1
|
Duan C, He B, Wang Y, Liu W, Bao W, Yu L, Xin J, Gui H, Lei J, Yang Z, Liu J, Tao W, Qin J, Luo J, Dong Z. Stanniocalcin-1 promotes temozolomide resistance of glioblastoma through regulation of MGMT. Sci Rep 2024; 14:20199. [PMID: 39215105 PMCID: PMC11364827 DOI: 10.1038/s41598-024-68902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Temozolomide (TMZ) resistance is a major challenge in the treatment of glioblastoma (GBM). Tumour reproductive cells (TRCs) have been implicated in the development of chemotherapy resistance. By culturing DBTRG cells in three-dimensional soft fibrin gels to enrich GBM TRCs and performing RNA-seq analysis, the expression of stanniocalcin-1 (STC), a gene encoding a secreted glycoprotein, was found to be upregulated in TRCs. Meanwhile, the viability of TMZ-treated TRC cells was significantly higher than that of TMZ-treated 2D cells. Analysis of clinical data from CGGA (Chinese Glioma Genome Atlas) database showed that high expression of STC1 was closely associated with poor prognosis, glioma grade and resistance to TMZ treatment, suggesting that STC1 may be involved in TMZ drug resistance. The expression of STC1 in tissues and cells was examined, as well as the effect of STC1 on GBM cell proliferation and TMZ-induced DNA damage. The results showed that overexpression of STC1 promoted and knockdown of STC1 inhibited TMZ-induced DNA damage. These results were validated in an intracranial tumour model. These data revealed that STC1 exerts regulatory functions on MGMT expression in GBM, and provides a rationale for targeting STC1 to overcome TMZ resistance.
Collapse
Affiliation(s)
- Chao Duan
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bincan He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yiqi Wang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wanying Liu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Yu
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jinxin Xin
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Hui Gui
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Junrong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Zehao Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Weiwei Tao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jun Qin
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Central Laboratory, Hubei Cancer Hospital, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Wang JB, Lin TX, Fan DH, Gao YX, Chen YJ, Wu YK, Xu KX, Qiu QZ, Li P, Xie JW, Lin JX, Chen QY, Cao LL, Huang CM, Zheng CH. CircUBA2 promotes the cancer stem cell-like properties of gastric cancer through upregulating STC1 via sponging miR-144-5p. Cancer Cell Int 2024; 24:276. [PMID: 39103836 DOI: 10.1186/s12935-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are critical factors that limit the effectiveness of gastric cancer (GC) therapy. Circular RNAs (circRNAs) are confirmed as important regulators of many cancers. However, their role in regulating CSC-like properties of GC remains largely unknown. Our study aimed to investigate the role of circUBA2 in CSC maintenance and the underlying mechanisms. METHODS We identified circUBA2 as an upregulated gene using circRNA microarray analysis. qRT-PCR was used to examine the circUBA2 levels in normal and GC tissues. In vitro and in vivo functional assays were performed to validate the role of circUBA2 in proliferation, migration, metastasis and CSC-like properties of GC cell. The relationship between circUBA2, miR-144-5p and STC1 was characterised using bioinformatics analysis, a dual fluorescence reporter system, FISH, and RIP assays. RESULTS CircUBA2 expression was significantly increased in GC tissues, and patients with GC with high circUBA2 expression had a poor prognosis. CircUBA2 enhances CSC-like properties of GC, thereby promoting cell proliferation, migration, and metastasis. Mechanistically, circUBA2 promoted GC malignancy and CSC-like properties by acting as a sponge for miR-144-5p to upregulate STC1 expression and further activate the IL-6/JAK2/STAT3 signaling pathway. More importantly, the ability of circUBA2 to enhance CSC-like properties was inhibited by tocilizumab, a humanised Interleukin-6 receptor (IL-6R) antibody. Thus, circUBA2 knockdown and tocilizumab synergistically inhibited CSC-like properties. CONCLUSIONS Our study demonstrated the critical role of circUBA2 in regulating CSC-like properties in GC. CircUBA2 may be a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tong-Xing Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Deng-Hui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Jing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Kai-Xiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qing-Zhu Qiu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Fujian Province Minimally Invasive Medical Center, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Wang C, Hu J, Wang L. Knockdown of Stanniocalcin-1 inhibits growth and glycolysis in oral squamous cell carcinoma cells. Open Life Sci 2024; 19:20220907. [PMID: 39071498 PMCID: PMC11282916 DOI: 10.1515/biol-2022-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy among head and neck squamous cell carcinomas. Targeted therapy plays a crucial role in the treatment of OSCC. However, new and more targets are still needed to develop. Stanniocalcin-1 (STC-1) is a glycoprotein hormone that affects the progression of cancers. However, the potential role of STC-1 in OSCC progression remains to be explored. Here, we aimed to elucidate the role of STC-1 in OSCC. We revealed that STC-1 was highly expressed in OSCC tissues and is correlated with poor patient prognosis. Knockdown of STC-1 significantly suppressed the growth of OSCC cells and restrained glycolysis by reducing glucose consumption, ATP production, and lactate levels. Mechanistically, STC-1 ablation inhibited the PI3K/Akt pathway, reducing the phosphorylation levels of PI3K and Akt. In conclusion, STC-1 depletion restrained OSCC cell growth and glycolysis via PI3K/Akt pathway and has the potential to serve as a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Chanyuan Wang
- Graduate School, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, 310053, China
- Department of Stomatology, Lishui People’s Hospital, Liandu District, Lishui, Zhejiang, 323000, China
| | - Jianpei Hu
- Department of Stomatology, Lishui People’s Hospital, No. 15 Dazhong Street, Liandu District, Lishui, Zhejiang, 323000, China
| | - Lijian Wang
- Department of Stomatology, Lishui People’s Hospital, Liandu District, Lishui, Zhejiang, 323000, China
| |
Collapse
|
4
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Du R, Tripathi S, Najem H, Brat DJ, Lukas RV, Zhang P, Heimberger AB. Glioblastoma Phagocytic Cell Death: Balancing the Opportunities for Therapeutic Manipulation. Cells 2024; 13:823. [PMID: 38786045 PMCID: PMC11119757 DOI: 10.3390/cells13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Macrophages and microglia are professional phagocytes that sense and migrate toward "eat-me" signals. The role of phagocytic cells is to maintain homeostasis by engulfing senescent or apoptotic cells, debris, and abnormally aggregated macromolecules. Usually, dying cells send out "find-me" signals, facilitating the recruitment of phagocytes. Healthy cells can also promote or inhibit the phagocytosis phenomenon of macrophages and microglia by tuning the balance between "eat-me" and "don't-eat-me" signals at different stages in their lifespan, while the "don't-eat-me" signals are often hijacked by tumor cells as a mechanism of immune evasion. Using a combination of bioinformatic analysis and spatial profiling, we delineate the balance of the "don't-eat-me" CD47/SIRPα and "eat-me" CALR/STC1 ligand-receptor interactions to guide therapeutic strategies that are being developed for glioblastoma sequestered in the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruochen Du
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rimas V. Lukas
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
6
|
Xia J, Zhang Y, Wang Q, Zhang T. Cycloastragenol restrains keratinocyte hyperproliferation by promoting autophagy via the miR-145/STC1/Notch1 axis in psoriasis. Immunopharmacol Immunotoxicol 2024; 46:229-239. [PMID: 38194243 DOI: 10.1080/08923973.2023.2300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.
Collapse
Affiliation(s)
- Jie Xia
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
- Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, P.R. China
| | - Yuan Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Qing Wang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Teng Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| |
Collapse
|
7
|
Wen J, Ding Y, Zheng S, Li X, Xiao Y. Sevoflurane Suppresses Glioma Cell Proliferation, Migration, and Invasion Both In Vitro and In Vivo Partially Via Regulating KCNQ1OT1/miR-146b-5p/STC1 Axis. Cancer Biother Radiopharm 2024; 39:105-116. [PMID: 32996777 DOI: 10.1089/cbr.2020.3762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Sevoflurane (Sev), a volatile anesthetic agent, is widely used in neurosurgery for anesthesia maintenance, accompanied with antitumor activity postanesthesia in multiple human cancers, including glioma. However, the molecular mechanism of Sev in glioma is largely unclear, including associated informative noncoding RNAs, such as long noncoding RNAs (lncRNA) and microRNAs (miRNAs). Methods: Expression of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), miRNA (miR)-146b-5p, and stanniocalcin-1 (STC1) was measured by real-time quantitative polymerase chain reaction and Western blotting. Cell proliferation, apoptosis, migration, and invasion in vitro were examined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, fluorescence-activated cell sorting method, and transwell assays, respectively. Tumor growth in vivo was determined by xenograft models. The direct interaction between genes was confirmed by dual-luciferase reporter assay. Results: Sev enhanced apoptotic rate, but inhibited cell viability, migration, and invasion abilities of human glioma A172 and U251 cells in vitro, as well as tumor growth inhibition in vivo. The tumor-suppressive role of Sev in glioma was accompanied with downregulated KCNQ1OT1 and STC1, and upregulated miR-146b-5p. Overexpression of KCNQ1OT1 through transfection reversed, while KCNQ1OT1 silencing aggravated the antitumor role of Sev in A172 and U251 cells. Moreover, KCNQ1OT1-mediated tumor-promoting activity in A172 and U251 cells under Sev treatment was abrogated by miR-146b-5p restoration or STC1 deletion. Essentially, KCNQ1OT1 could positively regulate STC1 by acting as miR-146b-5p decoy. Conclusion: KCNQ1OT1 knockdown mediated the role of Sev in glioma cell proliferation, apoptosis, migration, and invasion both in vitro and in vivo through miR-146b-5p/STC1 pathway.
Collapse
Affiliation(s)
- Jian Wen
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Ding
- Key laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ying Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
9
|
Xu W, Han L, Zhu P, Cheng Y, Chen X. Development of a prognostic model for glioblastoma multiforme based on the expression levels of efferocytosis-related genes. Aging (Albany NY) 2023; 15:15578-15598. [PMID: 38159261 PMCID: PMC10781462 DOI: 10.18632/aging.205422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. The microenvironment of GBM is characterized by its highly immunosuppressive nature with infiltration of immunosuppressive cells and the expression levels of cytokines. Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. Efferocytosis plays a noticeable function in the formation of immunosuppressive environment. This study aimed to develop an efferocytosis-related prognostic model for GBM. The bioinformatic methods were utilized to analyze the transcriptomic data of GBM and normal samples. Clinical and RNA-seq data were sourced from TCGA database comprising 167 tumor samples and 5 normal samples, and 167 tumor samples for which survival information was available. Transcriptomic data of 1034 normal samples were collected from the Genotype-Tissue Expression (GTEx) database as a control sample supplement to the TCGA database. In the end, 167 tumor samples and 1039 normal samples were obtained for transcriptome analysis. Efferocytosis-related differentially expressed genes (ERDEGs) were obtained by intersecting 7487 differentially expressed genes (DEGs) between GBM and normal samples along with 1189 hub genes. Functional enrichment analyses revealed that ERDEGs were mainly involved in cytokine-mediated immune responses. Moreover, 9 prognosis-related genes (PRGs) were identified by the least absolute shrinkage and selection operator (LASSO) regression analysis, and a prognostic model was therefore developed. The nomogram combining age and risk score could effectively predict GBM patients' prognosis. GBM patients in the high-risk group had higher immune infiltration, invasion, epithelial-mesenchymal transition, angiogenesis scores and poorer tumor purity. In addition, the high-risk group exhibited higher half maximal inhibitory concentration (IC50) values for temozolomide, carmustine, and vincristine. Expression analysis indicated that PRGs were overexpressed in GBM cells. PDIA4 knockdown reduced efferocytosis in vitro. In summary, the proposed prognostic model for GBM based on efferocytosis-related genes exhibited a robust performance.
Collapse
Affiliation(s)
- Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, Jinan 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Pengfei Zhu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| |
Collapse
|
10
|
Oxvig C, Conover CA. The Stanniocalcin-PAPP-A-IGFBP-IGF Axis. J Clin Endocrinol Metab 2023; 108:1624-1633. [PMID: 36718521 DOI: 10.1210/clinem/dgad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The pappalysin metalloproteinases, PAPP-A and PAPP-A2, have emerged as highly specific proteolytic enzymes involved in the regulation of insulin-like growth factor (IGF) signaling. The only known pappalysin substrates are a subset of the IGF binding proteins (IGFBPs), which bind IGF-I or IGF-II with high affinity to antagonize receptor binding. Thus, by cleaving IGFBPs, the pappalysins have the potential to increase IGF bioactivity and hence promote IGF signaling. This is relevant both in systemic and local IGF regulation, in normal and several pathophysiological conditions. Stanniocalcin-1 and -2 were recently found to be potent pappalysin inhibitors, thus comprising the missing components of a complete proteolytic system, the stanniocalcin-PAPP-A-IGFBP-IGF axis. Here, we provide the biological context necessary for understanding the properties of this molecular network, and we review biochemical data, animal experiments, clinical data, and genetic data supporting the physiological operation of this branch as an important part of the IGF system. However, although in vivo data clearly illustrate its power, it is a challenge to understand its subtle operation, for example, multiple equilibria and inhibitory kinetics may determine how, where, and when the IGF receptor is stimulated. In addition, literally all of the regulatory proteins have suspected or known activities that are not directly related to IGF signaling. How such activities may integrate with IGF signaling is also important to address in the future.
Collapse
Affiliation(s)
- Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 C, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Bai S, Zhao Y, Chen W, Peng W, Wang Y, Xiong S, Li Y, Yang Y, Chen S, Cheng B, Wang R. The stromal-tumor amplifying STC1-Notch1 feedforward signal promotes the stemness of hepatocellular carcinoma. J Transl Med 2023; 21:236. [PMID: 37004088 PMCID: PMC10067215 DOI: 10.1186/s12967-023-04085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment (TME), play crucial roles in tumor stemness. It has been shown in various cancer studies that stanniocalcin-1 (STC1) is secreted by CAFs, however, its function in HCC is still not clear. METHODS The serum concentration and intracellular expression level of STC1 were quantified by ELISA and western blotting, respectively. The role of CAF-derived STC1 in HCC stemness was investigated by sphere formation, sorafenib resistance, colony formation, and transwell migration and invasion assays in vitro and in an orthotopic liver xenograft model in vivo. An HCC tissue microarray containing 72 samples was used to evaluate the expression of STC1 and Notch1 in HCC tissues. Coimmunoprecipitation (CoIP) and dual-luciferase reporter assays were performed to further explore the underlying mechanisms. ELISAs were used to measure the serum concentration of STC1 in HCC patients. RESULTS We demonstrated that CAFs were the main source of STC1 in HCC and that CAF-derived STC1 promoted HCC stemness through activation of the Notch signaling pathway. In HCC patients, the expression of STC1 was positively correlated with Notch1 expression and poor prognosis. The co-IP assay showed that STC1 directly bound to Notch1 receptors to activate the Notch signaling pathway, thereby promoting the stemness of HCC cells. Our data further demonstrated that STC1 was a direct transcriptional target of CSL in HCC cells. Furthermore, ELISA revealed that the serum STC1 concentration was higher in patients with advanced liver cancer than in patients with early liver cancer. CONCLUSIONS CAF-derived STC1 promoted HCC stemness via the Notch1 signaling pathway. STC1 might serve as a potential biomarker for the prognostic assessment of HCC, and the stromal-tumor amplifying STC1-Notch1 feedforward signal could constitute an effective therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shiru Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Cao Y, Chen E, Wang X, Song J, Zhang H, Chen X. An emerging master inducer and regulator for epithelial-mesenchymal transition and tumor metastasis: extracellular and intracellular ATP and its molecular functions and therapeutic potential. Cancer Cell Int 2023; 23:20. [PMID: 36750864 PMCID: PMC9903449 DOI: 10.1186/s12935-023-02859-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.
Collapse
Affiliation(s)
- Yanyang Cao
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Eileen Chen
- grid.20627.310000 0001 0668 7841Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Xuan Wang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Jingwen Song
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Haiyun Zhang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, USA. .,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, USA. .,The Edison Biotechnology Institute, Ohio University, Athens, OH, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA. .,Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
13
|
Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci 2022; 23:ijms232314770. [PMID: 36499099 PMCID: PMC9740946 DOI: 10.3390/ijms232314770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.
Collapse
|
14
|
Tatomir A, Cuevas J, Badea TC, Muresanu DF, Rus V, Rus H. Role of RGC-32 in multiple sclerosis and neuroinflammation – few answers and many questions. Front Immunol 2022; 13:979414. [PMID: 36172382 PMCID: PMC9510783 DOI: 10.3389/fimmu.2022.979414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in understanding the pathogenesis of multiple sclerosis (MS) have brought into the spotlight the major role played by reactive astrocytes in this condition. Response Gene to Complement (RGC)-32 is a gene induced by complement activation, growth factors, and cytokines, notably transforming growth factor β, that is involved in the modulation of processes such as angiogenesis, fibrosis, cell migration, and cell differentiation. Studies have uncovered the crucial role that RGC-32 plays in promoting the differentiation of Th17 cells, a subtype of CD4+ T lymphocytes with an important role in MS and its murine model, experimental autoimmune encephalomyelitis. The latest data have also shown that RGC-32 is involved in regulating major transcriptomic changes in astrocytes and in favoring the synthesis and secretion of extracellular matrix components, growth factors, axonal growth molecules, and pro-astrogliogenic molecules. These results suggest that RGC-32 plays a major role in driving reactive astrocytosis and the generation of astrocytes from radial glia precursors. In this review, we summarize recent advances in understanding how RGC-32 regulates the behavior of Th17 cells and astrocytes in neuroinflammation, providing insight into its role as a potential new biomarker and therapeutic target.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jacob Cuevas
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Neurology Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
- *Correspondence: Horea Rus,
| |
Collapse
|
15
|
Yuan Y, Wang L, Zhao X, Wang J, Zhang M, Ma Q, Wei S, Yan Z, Cheng Y, Chen X, Zou H, Ge J, Wang Y, Zhang X, Cui Y, Luo T, Bian X. The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress glioblastoma progression. Cancer Commun (Lond) 2022; 42:868-886. [PMID: 35848447 PMCID: PMC9456703 DOI: 10.1002/cac2.12334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Elucidation of the post-transcriptional modification has led to novel strategies to treat intractable tumors, especially glioblastoma (GBM). The ubiquitin-proteasome system (UPS) mediates a reversible, stringent and stepwise post-translational modification which is closely associated with malignant processes of GBM. To this end, developing novel therapeutic approaches to target the UPS may contribute to the treatment of this disease. This study aimed to screen the vital and aberrantly regulated component of the UPS in GBM. Based on the molecular identification, functional characterization, and mechanism investigation, we sought to elaborate a novel therapeutic strategy to target this vital factor to combat GBM. METHODS We combined glioma datasets and human patient samples to screen and identify aberrantly regulated E3 ubiquitin ligase. Multidimensional database analysis and molecular and functional experiments in vivo and in vitro were used to evaluate the roles of HECT, UBA and WWE domain-containing E3 ubiquitin ligase 1 (HUWE1) in GBM. dCas9 synergistic activation mediator system and recombinant adeno-associated virus (rAAV) were used to endogenously overexpress full-length HUWE1 in vitro and in glioma orthotopic xenografts. RESULTS Low expression of HUWE1 was closely associated with worse prognosis of GBM patients. The ubiquitination and subsequent degradation of N-Myc mediated by HUWE1, leading to the inactivation of downstream Delta-like 1 (DLL1)-NOTCH1 signaling pathways, inhibited the proliferation, invasion, and migration of GBM cells in vitro and in vivo. A rAAV dual-vector system for packaging and delivery of dCas9-VP64 was used to augment endogenous HUWE1 expression in vivo and showed an antitumor activity in glioma orthotopic xenografts. CONCLUSIONS The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress GBM progression. Antitumor activity of rAAV dual-vector delivering dCas9-HUWE1 system uncovers a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Li‐Hong Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Xian‐Xian Zhao
- Department of Clinical LaboratorySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Meng‐Si Zhang
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Qing‐Hua Ma
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Ze‐Xuan Yan
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Yue Cheng
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Xiao‐Qing Chen
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Hong‐Bo Zou
- Department of Oncologythe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Jia Ge
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - You‐Hong Cui
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
| | - Xiu‐Wu Bian
- Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of ChinaChongqing400038P. R. China
- Bio‐Bank of Southwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| |
Collapse
|
16
|
Circular RNA circPOSTN promotes neovascularization by regulating miR-219a-2-3p/STC1 axis and stimulating the secretion of VEGFA in glioblastoma. Cell Death Dis 2022; 8:349. [PMID: 35927233 PMCID: PMC9352789 DOI: 10.1038/s41420-022-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM), the most malignant type of astrocytic tumor, is one of the deadliest cancers prevalent in adults. Along with tumor growth, patients with GBM generally suffer from extensive cerebral edema and apparent symptoms of intracranial hyper-pressure. Accumulating evidence has demonstrated that circRNA plays a critically important role in tumorigenesis and progression. However, the biological function and the underlying mechanism of circRNA in GBM remain elusive. In this study, by conducting gene expression detection based on 15 pairs of GBM clinical specimens and the normal adjunct tissues, we observed that circPOSTN showed abnormally higher expression in GBM. Both loss-of-function and gain-of-function biological experiments demonstrated that circPOSTN scheduled the proliferation, migration, and neovascularization abilities of GBM cells. Further, fluorescence in situ hybridization (FISH) assay, quantitative RT-PCR, and subcellular separation suggested that circPOSTN was predominately localized in the cytoplasm and may serve as a competing endogenous RNA (ceRNA). CircRNA-miRNA interaction prediction based on online analytical processing, AGO2-RIP assay, biotin labeled RNA pulldown assay, and dual-luciferase reporter assay revealed that circPOSTN sponged miR-219a-2-3p, limited its biological function, and ultimately upregulated their common downstream gene STC1. Finally, by carrying out in vitro and in vivo functional assays, we uncovered a new regulatory axis circPOSTN/miR-219a-2-3p/STC1 that promoted GBM neovascularization by increasing vascular endothelial growth factor A (VEGFA) secretion. Our study underscores the critical role of circPOSTN in GBM progression, providing a novel insight into GBM anti-tumor therapy.
Collapse
|
17
|
Gundamaraju R, Wu J, William JNG, Lu W, Jha NK, Ramasamy S, Rao PV. Ascendancy of unfolded protein response over glioblastoma: estimating progression, prognosis and survival. Biotechnol Genet Eng Rev 2022; 39:143-165. [PMID: 35904341 DOI: 10.1080/02648725.2022.2106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is presented with a poor prognosis. The endoplasmic reticulum stress (ERS) has been implicated as a major contributor to disease progression and chemoresistance in GBM. Triggering ERS by chemical agents or genetic modulations is identified as some of the reasons for regulating gene expression and the pathogenesis of GBM. ERS initiates unfolded protein response (UPR), an integrated system useful in restoring homeostasis or inducing apoptosis. Modulation of UPR might have positive outcomes in GBM treatment as UPR inducers have been shown to alter cell survival and migration. In the current review, we have utilized GSE7806, a publicly available dataset from Gene Expression Omnibus (GEO), to evaluate the genes expressed during 6.5 hr and 18 hr, which can be comparable to the early and late-onset of the disease. Subsequently, we have elucidated the prognosis and survival information whilst the expression of these genes in the GBM was noted in previous studies. This is the first of its kind review summarizing the most recent gene information correlating UPR and GBM.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jonahunnatha Nesson George William
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), Ageing Research Center and Translational medicine-CeSI-MeT, "G. d'Annunzio" University Chieti-Pescara, Chieti, Italy
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of engineering and Technology, Sharda University, Greater Noida, UP, Indonesia
| | | | - Pasupuleti Visweswara Rao
- f Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.,g Department of Biotechnology, School of applied and Life Sciences, Uttaranchal University, Dehradun, 248007, India.,h Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,i Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.,j Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Riau, Indonesia
| |
Collapse
|
18
|
Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep 2022; 39:110785. [PMID: 35545045 PMCID: PMC9535675 DOI: 10.1016/j.celrep.2022.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury. Leinroth et al. explore the heterogeneity of Pdgfra+ muscle-resident mesenchymal cells, demonstrating that Pdgfra+ subpopulations have unique gene expression profiles, exhibit two distinct cell trajectories from a common progenitor, differ in their abilities to respond to muscle injuries, and show variable adipogenic and mineralizing capacities.
Collapse
|
19
|
Wang Y, Cheng Y, Yang Q, Kuang L, Liu G. Overexpression of FOXD2-AS1 enhances proliferation and impairs differentiation of glioma stem cells by activating the NOTCH pathway via TAF-1. J Cell Mol Med 2022; 26:2620-2632. [PMID: 35419917 PMCID: PMC9077300 DOI: 10.1111/jcmm.17268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging data have highlighted the importance of long noncoding RNAs (lncRNAs) in exerting critical biological functions and roles in different forms of brain cancer, including gliomas. In this study, we sought to investigate the role of lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) in glioma cells. First, we used sphere formation assay and flow cytometry to select U251 glioma stem cells (GSCs). Then, we quantified the expression of lncRNA FOXD2-AS1, TATA-box binding protein associated factor 1 (TAF-1) and NOTCH1 in glioma tissues and GSCs, as well as the expression of GSC stem markers, OCT4, SOX2, Nanog, Nestin and CD133 in GSCs. Colony formation assay, sphere formation assay, and flow cytometry were used to evaluate GSC stemness. Next, the correlations among lncRNA FOXD2-AS1, TAF-1 and NOTCH1 were investigated. LncRNA FOXD2-AS1, TAF-1 and NOTCH1 were found to be elevated in glioma tissues and GSCs, and silencing lncRNA FOXD2-AS1 inhibited stemness and proliferation, while promoting apoptosis and differentiation of GSCs. LncRNA FOXD2-AS1 overexpression also led to increased NOTCH1 by recruiting TAF-1 to the NOTCH1 promoter region, thereby promoting stemness and proliferation, while impairing cell apoptosis and differentiation. Mechanistically, lncRNA FOXD2-AS1 elevation promoted glioma in vivo by activating the NOTCH signalling pathway via TAF-1 upregulation. Taken together, the key findings of our investigation support the proposition that downregulation of lncRNA FOXD2-AS1 presents a viable and novel molecular candidate for improving glioma treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurotumor Disease Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanli Cheng
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qi Yang
- Department of Orthopeadic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lei Kuang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guolei Liu
- Department of Otorhinolaryngology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Lin F, Li X, Wang X, Sun H, Wang Z, Wang X. Stanniocalcin 1 promotes metastasis, lipid metabolism and cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:129. [PMID: 35392966 PMCID: PMC8988421 DOI: 10.1186/s13046-022-02315-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stanniocalcin 1 (STC1) plays an integral role in ovarian cancer (OC). However, the functional role of STC1 in metastasis, lipid metabolism and cisplatin (DDP) chemoresistance in OC is not fully understood. METHODS Single-cell sequencing and IHC analysis were performed to reveal STC1 expression profiles in patient tissues. Metastasis, lipid metabolism and DDP chemoresistance were subsequently assessed. Cell-based in vitro and in vivo assays were subsequently conducted to gain insight into the underlying mechanism of STC1 in OC. RESULTS Single-cell sequencing assays and IHC analysis verified that STC1 expression was significantly enhanced in OC tissues compared with para-carcinoma tissues, and it was further up-regulated in peritoneal metastasis tissues compared with OC tissues. In vitro and in vivo experiments demonstrated that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance in OC. Simultaneously, STC1 promoted lipid metabolism by up-regulating lipid-related genes such as UCP1, TOM20 and perilipin1. Mechanistically, STC1 directly bound to integrin β6 (ITGB6) to activate the PI3K signaling pathway. Moreover, STC1 was directly regulated by Forkhead box C2 (FOXC2) in OC. Notably, targeting STC1 and the FOXC2/ITGB6 signaling axis was related to DDP chemoresistance in vitro. CONCLUSIONS Overall, these findings revealed that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance via the FOXC2/ITGB6 signaling axis in OC. Thus, STC1 may be used as a prognostic indicator in patients with metastatic OC. Meanwhile, STC1 could be a therapeutic target in OC patients, especially those who have developed chemoresistance to DDP.
Collapse
Affiliation(s)
- Feikai Lin
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Xinjing Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Ziliang Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
21
|
Jun Q, Luo W. Early-stage serum Stanniocalcin 1 as a predictor of outcome in patients with aneurysmal subarachnoid hemorrhage. Medicine (Baltimore) 2021; 100:e28222. [PMID: 34941085 PMCID: PMC8701780 DOI: 10.1097/md.0000000000028222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Stanniocalcin-1 (STC1) takes part in anti-inflammatory and anti-oxidative processes, thus demonstrating neuroprotective properties. Early brain injuries associated with initial subarachnoid hemorrhage typically led to secondary cerebral infarction and poor outcomes. This retrospective study aimed to clarify the clinical significance of serum STC1 level in patients with subarachnoid hemorrhage.We collected demographic information, comorbidities, neurological status in detail. All blood samples were collected on admission. Enzyme-linked immunosorbent assay kits were used to detect the serum level of STC1. Spearman analysis was used to explore the relationship between STC1 and clinical severity. Multivariate logistic regression was used to investigate the prognostic role of STC1 in patients with aneurysmal subarachnoid hemorrhage (aSAH). Receiver operating characteristic curve was performed to investigate the power of STC1 in predicting outcome in aSAH patients.Serum STC1 concentration was significantly higher in aSAH patients than in healthy individuals. Serum concentration of STC1 positively correlated with Hunt-Hess grade (r = 0.62, P < .01) and Fisher grade (r = 0.48, P < .01), and negatively correlated with Glasgow Coma Scale on admission (r = -0.45, P < .01). Patients with delayed cerebral ischemia (DCI) had higher level of serum STC1 than those without DCI (13.12 ± 1.44 vs 8.56 ± 0.31, P < .01). Moreover, patients with poor outcome had higher concentration of STC1 than patients with good outcome (11.82 ± 0.62 vs 8.21 ± 0.35,P < 0.01). Results of univariate and multivariate logistic analysis revealed that Hunt-hess III-IV, DCI, and high STC1 level were independent risk factors associated with poor outcome of patients with aSAH. Further analysis revealed that combination of STC1 with Hunt-hess grade was more superior to 2 indicators alone in predicting clinical outcome of aSAH patients.STC1 can be used as a novel biomarker in predicting outcome of patients with aSAH, especially when combined with Hunt-hess grade.
Collapse
Affiliation(s)
- Qin Jun
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Liuzhou City, Guangxi, China
| | - Weijian Luo
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji’nan University, Shenzhen, China
| |
Collapse
|
22
|
Wang Y, Yu Z, Fan Z, Fang Y, He L, Peng M, Chen Y, Hu Z, Zhao K, Zhang H, Liu C. Cardiac developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to Mancozeb. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112798. [PMID: 34592528 DOI: 10.1016/j.ecoenv.2021.112798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Mancozeb (MZ), an antibacterial pesticide, has been linked to reproductive toxicity, neurotoxicity, and endocrine disruption. However, whether MZ has cardiactoxicity is unclear. In this study, the cardiotoxic effects of exposure to environment-related MZ concentrations ranging from 1.88 μM to 7.52 μM were evaluated at the larval stage of zebrafish. Transcriptome sequencing predicted the mechanism of MZ-induced cardiac developmental toxicity in zebrafish by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Consistent with morphological changes, the osm, pfkfb3, foxh1, stc1, and nrarpb genes may effect normal development of zebrafish heart by activating NOTCH signaling pathways, resulting in pericardial edema, myocardial fibrosis, and congestion in the heart area. Moreover, differential gene expression analysis indicated that cyp-related genes (cyp1c2 and cyp3c3) were significantly upregulated after MZ treatment, which may be related to apoptosis of myocardial cells. These results were verified by real-time quantitative RT-qPCR and acridine orange staining. Our findings suggest that MZ-mediated cardiotoxic development of zebrafish larvae may be related to the activation of Notch and apoptosis-related signaling pathways.
Collapse
Affiliation(s)
- Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Meili Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
23
|
Sun J, Wei X, You J, Yue W, Ouyang J, Ling Z, Hou J. STC1 is a Novel Biomarker Associated with Immune Characteristics and Prognosis of Bladder Cancer. Int J Gen Med 2021; 14:5505-5516. [PMID: 34539184 PMCID: PMC8445105 DOI: 10.2147/ijgm.s329723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stanniocalcin-1 (STC1) is a well-studied oncogene that promotes different types of cancer progression. However, the expression status of STC1, the values of STC1 on prognosis, and its immune characteristic in bladder cancer (BLCA) have not been well examined. Methods The expression of STC1 and its clinicopathological as well as immune characteristics in BLCA samples were firstly identified in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Immunohistochemistry (IHC) performed on the tissue microarray (TMA) slide was further used to validate the expression of STC1 and its relationship with immune features in 16 non-muscle invasive bladder cancer (NMIBC) samples and 42 muscle invasive bladder cancer (MIBC) samples. Results The expression of STC1 was upregulated in higher stage BLCA. High STC1 expression also predicted poor prognosis in BLCA. Subsequently, the TMA validated the expression and prognostic value of STC1 in BLCA. Bioinformatics analysis demonstrated that STC1 and common immune checkpoints as well as immune markers of various immune cells were positively correlated in TCGA. In addition, IHC data from the TMA further validated that tumor cells with higher STC1 level tended to express higher PDL1 as well as increased infiltration of CD3+ T cells. Conclusion To our knowledge, this is the first comprehensive study that investigates the clinical and immune characteristics of STC1 in BLCA. It may provide new insight into the function of STC1 in regulating tumor immune microenvironment. Further studies are warranted to uncover the potential mechanisms that mediate STC1 expression and tumor immunity in BLCA.
Collapse
Affiliation(s)
- Jiale Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wenchang Yue
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
24
|
Tatomir A, Beltrand A, Nguyen V, Courneya JP, Boodhoo D, Cudrici C, Muresanu DF, Rus V, Badea TC, Rus H. RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Front Immunol 2021; 12:705308. [PMID: 34394104 PMCID: PMC8358671 DOI: 10.3389/fimmu.2021.705308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-β signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-β. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-β-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, United States
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
25
|
Unlocking the Secrets of Cancer Stem Cells with γ-Secretase Inhibitors: A Novel Anticancer Strategy. Molecules 2021; 26:molecules26040972. [PMID: 33673088 PMCID: PMC7917912 DOI: 10.3390/molecules26040972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer's disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.
Collapse
|
26
|
A Novel Glucose Metabolism-Related Gene Signature for Overall Survival Prediction in Patients with Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8872977. [PMID: 33553434 PMCID: PMC7847336 DOI: 10.1155/2021/8872977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Introduction Glioblastoma (GBM) is one of the most frequent primary intracranial malignancies, with limited treatment options and poor overall survival rates. Alternated glucose metabolism is a key metabolic feature of tumour cells, including GBM cells. However, due to high cellular heterogeneity, accurately predicting the prognosis of GBM patients using a single biomarker is difficult. Therefore, identifying a novel glucose metabolism-related biomarker signature is important and may contribute to accurate prognosis prediction for GBM patients. Methods In this research, we performed gene set enrichment analysis and profiled four glucose metabolism-related gene sets containing 327 genes related to biological processes. Univariate and multivariate Cox regression analyses were specifically completed to identify genes to build a specific risk signature, and we identified ten mRNAs (B4GALT7, CHST12, G6PC2, GALE, IL13RA1, LDHB, SPAG4, STC1, TGFBI, and TPBG) within the Cox proportional hazards regression model for GBM. Results Depending on this glucose metabolism-related gene signature, we divided patients into high-risk (with poor outcomes) and low-risk (with satisfactory outcomes) subgroups. The results of the multivariate Cox regression analysis demonstrated that the prognostic potential of this ten-gene signature is independent of clinical variables. Furthermore, we used two other GBM databases (Chinese Glioma Genome Atlas (CGGA) and REMBRANDT) to validate this model. In the functional analysis results, the risk signature was associated with almost every step of cancer progression, such as adhesion, proliferation, angiogenesis, drug resistance, and even an immune-suppressed microenvironment. Moreover, we found that IL31RA expression was significantly different between the high-risk and low-risk subgroups. Conclusion The 10 glucose metabolism-related gene risk signatures could serve as an independent prognostic factor for GBM patients and might be valuable for the clinical management of GBM patients. The differential gene IL31RA may be a potential treatment target in GBM.
Collapse
|
27
|
Tse SW, Tan CF, Park JE, Gnanasekaran J, Gupta N, Low JK, Yeoh KW, Chng WJ, Tay CY, McCarthy NE, Lim SK, Sze SK. Microenvironmental Hypoxia Induces Dynamic Changes in Lung Cancer Synthesis and Secretion of Extracellular Vesicles. Cancers (Basel) 2020; 12:E2917. [PMID: 33050615 PMCID: PMC7601203 DOI: 10.3390/cancers12102917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) mediate critical intercellular communication within healthy tissues, but are also exploited by tumour cells to promote angiogenesis, metastasis, and host immunosuppression under hypoxic stress. We hypothesize that hypoxic tumours synthesize hypoxia-sensitive proteins for packing into EVs to modulate their microenvironment for cancer progression. In the current report, we employed a heavy isotope pulse/trace quantitative proteomic approach to study hypoxia sensitive proteins in tumour-derived EVs protein. The results revealed that hypoxia stimulated cells to synthesize EVs proteins involved in enhancing tumour cell proliferation (NRSN2, WISP2, SPRX1, LCK), metastasis (GOLM1, STC1, MGAT5B), stemness (STC1, TMEM59), angiogenesis (ANGPTL4), and suppressing host immunity (CD70). In addition, functional clustering analyses revealed that tumour hypoxia was strongly associated with rapid synthesis and EV loading of lysosome-related hydrolases and membrane-trafficking proteins to enhance EVs secretion. Moreover, lung cancer-derived EVs were also enriched in signalling molecules capable of inducing epithelial-mesenchymal transition in recipient cancer cells to promote their migration and invasion. Together, these data indicate that lung-cancer-derived EVs can act as paracrine/autocrine mediators of tumorigenesis and metastasis in hypoxic microenvironments. Tumour EVs may, therefore, offer novel opportunities for useful biomarkers discovery and therapeutic targeting of different cancer types and at different stages according to microenvironmental conditions.
Collapse
Affiliation(s)
- Shun Wilford Tse
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Chee Fan Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - JebaMercy Gnanasekaran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Nikhil Gupta
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Sai Kiang Lim
- Institute of Medical Biology, Singapore 138648, Singapore;
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| |
Collapse
|
28
|
Peng F, Xu J, Cui B, Liang Q, Zeng S, He B, Zou H, Li M, Zhao H, Meng Y, Chen J, Liu B, Lv S, Chu P, An F, Wang Z, Huang J, Zhan Y, Liao Y, Lu J, Xu L, Zhang J, Sun Z, Li Z, Wang F, Lam EWF, Liu Q. Oncogenic AURKA-enhanced N 6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res 2020; 31:345-361. [PMID: 32859993 DOI: 10.1038/s41422-020-00397-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
RNase III DROSHA is upregulated in multiple cancers and contributes to tumor progression by hitherto unclear mechanisms. Here, we demonstrate that DROSHA interacts with β-Catenin to transactivate STC1 in an RNA cleavage-independent manner, contributing to breast cancer stem-like cell (BCSC) properties. DROSHA mRNA stability is enhanced by N6-methyladenosine (m6A) modification which is activated by AURKA in BCSCs. AURKA stabilizes METTL14 by inhibiting its ubiquitylation and degradation to promote DROSHA mRNA methylation. Moreover, binding of AURKA to DROSHA transcript further strengthens the binding of the m6A reader IGF2BP2 to stabilize m6A-modified DROSHA. In addition, wild-type DROSHA, but not an m6A methylation-deficient mutant, enhances BCSC stemness maintenance, while inhibition of DROSHA m6A modification attenuates BCSC traits. Our study unveils the AURKA-induced oncogenic m6A modification as a key regulator of DROSHA in breast cancer and identifies a novel DROSHA transcriptional function in promoting the BCSC phenotype.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Qilan Liang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Sai Zeng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Hong Zou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Manman Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Huan Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuting Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jin Chen
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, 116023, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shasha Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Peng Chu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Junxiu Huang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yajing Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuwei Liao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lingzhi Xu
- Department of Oncology, the Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Jin Zhang
- The 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, Tianjin, 300060, China
| | - Zhaolin Sun
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, 116023, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China. .,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
29
|
Luo W, Chen D, Wang H, Hu J. Stanniocalcin 1 is a prognostic biomarker in glioma. Oncol Lett 2020; 20:2248-2256. [PMID: 32782542 PMCID: PMC7400771 DOI: 10.3892/ol.2020.11792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas are the most common type of primary malignancy of the central nervous system with a poor prognosis. Stanniocalcin 1 (STC1) is closely associated with tumor genesis and development. However, its role in the development and progression of glioma is poorly understood. In silico analysis, The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt and GSE16011 datasets were used to assess the expression levels of STC1 in non-tumor brain tissues and gliomas. Moreover, reverse transcription-quantitative PCR and immunohistochemistry were used to detect STC1 expression in tumor tissues collected in the Department of Neurosurgery of Shenzhen People's Hospital (Shenzhen, China). The association between STC1 expression and different molecular pathological features was analyzed in four public datasets, as well as via Kaplan-Meier analysis. Furthermore, normalized mRNA expression in TCGA was used to perform Gene Ontology analysis. It was revealed that STC1 expression was significantly elevated in glioma tissues compared with the non-tumor brain tissues, both in silico analysis and via cohort validation. According to TCGA, CGGA, Rembrandt and GSE16011 datasets, it was identified that STC1 expression was increased in high grade glioma compared with low grade glioma. In addition, the results indicated STC1 expression was enriched in the isocitrate dehydrogenase (IDH) wild-type and mesenchymal subtype in TCGA, GSE16011 and Rembrandt datasets. Moreover, it was demonstrated that patients with higher STC1 expression exhibited shorter overall survival times compared with those with lower STC1 expression using Kaplan-Meier analysis, according to both the public datasets and validation cohort. Furthermore, the results of the Gene Ontology analysis demonstrated that STC1 was primarily involved in the reorganization of extracellular matrix and was significantly correlated with invasive-related proteins. Therefore, the present results indicate that STC1 was upregulated in glioma tissues and may represent a prognostic biomarker in patients with glioma.
Collapse
Affiliation(s)
- Weijian Luo
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dong Chen
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Ji'nan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
30
|
miR-137: A Novel Therapeutic Target for Human Glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:614-622. [PMID: 32736290 PMCID: PMC7393316 DOI: 10.1016/j.omtn.2020.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miR)-137 is highly expressed in the brain and plays a crucial role in the development and prognosis of glioma. In this review, we aim to summarize the latest findings regarding miR-137 in glioma cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. In addition, we focus on the identified miR-137 targets and pathways in the occurrence and development of glioma. Finally, future implications for the diagnostic and therapeutic potential of miR-137 in glioma were discussed.
Collapse
|
31
|
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. J Transl Med 2020; 100:812-823. [PMID: 31949244 DOI: 10.1038/s41374-019-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.
Collapse
|
32
|
Jary M, Hasanova R, Vienot A, Asgarov K, Loyon R, Tirole C, Bouard A, Orillard E, Klajer E, Kim S, Viot J, Colle E, Adotevi O, Bouché O, Lecomte T, Borg C, Feugeas JP. Molecular description of ANGPT2 associated colorectal carcinoma. Int J Cancer 2020; 147:2007-2018. [PMID: 32222972 DOI: 10.1002/ijc.32993] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Angiopoietin-2 (ANGPT2) is a prognostic factor in metastatic colorectal cancer (CRC). Nevertheless, it remains to be elucidated which molecular characteristics make up the ANGPT2-related poor-prognosis CRC subset. Public transcriptomic datasets were collected from Gene Expression Omnibus GEO and with the TCGAbiolinks R-package for the TCGA. After appropriate normalization, differential expression analysis was performed using Benjamini and Hochberg method for false discovery rate. Plasma from two prospective clinical trials were used to investigate the clinical impact of ANGPT2-related biomarkers. In the 935 samples included in four annotated platforms (GPL) and derived from localized CRC, ANGPT2hi expression conferred a worst overall survival (HR = 1.20; p = 0.02). CRC stage, ANGPT2hi expression but not Consortium Molecular Subtype (CMS) predict overall survival in multivariate analysis. ANGPT2 expression was not correlated with a specific CMS nor to RAS, RAF, MSI, p53, CIN, CIMP genomic alterations. Gene expression analysis revealed that ANGPT2hi CRC subset is characterized by angiogenesis-related gene expression, presence of myeloid cells, stromal organization and resistance to chemotherapy. A prognostic model was proposed using seric levels of ANGPT2, STC1 and CD138 in 97 mCRC patients. Our results provide evidence that ANGPT2 is a prognostic factor in localized CRC and defined a specific CRC subset with potential clinical implementation.
Collapse
Affiliation(s)
- Marine Jary
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Reyhan Hasanova
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Angélique Vienot
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Kamal Asgarov
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Romain Loyon
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Charline Tirole
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Adeline Bouard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Emeline Orillard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Julien Viot
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Elise Colle
- University Hospital St-Antoine, Paris, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Olivier Bouché
- Department of Hepato-Gastroenterology and Digestive Oncology, University Hospital Robert Debré, Reims, France
| | - Thierry Lecomte
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours Cedex 09, France.,University of Tours, Tours Cedex 01, France
| | - Christophe Borg
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Jean P Feugeas
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| |
Collapse
|
33
|
Cai HQ, Liu AS, Zhang MJ, Liu HJ, Meng XL, Qian HP, Wan JH. Identifying Predictive Gene Expression and Signature Related to Temozolomide Sensitivity of Glioblastomas. Front Oncol 2020; 10:669. [PMID: 32528873 PMCID: PMC7258082 DOI: 10.3389/fonc.2020.00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Temozolomide (TMZ) is considered a standard chemotherapeutic agent for glioblastoma (GBM). Characterizing the biological molecules and signaling pathways involved in TMZ sensitivity would be helpful for selecting therapeutic schemes and evaluating prognosis for GBM. Thus, in the present study, we selected 34 glioma cell lines paired with specific IC50 values of TMZ obtained from CancerRxGene and RNA-seq data downloaded from the Cancer Cell Line Encyclopedia to identify genes related to TMZ sensitivity. The results showed that 1,373 genes were related to the response of GBM cells to TMZ. Biological function analysis indicated that epithelial–mesenchymal transition, Wnt signaling, and immune response were the most significantly activated functions in TMZ-resistant cell lines. Additionally, negative regulation of telomere maintenance via telomerase was enriched in TMZ-sensitive glioma cell lines. We also preliminarily observed a synergistic effect of combination treatment comprising TMZ and a telomerase inhibitor in vitro. We identified six genes (MROH8, BET1, PTPRN2, STC1, NKX3-1, and ARMC10) using the random survival forests variable hunting algorithm based on the minimum error rate of the gene combination and constructed a gene expression signature. The signature was strongly related to GBM clinical characteristics and exhibited good prognosis accuracy for both The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Patients in the high score group had a shorter survival time than those in the low score group (11.2 vs. 22.2 months, hazard ratio = 7.31, p = 4.59e−11) of the TCGA dataset. The CGGA dataset was selected as a validation group with 40 patients in the high score set and 43 patients in the low score set (12.5 vs. 28.8 months, hazard ratio = 3.42, p = 8.61e−5). Moreover, the signature showed a better prognostic value than MGMT promoter methylation in both datasets. We also developed a nomogram for clinical use that integrated the TMZ response signature and four other risk factors to individually predict patient survival after TMZ chemotherapy. Overall, our study provides promising therapeutic targets and potential guidance for adjuvant therapy of GBM.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang-Si Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hou-Jie Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Meng
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Peng Qian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, Zhang J, Wang X. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol 2019; 40:767-784. [PMID: 31853695 DOI: 10.1007/s10571-019-00771-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
Exosomes contain plenty of bioactive information, playing an important role in intercellular communication by transfer their bioactive molecular contents to recipient cells. Glioblastoma stem cells (GSCs) and non-GSC glioma cells coexist in GBM microenvironment; GSC-released exosomes contain intracellular signaling molecules, which may affect the biological phenotypes of recipient cells. However, whether GSC exosomes could affect the biological phenotype of non-GSC glioma cells has not yet been defined. To explore whether GSC exosomes could reprogramme non-GSC glioma cells into GSCs and its possible mechanism involved, non-GSC glioma cells were treated with GSCs released exosomes; the potential mechanisms of action were studied with RNA interference, Notch inhibitors and Western blot analysis. The proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells were increased significantly after GSC exosome treatment; Notch1 signaling pathway was activated in GSCs; Notch1 protein was highly enriched in GSC exosomes; Notch1 signaling pathway and stemness-related protein expressions were increased in GSC exosome treated non-GSC glioma cells and these cell generated tumor tissues; Notch1 protein expression in GSCs and their exosomes, and the neurosphere formation of GSCs were decreased by Notch1 RNA interference; Notch1 signaling pathway protein and stemness protein expressions were decreased in GSC exosome treated non-GSC glioma cells by Notch1 RNA interference and Notch inhibitors. The findings in this study indicated that GSC exosomes act as information carriers, mediated non-GSC glioma cell dedifferentiation into GSCs by delivering Notch1 protein through Notch1 signaling activation, and enhanced stemness and tumorigenicity of non-GSC glioma cells.
Collapse
Affiliation(s)
- Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Yueling Zhou
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Lihua Dong
- Human Anatomy Department, School of Preclinical and Forensic Medcine, Sichuan University, Chengdu, 610041, China
| | - Weichao Ma
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Lv
- Neurosurgery Department, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenu, Hi-tech Zone, Chengdu, 610041, China.
| |
Collapse
|
35
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
36
|
Gao Y, Zhang E, Liu B, Zhou K, He S, Feng L, Wu G, Cao M, Wu H, Cui Y, Zhang X, Liu X, Wang Y, Gao Y, Bian X. Integrated analysis identified core signal pathways and hypoxic characteristics of human glioblastoma. J Cell Mol Med 2019; 23:6228-6237. [PMID: 31282108 PMCID: PMC6714287 DOI: 10.1111/jcmm.14507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
As a hallmark for glioblastoma (GBM), high heterogeneity causes a variety of phenotypes and therapeutic responses among GBM patients, and it contributes to treatment failure. Moreover, hypoxia is a predominant feature of GBM and contributes greatly to its phenotype. To analyse the landscape of gene expression and hypoxic characteristics of GBM cells and their clinical significance in GBM patients, we performed transcriptome analysis of the GBM cell line U87‐MG and the normal glial cell line HEB under normoxia and hypoxia conditions, with the results of which were analysed using established gene ontology databases as well as The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia. We revealed core signal pathways, including inflammation, angiogenesis and migration, and for the first time mapped the components of the toll‐like receptor 6 pathway in GBM cells. Moreover, by investigating the signal pathways involved in homoeostasis, proliferation and adenosine triphosphate metabolism, the critical response of GBM to hypoxia was clarified. Experiments with cell lines, patient serum and tissue identified IL1B, CSF3 and TIMP1 as potential plasma markers and VIM, STC1, TGFB1 and HMOX1 as potential biopsy markers for GBM. In conclusion, our study provided a comprehensive understanding for signal pathways and hypoxic characteristics of GBM and identified new biomarkers for GBM patients.
Collapse
Affiliation(s)
- Yixing Gao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Haibo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, and Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Velasco MX, Kosti A, Guardia GDA, Santos MC, Tegge A, Qiao M, Correa BRS, Hernández G, Kokovay E, Galante PAF, Penalva LOF. Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. RNA (NEW YORK, N.Y.) 2019; 25:768-782. [PMID: 31004009 PMCID: PMC6573790 DOI: 10.1261/rna.069211.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).
Collapse
Affiliation(s)
- Mitzli X Velasco
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Adam Kosti
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Gabriela D A Guardia
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Marcia C Santos
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Allison Tegge
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 14080, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Bruna R S Correa
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Luiz O F Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
38
|
Cui L, Dong Y, Wang X, Zhao X, Kong C, Liu Y, Jiang X, Zhang X. Downregulation of long noncoding RNA SNHG1 inhibits cell proliferation, metastasis, and invasion by suppressing the Notch-1 signaling pathway in pancreatic cancer. J Cell Biochem 2019; 120:6106-6112. [PMID: 30520072 DOI: 10.1002/jcb.27897] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) has become the fourth most lethal among human cancers. Long noncoding RNAs (lncRNAs) have been reported to play a role in the progression of a variety of cancers. However, the role of lncRNA SNHG1 in PC is not clear. METHODS Real-time Quantitative PCR Detection System (qPCR) was used to detect the expression of SNHG1 in PC cells. Then, the SNHG1 knockdown cell was constructed with si-SNHG1. AsPC-1 and PANC1 cells were used to analyze the ability of cell proliferation, invasion, and migration. MTT assay was used to analyze the proliferation ability. Transwell experiments and wound healing experiments were used to detect the capacity of invasion and migration. Finally, Western blot analysis was used to explore the mechanism of SNHG1 in PC. RESULTS SNHG1 was significantly upregulated in PC cells. Knockdown of SNHG1 could obviously suppress cell proliferation, invasion, and migration. Furthermore, SNHG1 knockdown inhibited the activation of the Notch-1 signaling pathway and inhibited the expression of N-cadherin, Hes1, Vimentin, Notch-1. The inhabitation was reversed when Notch-1 was overexpressed in si-SNHG1 cells. CONCLUSION The lncRNA SNHG1 promotes cell growth and metastasis in PC through activation of the Notch-1 signaling pathway in PC.
Collapse
Affiliation(s)
- Long Cui
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Yadong Dong
- Department of Hepatopancreatobiliary Surgery, Henan People's Hospital, Henan, Zhengzhou, China
| | - Xiaochuan Wang
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Xin Zhao
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Chenchen Kong
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Yangsui Liu
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Xinchun Jiang
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| | - Xinhui Zhang
- Department of Hepatopancreatobiliary Surgery, Central Hospital of Xuzhou, Affiliated to Dongan University, Jiangsu, China
| |
Collapse
|
39
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
40
|
Sakata J, Sasayama T, Tanaka K, Nagashima H, Nakada M, Tanaka H, Hashimoto N, Kagawa N, Kinoshita M, Nakamizo S, Maeyama M, Nishihara M, Hosoda K, Kohmura E. MicroRNA regulating stanniocalcin-1 is a metastasis and dissemination promoting factor in glioblastoma. J Neurooncol 2019; 142:241-251. [PMID: 30701354 DOI: 10.1007/s11060-019-03113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND MicroRNAs (miRs) regulate many biological processes, such as invasion, angiogenesis, and metastasis. Glioblastoma (GBM) patients with metastasis/metastatic dissemination have a very poor prognosis; therefore, inhibiting metastasis/metastatic dissemination has become an important therapeutic strategy for GBM treatment. METHODS Using 76 GBM tissues, we examined the expression levels of 23 GBM-related miRs and compared the miRs' expression levels between GBMs with metastasis/metastatic dissemination and GBMs without metastasis/metastatic dissemination. Using the bioinformatics web site, we searched the target genes of miRs. To analyze the function of target gene, several biological assays and survival analysis by the Kaplan-Meier method were performed. RESULTS We found that eight miRs were significantly decreased in GBM with metastasis/metastatic dissemination. By the bioinformatics analysis, we identified stanniocalcin-1 (STC1) as the most probable target gene against the combination of these miRs. Four miRs (miR-29B, miR-34a, miR-101, and miR-137) have predictive binding sites in STC1 mRNA, and mRNA expression of STC1 was downregulated by mimics of these miRs. Also, mimics of these miRs and knockdown of STC1 by siRNA suppressed invasion in GBM cells. GBM with metastasis/metastatic dissemination had significantly higher levels of STC1 than GBM without metastasis/metastatic dissemination. Finally, Kaplan-Meier analysis demonstrated that GBMs with high STC1 level had significantly shorter survival than GBMs with low STC1 level. CONCLUSIONS STC1 may be a novel metastasis/metastatic dissemination promoting factor regulated by several miRs in GBM. Because STC1 is a secreted glycoprotein and functions via the autocrine/paracrine signals, inhibiting STC1 signal may become a novel therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Junichi Sakata
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Hirotomo Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Nakamizo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masahiro Maeyama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Kohkichi Hosoda
- Department of Neurosurgery, West Kobe Medical Center, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|