antioxidant response element-like sequences in their promoter. Nrf2 is a cellular protector, and this principle applies to both normal cells and malignant cells. While healthy cells are protected from DNA damage induced by reactive oxygen species, malignant cells are defended against chemo- or radiotherapy. Through our literature search, we found that Nrf2 activates several oncogenes unrelated to the antioxidant activity, such as Matrix metallopeptidase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), B-cell lymphoma-extra large (BCL-xL), Tumour Necrosis Factor α (TNF-α), and Vascular endothelial growth factor A (VEGF-A). We also did a brief analysis of The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma concerning the effects of radiation therapy and found that the therapy-induced Nrf2 activation is not universal. For instance, in the case of recurrent disease and radiotherapy, we observed that, for the majority of Nrf2-targeted genes, there is no change in expression level. This proves that the universal, axiomatic rationale that Nrf2 is activated as a response to chemo- and radiation therapy is wrong, and that each scenario should be carefully evaluated with the help of Nrf2-targeted genes. Moreover, there were nine genes involved in lipid peroxidation, which showed underexpression in the case of new radiation therapy: ADH1A, ALDH3A1, ALDH3A2, ADH1B, GPX2, ADH1C, ALDH6A1, AKR1C3, and NQO1. This may relate to the fact that, while some studies reported the co-activation of Nrf2 and other oncogenic signaling pathways such as Phosphoinositide 3-kinases (PI3K), mitogen-activated protein kinase (MAPK), and Notch1, other reported the inverse correlation between Nrf2 and the tumor-promoter Transcription Factor (TF), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Lastly, Nrf2 establishes its activity through interactions at multiple levels with various microRNAs. MiR-155, miR-144, miR-28, miR-365-1, miR-93, miR-153, miR-27a, miR-142, miR-29-b1, miR-340, and miR-34a, either through direct repression of Nrf2 messenger RNA (mRNA) in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner or by enhancing the Keap1 cellular level, inhibit the Nrf2 activity. Keap1–Nrf2 interaction leads to the repression of miR-181c, which is involved in the Nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway. Nrf2’s role in cancer prevention, diagnosis, prognosis, and therapy is still in its infancy, and the future strategic planning of Nrf2-based oncological approaches should also consider the complex interaction between Nrf2 and its various activators and inhibitors.
Collapse
|
36
|
Mazzoni L, Giampieri F, Alvarez Suarez JM, Gasparrini M, Mezzetti B, Forbes Hernandez TY, Battino MA. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct 2019; 10:7103-7120. [PMID: 31621765 DOI: 10.1039/c9fo01721f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was the evaluation of the effects of strawberry anthocyanin extract treatment on two in vitro models of murine breast cancer cell lines, in an attempt to detect a specific pathway (AMP-activated protein kinase or AMPK) through which strawberries exert their anticancer activity. The anticancer activity of purified anthocyanin extracts from an Alba cultivar on two murine cancer cell lines, N202/1A (with high levels of the HER2/neu oncogene) and N202/1E (with low levels of the HER2/neu oncogene), was evaluated after 48 and 72 h of treatment. The cell viability and apoptosis, intracellular ROS rates, and cell oxidative damage were assessed. Western blot assays were performed to analyze the expression of several proteins related to apoptosis, autophagy, metastasis, the oxidative status, mitochondrial functionality, and the AMPK pathway. This study demonstrated that the anthocyanin extract of Alba strawberry shows an antiproliferative effect on cancer cells, through the induction of apoptosis and oxidative stress, by stimulating different molecular pathways. This study is one of the first studies that have tried to deepen the understanding of a candidate pathway for the explanation of the effects of strawberry on cancer cells. A relationship between the AMPK pathway and the anticancer effects of strawberries was demonstrated.
Collapse
Affiliation(s)
- Luca Mazzoni
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ruggeri, 60130, Ancona, Italy.
| | - Jose Miguel Alvarez Suarez
- Facultad de Ingeniería y Ciencias Aplicadas. Grupo de Investigación en Biotecnología Aplicada a Biomedicina, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Tamara Yuliett Forbes Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, 32004 Ourense, Spain.
| | - Maurizio Antonio Battino
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ruggeri, 60130, Ancona, Italy. and Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, 32004 Ourense, Spain. and College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
37
|
Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, Meng Y, Liu Z, Du Y, Yu Z. Negative regulation of AMPKα1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene 2019; 38:6537-6549. [PMID: 31358902 DOI: 10.1038/s41388-019-0898-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 04/16/2019] [Indexed: 01/07/2023]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies. However, the molecular mechanisms underlying the development and progression of EC remain unclear. Here, we demonstrated that the protein proviral insertion in murine lymphomas 2 (PIM2) was necessary for maintaining EC tumorigenesis in vivo and in vitro, and could inhibit AMPKα1 kinase activity in EC cells. Specifically, we found that PIM2 bound to AMPKα1, and directly phosphorylated it on Thr467. Phosphorylation of AMPKα1 by PIM2 led to decreasing AMPKα1 kinase activity, which in turn promoted aerobic glycolysis and tumor growth. In addition, PIM2 expression positively correlated with AMPKα1 Thr467 phosphorylation in EC tissues. Further, treatment with a combination of the PIM2 inhibitor SMI-4a and the AMPKα1 activator AICAR could effectively inhibit tumor growth. Thus, our findings provide insight into the role of PIM2 and AMPKα1 in EC and suggest that combination targeting of these proteins may represent a new strategy for EC treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Yuhan Meng
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Yu Du
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
38
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
39
|
Potential Applications of NRF2 Inhibitors in Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8592348. [PMID: 31097977 PMCID: PMC6487091 DOI: 10.1155/2019/8592348] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The NRF2/KEAP1 pathway represents one of the most important cell defense mechanisms against exogenous or endogenous stressors. Indeed, by increasing the expression of several cytoprotective genes, the transcription factor NRF2 can shelter cells and tissues from multiple sources of damage including xenobiotic, electrophilic, metabolic, and oxidative stress. Importantly, the aberrant activation or accumulation of NRF2, a common event in many tumors, confers a selective advantage to cancer cells and is associated to malignant progression, therapy resistance, and poor prognosis. Hence, in the last years, NRF2 has emerged as a promising target in cancer treatment and many efforts have been made to identify therapeutic strategies aimed at disrupting its prooncogenic role. By summarizing the results from past and recent studies, in this review, we provide an overview concerning the NRF2/KEAP1 pathway, its biological impact in solid and hematologic malignancies, and the molecular mechanisms causing NRF2 hyperactivation in cancer cells. Finally, we also describe some of the most promising therapeutic approaches that have been successfully employed to counteract NRF2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies.
Collapse
|
40
|
Chang CY, Ho BY, Pan TM. Lactobacillus paracasei subsp. paracasei NTU 101-fermented skim milk as an adjuvant to uracil-tegafur reduces tumor growth and improves chemotherapy side effects in an orthotopic mouse model of colorectal cancer. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
41
|
Deng Y, Wu Y, Zhao P, Weng W, Ye M, Sun H, Xu M, Wang C. The Nrf2/HO-1 axis can be a prognostic factor in clear cell renal cell carcinoma. Cancer Manag Res 2019; 11:1221-1230. [PMID: 30799949 PMCID: PMC6369848 DOI: 10.2147/cmar.s188046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To study the protein expression level of Nrf2/HO-1 in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissue and to explore its relationship with clinicopathological characteristics and prognosis in ccRCC patients. MATERIALS AND METHODS In total, 152 ccRCC patients with available follow-up and clinical data were enrolled, and sample microarrays were prepared for immunohistochemistry studies. The human ccRCC cell lines 786-O, OS-RC-2, A498, and ACHN were cultured for immunofluorescence. The protein concentrations of five ccRCC patients' tumor and adjacent normal renal tissues were prepared for Western blotting. Chi-squared tests, Fisher's exact test, Kaplan-Meier analyses, log-rank tests, and Cox regression were performed for statistical analyses. RESULTS The immunoreactivity results showed that the Nrf2 and HO-1 proteins were found in consistent locations in vitro and were expressed both in ccRCC and adjacent normal tissues. The two proteins were localized in the cytoplasm and nucleus of RCC tumor cells and in adjacent normal tissue cells. The expression levels of Nrf2 and HO-1 were significantly higher in ccRCC tissues than in the adjacent normal tissues. The Nrf2 protein level was found to be significantly correlated with the tumor size. Additionally, higher protein expression levels of Nrf2 and HO-1 were also correlated with worse overall survival outcomes and could potentially be used to predict the prognosis of ccRCC patients. CONCLUSION Our study provides an important theoretical basis for evaluating the clinical prognosis of ccRCC patients, which implies that the Nrf2/HO-1 axis can be a prognostic factor in ccRCC.
Collapse
Affiliation(s)
- Yu Deng
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynaecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Ping Zhao
- Department of Pathology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Ye
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
42
|
Banala VT, Urandur S, Sharma S, Sharma M, Shukla RP, Marwaha D, Gautam S, Dwivedi M, Mishra PR. Targeted co-delivery of the aldose reductase inhibitor epalrestat and chemotherapeutic doxorubicin via a redox-sensitive prodrug approach promotes synergistic tumor suppression. Biomater Sci 2019; 7:2889-2906. [DOI: 10.1039/c9bm00221a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Redox responsive epalrestat prodrug micelles facilitate synergistic concentrations of doxorubicin with an advantage of CD44 down-regulation and reduced cardiotoxicity.
Collapse
Affiliation(s)
- Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Shweta Sharma
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Ravi P. Shukla
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Monika Dwivedi
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| |
Collapse
|
43
|
Liang C, Shi S, Liu M, Qin Y, Meng Q, Hua J, Ji S, Zhang Y, Yang J, Xu J, Ni Q, Li M, Yu X. PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells. Cancer Res 2018; 79:133-145. [PMID: 30355620 DOI: 10.1158/0008-5472.can-18-1968] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
Kras is a decisive oncogene in pancreatic ductal adenocarcinoma (PDAC). PIN1 is a key effector involved in the Kras/ERK axis, synergistically mediating various cellular events. However, the underlying mechanism by which PIN1 promotes the development of PDAC remains unclear. Here we sought to elucidate the effect of PIN1 on redox homeostasis in Kras-driven PDAC. PIN1 was prevalently upregulated in PDAC and predicted the prognosis of the disease, especially Kras-mutant PDAC. Downregulation of PIN1 inhibited PDAC cell growth and promoted apoptosis, partially due to mitochondrial dysfunction. Silencing of PIN1 damaged basal mitochondrial function by significantly increasing intracellular ROS. Furthermore, PIN1 maintained redox balance via synergistic activation of c-Myc and NRF2 to upregulate expression of antioxidant response element driven genes in PDAC cells. This study elucidates a new mechanism by which Kras/ERK/NRF2 promotes tumor growth and identifies PIN1 as a decisive target in therapeutic strategies aimed at disturbing the redox balance in pancreatic cancer. SIGNIFICANCE: This study suggests that antioxidation protects Kras-mutant pancreatic cancer cells from oxidative injury, which may contribute to development of a targeted therapeutic strategy for Kras-driven PDAC by impairing redox homeostasis.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yuqing Zhang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Min Li
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
45
|
Flutamide Induces Hepatic Cell Death and Mitochondrial Dysfunction via Inhibition of Nrf2-Mediated Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8017073. [PMID: 30057686 PMCID: PMC6051009 DOI: 10.1155/2018/8017073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.
Collapse
|
46
|
The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis 2018. [PMID: 29540694 PMCID: PMC5851994 DOI: 10.1038/s41419-018-0436-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruption of the mucosal barrier following intestinal ischemia reperfusion (I/R) is life threatening in clinical practice. Mitochondrial dysfunction and oxidative stress significantly contribute to the early phase of I/R injury and amplify the inflammatory response. MitoQ is a mitochondrially targeted antioxidant that exerts protective effects following I/R injury. In the present study, we aimed to determine whether and how MitoQ protects intestinal epithelial cells (IECs) from I/R injury. In both in vivo and in vitro studies, we found that MitoQ pretreatment downregulated I/R-induced oxidative stress and stabilized the intestinal barrier, as evidenced by MitoQ-treated I/R mice exhibiting attenuated intestinal hyperpermeability, inflammatory response, epithelial apoptosis, and tight junction damage compared to controls. Mechanistically, I/R elevated mitochondrial 8-hydroxyguanine content, reduced mitochondrial DNA (mtDNA) copy number and mRNA transcription levels, and induced mitochondrial disruption in IECs. However, MitoQ pretreatment dramatically inhibited these deleterious effects. mtDNA depletion alone was sufficient to induce apoptosis and mitochondrial dysfunction of IECs. Mitochondrial transcription factor A (TFAM), a key activator of mitochondrial transcription, was significantly reduced during I/R injury, a phenomenon that was prevented by MitoQ treatment. Furthermore, we observed that thee protective properties of MitoQ were affected by upregulation of cellular antioxidant genes, including HO-1, NQO-1, and γ-GCLC. Transfection with Nrf2 siRNA in IECs exposed to hypoxia/reperfusion conditions partially blocked the effects of MitoQ on mtDNA damage and mitochondrial oxidative stress. In conclusion, our data suggest that MitoQ exerts protective effect on I/R-induced intestinal barrier dysfunction.
Collapse
|