1
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Lee M, Kim HG. Anti-Cancer Strategy Based on Changes in the Role of Autophagy Depending on the Survival Environment and Tumorigenesis Stages. Molecules 2024; 29:5134. [PMID: 39519774 PMCID: PMC11547988 DOI: 10.3390/molecules29215134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Autophagy is a crucial mechanism for recycling intracellular materials, and under normal metabolic conditions, it is maintained at low levels in cells. However, when nutrients are deficient or under hypoxic conditions, the level of autophagy significantly increases. Particularly in cancer cells, which grow more rapidly than normal cells and tend to grow in a three-dimensional manner, cells inside the cell mass often face limited oxygen supply, leading to inherently higher levels of autophagy. Therefore, the initial development of anticancer drugs targeting autophagy was based on a strategy to suppress these high levels of autophagy. However, anticancer drugs that inhibit autophagy have not shown promising results in clinical trials, as it has been revealed that autophagy does not always play a role that favors cancer cell survival. Hence, this review aims to suggest anticancer strategies based on the changes in the role of autophagy according to survival conditions and tumorigenesis stage.
Collapse
Affiliation(s)
- Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Lemos G, Fernandes CMADS, Silva FH, Calmasini FB. The role of autophagy in prostate cancer and prostatic diseases: a new therapeutic strategy. Prostate Cancer Prostatic Dis 2024; 27:230-238. [PMID: 38297152 DOI: 10.1038/s41391-024-00793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Autophagy is a well-conserved catabolic process that plays a key role in cell homeostasis. In the prostate, defective autophagy has been implicated in the genesis and progression of several pathological conditions. AIM The present review explored the autophagy pathway in prostate-related dysfunctions, focusing on prostate cancer (PCa), benign prostatic hyperplasia (BPH) and prostatitis. RESULTS Impaired autophagy activity has been shown in animal models of BPH and prostatitis. Moreover, autophagy activation by specific and non-specific drugs improved both conditions in pre-clinical studies. Conversely, the efficacy of autophagy inducers in PCa remains controversial, depending on intrinsic PCa characteristics and stage of progression. Intriguingly, autophagy inhibitors have shown beneficial effects in PCa suppression or even to overcome chemotherapy resistance. However, there are still open questions regarding the upstream mechanisms by which autophagy is deregulated in the prostate and the exact role of autophagy in PCa. The lack of specificity and increased toxicity associated with the currently autophagy inhibitors limits its use clinically, reflecting in reduced number of clinical data. CONCLUSION New therapeutic strategies to treat prostatic diseases involving new autophagy modulators, combination therapy and new drug formulations should be explored. Understanding the autophagy signaling in each prostatic disease is crucial to determine the best pharmacological approach.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, Sao Francisco University (USF), Bragança Paulista, SP, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
8
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
9
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
10
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
11
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Gong X, Liu X. In-depth analysis of the expression and functions of signal transducers and activators of transcription in human ovarian cancer. Front Oncol 2022; 12:1054647. [DOI: 10.3389/fonc.2022.1054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundSignal transducers and activators of transcription (STAT) transcription factors, a family of genes encoding transcription factors, have been linked to the development of numerous types of tumors. However, there is a relative paucity of a comprehensive investigation of the expression and functional analysis of STATs in ovarian cancer (OV).MethodGene expression profile interaction analysis (GEPI2A), Metascape, The Cancer Genome Atlas (TCGA), Kaplan-Meier Plotter, Linkedomics, and CancerSEA databases were used for expression analysis and functional enrichment of STATs in ovarian cancer patients. We screened potential predictive genes and evaluated their prognostic value by constructing the minor absolute shrinkage and selection operator (LASSO) Cox proportional risk regression model. We explored STAT5A expression and its effects on cell invasion using ovarian cancer cells and a tissue microarray.ResultsThe expression level of STAT1 was higher, but that of STAT2-6 was lower in cancerous ovarian tissues compared to normal tissues, which were closely associated with the clinicopathological features. Low STAT1, high STAT4, and 6 mRNA levels indicated high overall survival. STAT1, 3, 4, and 5A were collectively constructed as prognostic risk models. STAT3, and 5A, up-regulating in the high-risk group, were regarded as risk genes. In subsequent validation, OV patients with a low level of P-STAT5A but not low STAT5A had a longer survival time (P=0.0042). Besides, a negative correlation was found between the expression of STAT5A and invasion of ovarian cancer cells (R= -0.38, p < 0.01), as well as DNA repair function (R= -0.36, p < 0.01). Furthermore, transient overexpression of STAT5A inhibited wound healing (21.8%, P<0.0001) and cell migration to the lower chamber of the Transwell system (29.3%, P<0.0001), which may be achieved by regulating the expression of MMP2.ConclusionIt is suggested that STAT1, STAT4, and STAT6 may be potential targets for the proper treatment of ovarian cancer. STAT5A and P-STAT5A, biomarkers identified in ovarian cancer, may offer new perspectives for predicting prognosis and assessing therapeutic effects.
Collapse
|
13
|
Development of Olaparib-Resistance Prostate Cancer Cell Lines to Identify Mechanisms Associated with Acquired Resistance. Cancers (Basel) 2022; 14:cancers14163877. [PMID: 36010871 PMCID: PMC9405809 DOI: 10.3390/cancers14163877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary PARP inhibitors (PARPi; olaparib) are presently in clinical trials for advanced prostate cancer (PC). Resistance mechanisms are not fully understood in PC compared to ovarian and breast cancers. Our study aimed to identify new molecular mechanisms that affect acquired olaparib-resistance. We developed new resistant PC cell line models derived from original PC cell lines. We identified that DNA repair, autophagy, and the Rho-associated coiled-coil containing protein kinase 2 (ROCK2) could be potential targets to reverse the acquired olaparib-resistance. Abstract Background: Poly (ADP-ribose) polymerase inhibitors (PARPi) were initially deployed to target breast and ovarian tumors with mutations in DNA damage response genes. Recently, PARPi have been shown to be beneficial in the treatment of prostate cancer (PC) patients having exhausted conventional therapeutics. Despite demonstrating promising response rates, all patients treated with PARPi eventually develop resistance. However, PARPi resistance in PC is not well understood, and further studies are required to understand PARPi resistance in PC to propose strategies to circumvent resistance. Methods: Starting from well-established olaparib-sensitive PC cell lines (LNCaP, C4-2B and DU145), we derived olaparib-resistant (OR) PC cell lines and performed a microarray analysis. Results: The olaparib IC50 values of OR cell lines increased significantly as compared to the parental cell lines. Gene expression analyses revealed that different pathways, including DNA repair, cell cycle regulation and autophagy, were affected by acquired resistance. A total of 195 and 87 genes were significantly upregulated and downregulated, respectively, in all three OR cell lines compared to their parental counterparts. Among these genes, we selected BRCC3, ROCK2 and ATG2B for validation. We showed that ROCK2 expression, basal autophagy and homologous recombination (HR) efficiency were increased in all OR cell lines. Conclusions: Our study provides a new in vitro model to study PARPi resistance in PC and suggests new possible targets to reverse resistance and prolong the benefits of PARPi treatment.
Collapse
|
14
|
Lyu X, Zeng L, Shi J, Ming Z, Li W, Liu B, Chen Y, Yuan B, Sun R, Yuan J, Zhao N, Yang X, Chen G, Yang S. Essential role for STAT3/FOXM1/ATG7 signaling-dependent autophagy in resistance to Icotinib. J Exp Clin Cancer Res 2022; 41:200. [PMID: 35690866 PMCID: PMC9188165 DOI: 10.1186/s13046-022-02390-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/15/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The contribution of autophagy to cancer therapy resistance remains complex, mainly owing to the discrepancy of autophagy mechanisms in different therapy. However, the potential mechanisms of autophagy-mediated resistance to icotinib have yet to be elucidated. METHODS The effect of autophagy in icotinib resistance was examined using a series of in vitro and in vivo assays. The results above were further verified in biopsy specimens of lung cancer patients before and after icotinib or gefitinib treatment. RESULTS Icotinib increased ATG3, ATG5, and ATG7 expression, but without affecting Beclin-1, VPS34 and ATBG14 levels in icotinib-resistant lung cancer cells. Autophagy blockade by 3-MA or silencing Beclin-1 had no effects on resistance to icotinib. CQ effectively restored lung cancer cell sensitivity to icotinib in vitro and in vivo. Notably, aberrantly activated STAT3 and highly expressed FOXM1 were required for autophagy induced by icotinib, without the involvement of AMPK/mTOR pathway in this process. Alterations of STAT3 activity using genetic and/or pharmacological methods effectively affected FOXM1 and ATG7 levels increased by icotinib, with altering autophagy and icotinib-mediated apoptosis in resistant cells. Furthermore, silencing FOXM1 impaired up-regulated ATG7 induced by STAT3-CA and icotinib. STAT3/FOXM1 signalling blockade also reversed resistance to icotinib in vivo. Finally, we found a negative correlation between STAT3/FOXM1/ATG7 signalling activity and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) treatment efficacy in patients undergoing EGFR-TKIs treatment. CONCLUSIONS Our findings support that STAT3/FOXM1/ATG7 signalling-induced autophagy is a novel mechanism of resistance to icotinib, and provide insights into potential clinical values of ATG7-dependent autophagy in icotinib treatment.
Collapse
Affiliation(s)
- Xin Lyu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Lizhong Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Jie Shi
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Zongjuan Ming
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Boxuan Liu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Yang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Bo Yuan
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Ruiying Sun
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Jingyan Yuan
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Nannan Zhao
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Xia Yang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, 518055 Guangdong China
| | - Shuanying Yang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi People’s Republic of China
| |
Collapse
|
15
|
Xie J, Chen X, wang W, Guan Z, Hou J, Lin J. Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy. J Cancer 2022; 13:2138-2149. [PMID: 35517427 PMCID: PMC9066218 DOI: 10.7150/jca.65329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
Docetaxel resistance seriously affects its clinical application in prostate cancer (PCa). Long noncoding RNAs (lncRNAs) influence the chemosensitivity of various cancers. However, the potential involvement of lncRNAs in docetaxel sensitivity remains largely unknown in PCa. In the present study, we used RNA sequencing to compare the expression profiles of lncRNAs in docetaxel-resistant PCa cells and their parental cells and identified a novel lncRNA, ENSG00000234147, termed as PCa docetaxel resistance-associated lncRNA1 (PCDRlnc1). Our results indicated that PCDRlnc1 is closely associated with docetaxel resistance in PCa, and PCDRlnc1 knockout markedly sensitized the resistant cells to docetaxel in vitro and in vivo. In addition, PCDRlnc1 inhibition markedly suppressed docetaxel-induced autophagy. Conversely, PCDRlnc1 overexpression promoted autophagy. Mechanistically, PCDRlnc1 interacted with UHRF1 (ubiquitin-like with plant homeodomain and ring finger domains 1) and promoted its transcription level in PCa cells, leading to the activation of autophagic Beclin-1 signaling. Together, our data demonstrate that PCDRlnc1 is a novel key regulator of PCa docetaxel resistance, suggesting that it may be used as a potential biomarker of docetaxel resistance and therapeutic target in PCa.
Collapse
Affiliation(s)
- Jianjun Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, China
- Department of Urology, The Affiliated Suzhou Hospital Hospital of Nanjing Medical, University, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China
| | - Weiwan wang
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
| | - Zhenghui Guan
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, China
| | - Jianzhong Lin
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| |
Collapse
|
16
|
Cahuzac M, Langlois P, Péant B, Fleury H, Mes-Masson AM, Saad F. Pre-activation of autophagy impacts response to olaparib in prostate cancer cells. Commun Biol 2022; 5:251. [PMID: 35318456 PMCID: PMC8940895 DOI: 10.1038/s42003-022-03210-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays an essential role in DNA repair and is targeted by anticancer therapies using PARP inhibitors (PARPi) such as olaparib. PARPi treatment in prostate cancer (PC) is currently used as a monotherapy or in combination with standard therapies (hormonotherapy) in clinical trials for patients with DNA damage response mutation. Unfortunately, 20% of these patients did not respond to this new treatment. This resistance mechanism in PC is still not well understood. Here, we report that autophagy affects differently the response of PC cell lines to olaparib depending on its activation status. Pre-activation of autophagy before olaparib resulted in an increase of DNA repair activity by homologous recombination (HR) to repair double-strand breaks induced by olaparib and enhanced cell proliferation. When autophagy was activated after olaparib treatment, or completely inhibited, PC cells demonstrated an increased sensitivity to this PARPi. This autophagy-mediated resistance is, in part, regulated by the nuclear localization of sequestrosome 1 (SQSTM1/p62). Decrease of SQSTM1/p62 nuclear localization due to autophagy pre-activation leads to an increase of filamin A (FLNA) protein expression and BRCA1/Rad51 recruitment involved in the HR pathway. Our results reveal that autophagy basal levels may in part determine amenability to PARPi treatment. Pre-activation of autophagy mediates resistance to olaparib by decreasing nuclear SQSTM1/p62, which increases homologous recombination-mediated repair through filamin A expression and BRCA1/Rad51 recruitment.
Collapse
Affiliation(s)
- Maxime Cahuzac
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal, Montreal, QC, Canada
| | - Patricia Langlois
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal, Montreal, QC, Canada
| | - Benjamin Péant
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal, Montreal, QC, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,Institut du cancer de Montréal, Montreal, QC, Canada. .,Department of Surgery, Université de Montréal, Montreal, QC, Canada.
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du cancer de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
19
|
Chen RJ, Lyu YJ, Chen YY, Lee YC, Pan MH, Ho YS, Wang YJ. Chloroquine Potentiates the Anticancer Effect of Pterostilbene on Pancreatic Cancer by Inhibiting Autophagy and Downregulating the RAGE/STAT3 Pathway. Molecules 2021; 26:molecules26216741. [PMID: 34771150 PMCID: PMC8588513 DOI: 10.3390/molecules26216741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) remains a huge challenge, because pro-survival signaling pathways—such as the receptor for advanced glycation end products (RAGE)/signal transducer and activator of transcription 3 (STAT3) pathway—are overexpressed in PDAC cells. Moreover, PDAC cells are highly resistant to chemotherapeutic agents because of autophagy induction. Therefore, autophagy and its modulated signaling pathways are attractive targets for developing novel therapeutic strategies for PDAC. Pterostilbene is a stilbenoid chemically related to resveratrol, and has potential for the treatment of cancers. Accordingly, we investigated whether the autophagy inhibitor chloroquine could potentiate the anticancer effect of pterostilbene in the PDAC cell lines MIA PaCa-2 and BxPC-3, as well as in an orthotopic animal model. The results indicated that pterostilbene combined with chloroquine significantly inhibited autophagy, decreased cell viability, and sensitized the cells to pterostilbene-induced apoptosis via downregulation of the RAGE/STAT3 and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways in PDAC cells. The results of the orthotopic animal model showed that pterostilbene combined with chloroquine significantly inhibited pancreatic cancer growth, delayed tumor quadrupling times, and inhibited autophagy and STAT3 in pancreatic tumors. In summary, the present study suggested the novel therapeutic strategy of pterostilbene combined with chloroquine against the growth of pancreatic ductal adenocarcinoma by inhibiting autophagy and downregulating the RAGE/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Yi-Jhen Lyu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yen-Chien Lee
- Department of Medical Oncology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
20
|
Chu Y, Zhu C, Yue C, Peng W, Chen W, He G, Liu C, Lv Y, Gao G, Yao K, Han R, Hu X, Zhang Y, Ye Y. Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway. Cell Biosci 2021; 11:182. [PMID: 34645519 PMCID: PMC8513187 DOI: 10.1186/s13578-021-00681-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. Several studies have revealed that human chorionic villous mesenchymal stem cells (CV-MSCs) could regulate trophoblasts function. RESULTS To understand how human chorionic villous mesenchymal stem cells (CV-MSCs) regulate trophoblast function, we treated trophoblasts with CV-MSC supernatant under hypoxic conditions. Treatment markedly enhanced proliferation and invasion and augmented autophagy. Transcriptome and pathway analyses of trophoblasts before and after treatment revealed JAK2/STAT3 signalling as an upstream regulator. In addition, STAT3 mRNA and protein levels increased during CV-MSC treatment. Consistent with these findings, JAK2/STAT3 signalling inhibition reduced the autophagy, survival and invasion of trophoblasts, even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, STAT3 overexpression increased autophagy levels in trophoblasts; thus, it positively regulated autophagy in hypoxic trophoblasts. Human placental explants also proved our findings by showing that STAT3 was activated and that LC3B-II levels were increased by CV-MSC treatment. CONCLUSION In summary, our data suggest that CV-MSC-dependent JAK2/STAT3 signalling activation is a prerequisite for autophagy upregulation in trophoblasts.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongyu Yue
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Wei Peng
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Weiping Chen
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guifang He
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Lv
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guoqiang Gao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Ke Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Rendong Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Xiaoyu Hu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Yan Zhang
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| | - Yuanhua Ye
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
21
|
Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Med Oncol 2021; 38:116. [PMID: 34410522 PMCID: PMC8374126 DOI: 10.1007/s12032-021-01566-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Lipid metabolism reprogramming is one of the adaptive events that drive tumor development and survival, and may account for resistance to chemotherapeutic drugs. Perilipins are structural proteins associated with lipophagy and lipid droplet integrity, and their overexpression is associated with tumor aggressiveness. Here, we sought to explore the role of lipid droplet-related protein perilipin-3 (PLIN3) in prostate cancer (PCa) chemotherapy. We investigated the role of PLIN3 suppression in docetaxel cytotoxic activity in PCa cell lines. Additional effects of PLIN3 depletion on autophagy-related proteins and gene expression patterns, apoptotic potential, proliferation rate, and ATP levels were examined. Depletion of PLIN3 resulted in docetaxel resistance, accompanied by enhanced autophagic flux. We further assessed the synergistic effect of autophagy suppression with chloroquine on docetaxel cytotoxicity. Inhibition of autophagy with chloroquine reversed chemoresistance of stably transfected shPLIN3 PCa cell lines, with no effect on the parental ones. The shPLIN3 cell lines also exhibited reduced Caspase-9 related apoptosis initiation. Moreover, we assessed PLIN3 expression in a series of PCa tissue specimens, were complete or partial loss of PLIN3 expression was frequently noted in 70% of the evaluated specimens. Following PLIN3 silencing, PCa cells were characterized by impaired lipophagy and acquired an enhanced autophagic response upon docetaxel-induced cytotoxic stress. Such an adaptation leads to resistance to docetaxel, which could be reversed by the autophagy blocker chloroquine. Given the frequent loss of PLIN3 expression in PCa specimens, we suggest that combination of docetaxel with chloroquine may improve the efficacy of docetaxel treatment in PLIN3-deficient cancer patients.
Collapse
|
22
|
Li RR, Zeng DY. The effects and mechanism of α-mangostin on chemosensitivity of gastric cancer cells. Kaohsiung J Med Sci 2021; 37:709-717. [PMID: 34003591 DOI: 10.1002/kjm2.12388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
This work investigated the effect of α-mangostin (α-M) on gastric cancer (GC) cell chemoresistance and its underlying mechanisms. Different concentrations of α-M and CDDP were applied to treat GC cells (SGC7901) and CDDP-resistant GC cells (SGC7901/CDDP) for 24 or 48 h. CCK-8 assays were used to measure the inhibitory effect of CDDP or α-M on SGC7901 and SGC7901/CDDP cells as well as the half-maximal inhibitory concentrations (IC50) of α-M for SGC7901 and SGC7901/CDDP cells. The optimal concentration and induction time of CDDP or α-M were determined. SGC7901/CDDP cells were treated with CDDP or/and α-M, where some of them were transfected with pcDNA3.1 or pcDNA3.1-EBI3. Cell proliferation and apoptosis were assessed as well as the levels of EBI3, STAT3, p-STAT3, autophagy-related proteins, and apoptosis-related proteins. CDDP inhibited SGC7901 cell proliferation in a dose-dependent manner. The IC50 of α-M for SGC7901 cells was 12.86 μM and that for SGC7901/CDDP cells was 13.69 μM. The optimal concentrations of CDDP and α-M for SGC7901/CDDP cells were 2 and 15 μM, respectively, and the optimal time was 48 h. The SGC7901/CDDP cells in the CDDP+/α-M+ group had elevated inhibition of proliferation and apoptosis rates. Western blot analysis revealed enhanced levels of LC3-II/I and Beclin1, reduced p62 level, decreased Bcl2 level, and increased levels of Bax and cleaved caspase-3/9. The EBI3/STAT3 pathway was implicated in the effect of α-M on SGC7901/CDDP cell development. α-M increases the chemosensitivity of GC cells by facilitating autophagy and inactivating the EBI3/STAT3 pathway.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yu Zeng
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
24
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
25
|
Jeon YW, Kim OH, Shin JS, Hong HE, Kim CH, Kim SJ. Potentiation of the Anticancer Effects by Combining Docetaxel with Ku-0063794 Against Triple-Negative Breast Cancer Cells. Cancer Res Treat 2021; 54:157-173. [PMID: 33831291 PMCID: PMC8756118 DOI: 10.4143/crt.2020.1063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose mTORC1 and mTORC2 inhibition by Ku-0063794 could confer profound anticancer effects against cancer cells because it eliminates feedback activation of Akt. Herein, we aimed to determine anticancer effects of docetaxel and Ku-0063794, individually or in combination, against breast cancer cells, especially triple-negative breast cancer (TNBC) cells. Materials and Methods MCF-7 breast cancer and MDA-MB-231 TNBC cell lines for in vitro studies and mouse xenograft model for in vivo studies were used to investigate the effect of docetaxel, Ku-0063794, or their combination. Results In the in vitro experiments, combination therapy synergistically reduced cell viability and induced higher apoptotic cell death in breast cancer cells than the individual monotherapies (p < 0.05). Western blot analysis and flow cytometric analysis showed that the combination therapy induced higher apoptotic cell death than the individual monotherapies (p < 0.05). In the in vivo experiment, docetaxel and Ku-0063794 combination therapy reduced the growth of MDA-MB-231 cells xenografted in the nude mice better than in the individual monotherapies (p < 0.05). Immunohistochemistry showed that the combination therapy induced the highest expression of cleaved caspase-3 and the lowest expression of Bcl-xL in the MDA-MB-231 cells xenografted in the nude mice (p < 0.05). Western blot analysis and immunofluorescence, incorporating both in vitro and in vivo experiments, consistently validated that unlike individual monotherapies, docetaxel and Ku-0063794 combination therapy significantly inhibited epithelial-mesenchymal transition (EMT) and autophagy (p < 0.05). Conclusion These data suggest that docetaxel and Ku-0063794 combination therapy has higher anticancer activities over individual monotherapies against MDA-MB-231 TNBC cells through a greater inhibition of autophagy and EMT.
Collapse
Affiliation(s)
- Ye-Won Jeon
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Sun Shin
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ha Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cho Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Yu Y, Yang FH, Zhang WT, Guo YD, Ye L, Yao XD. Mesenchymal stem cells desensitize castration-resistant prostate cancer to docetaxel chemotherapy via inducing TGF-β1-mediated cell autophagy. Cell Biosci 2021; 11:7. [PMID: 33413648 PMCID: PMC7792182 DOI: 10.1186/s13578-020-00494-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been proved to drive castration resistant prostate cancer (CRPC). In this study, we aim to investigate the contribution of MSCs to the development of docetaxel resistance in CRPC cells and its potential mechanisms. Methods The effect of MSCs on CRPC cells resistance to docetaxel was determined using in vivo and in vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses. Results MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel. Conclusions These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.
Collapse
Affiliation(s)
- Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fu-Han Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wen-Tao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ya-Dong Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Ye
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
27
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
28
|
Tang Y, Chen K, Luan X, Zhang J, Liu R, Zheng X, Xie S, Ke H, Zhang X, Chen W. Knockdown of eukaryotic translation initiation factor 5A2 enhances the therapeutic efficiency of doxorubicin in hepatocellular carcinoma cells by triggering lethal autophagy. Int J Oncol 2020; 57:1368-1380. [PMID: 33174013 PMCID: PMC7646588 DOI: 10.3892/ijo.2020.5143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an invasive malignant neoplasm with a poor prognosis. The development of chemoresistance severely obstructs the chemotherapeutic efficiency of HCC treatment. Therefore, understanding the mechanisms of chemoresistance is important for improving the outcomes of patients with HCC. Eukaryotic translation initiation factor 5A2 (eIF5A2), which is considered to be an oncogene, has been reported to mediate chemoresistance in various types of cancer; however, its precise role in HCC remains unclear. Accumulating evidence has suggested that autophagy serves a dual role in cancer chemotherapy. The present study aimed to investigate the role of autophagy in eIF5A2‑mediated doxorubicin resistance in HCC. High expression levels of eIF5A2 in human HCC tissues were observed by immunohistochemistry using a tissue microarray, which was consistent with the results of reverse transcription‑quantitative PCR analysis in paired HCC and adjacent healthy tissues. HCC patient‑derived tumor xenograft mouse model was used for the in vivo study, and knockdown of eIF5A2 effectively enhanced the efficacy of doxorubicin chemotherapy compared with that in the control group. Notably, eIF5A2 served as a repressor in regulating autophagy under chemotherapy. Silencing of eIF5A2 induced doxorubicin sensitivity in HCC cells by triggering lethal autophagy. In addition, 5‑ethynyl‑2'‑deoxyuridine, lactate dehydrogenase release assay and calcein‑AM/PI staining were used to determine the enhanced autophagic cell death induced by the silencing of eIF5A2 under doxorubicin treatment. Suppression of autophagy attenuated the sensitivity of HCC cells to doxorubicin induced by eIF5A2 silencing. The results also demonstrated that knockdown of the Beclin 1 gene, which is an autophagy regulator, reversed the enhanced autophagic cell death and doxorubicin sensitivity induced by eIF5A2 silencing. Taken together, these results suggested eIF5A2 may mediate the chemoresistance of HCC cells by suppressing autophagic cell death under chemotherapy through a Beclin 1‑dependent pathway, and that eIF5A2 may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yuexiao Tang
- Department of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| | - Ke Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016
| | - Xiaorui Luan
- Department of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| | - Jinyan Zhang
- Department of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| | - Rongrong Liu
- Division of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| | - Haiping Ke
- Department of Biology, Ningbo College of Health Sciences, Ningbo, Zhejiang 315100, P.R. China
| | - Xianning Zhang
- Department of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012
| |
Collapse
|
29
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
30
|
Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci 2020; 265:118745. [PMID: 33186569 DOI: 10.1016/j.lfs.2020.118745] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Cytotoxic drugs remain the first-line option for cancer therapy but the development of drug-resistance by tumor cells represents a primary obstacle for successful chemotherapy. Autophagy is a physiological mechanism of cell survival efficiently used by tumor cells to avoid cell death and to induce drug-resistance. It is a macromolecular process, in which cells degrade and recycle intracellular substrates and damaged organelles to alleviate cell stress caused by nutritional deprivation, hypoxia, irradiation, and cytotoxic agents, as well. There is evidence that autophagy prevents cancer during the early steps of carcinogenesis, but once transformed, these cells show enhanced autophagy capacity and use it to survive, grow, and facilitate metastasis. Current basic studies and clinical trials show the feasibility of using pharmacological or molecular blockage of autophagy to improve the anticancer therapy efficiency. In this review, we overviewed the pathways and molecular aspects of autophagy, its role in carcinogenesis, and the evidence for its role in cancer adaptation and drug-resistance. Finally, we reviewed the clinical findings on how the autophagy interference helps to improve conventional anticancer therapy.
Collapse
Affiliation(s)
- Jofer Andree Zamame Ramirez
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil; Oeste Paulista University - UNOESTE, Department of Health Sciences, Jaú, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
31
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
32
|
Yan C, Gao L, Qiu X, Deng C. Schisandrin B synergizes docetaxel-induced restriction of growth and invasion of cervical cancer cells in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1157. [PMID: 33241006 PMCID: PMC7576040 DOI: 10.21037/atm-20-6109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Cervical cancer is a prevalent tumor in women. Here we investigated the synergic effects of Schisandrin B (Sch B), an active compound extracted from the Chinese herb Schisandra Chinensis, in docetaxel (DTX)-induced restriction of growth and invasion of cervical cancer. Methods Caski cells were treated with Sch B and DTX for 24 hours. In vitro effects were investigated with Cell counting kit-8, western blotting, colony-forming, Transwell, Annexin V-FITC enabled flow cytometry. Then, in vivo experiments were engaged with Sch B (20 mg/kg) and DTX (10 mg/kg) for 30 days, and IHC were applied to validate the effects in vivo. Results Both Sch B and DTX reduced cell viability, inhibited colony formatting, induced apoptosis, and limited cell invasion. Co-administration of Sch B and DTX more significantly enhanced these changes. The relative levels of HPV infection and tumor progression related proteins p-AKT/AKT, NF-kappaB, Cyclin D1, CDK-4, MMP-9, Notch1, β-catenin and p-p38/p38 were markedly inactivated. The effects of Sch B in cervical cancer were further confirmed in Caski cell-xenograft BALB/c nude mice. Co-administration of Sch B enhanced the anti-tumor effects of DTX in vivo, inhibited tumor formation, increased apoptotic cells, and reduced Ki67 and N-cadherin expression. Conclusions Altogether, Sch B enhanced the anti-tumor effects of DTX in vitro and in vivo via growth, invasion, and apoptosis regulating. The results supported therapies of co-administering Sch B and DTX to be developed in cervical cancer.
Collapse
Affiliation(s)
- Chunmei Yan
- Department of Gynecology and Obstetrics, The Hospital of Lanzhou Jiao Tong University, Lanzhou, China
| | - Liya Gao
- Department of Gynecology and Obstetrics, Beijing Chuiyangliu Hospital, Beijing, China
| | - Xiaofei Qiu
- Department of Gynecology and Obstetrics, The Central People's Hospital of Tengzhou, Tengzhou, China
| | - Chunxia Deng
- Department of Gynecology and Obstetrics, Beijing Chuiyangliu Hospital, Beijing, China
| |
Collapse
|
33
|
Li J, Shi C, Zhou R, Han Y, Xu S, Ma H, Zhang Z. The crosstalk between AXL and YAP promotes tumor progression through STAT3 activation in head and neck squamous cell carcinoma. Cancer Sci 2020; 111:3222-3235. [PMID: 32589311 PMCID: PMC7469783 DOI: 10.1111/cas.14546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) and Yes-associated protein (YAP) are critical driving factors in tumors. Currently, the regulation of RTKs in the Hippo-YAP pathway has been recognized as an important issue. However, the relationship between AXL, one of the RTKs, and YAP in head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, the crosstalk between AXL and YAP was thoroughly investigated in vitro and in vivo. We determined that there was a positive correlation between AXL and YAP in the HNSCC tissue samples and the Cancer Genome Atlas (TCGA) dataset, and high co-expression was associated with poor prognosis. Inhibiting YAP decreased AXL expression in HNSCC cells, while YAP overexpression increased AXL. Moreover, ectopic expression of AXL reversed tumor suppressor phenotypes mediated by YAP silencing. This reversal effect was also confirmed in vivo. In addition, AXL overexpression and Gas6, a ligand of AXL, stimulated YAP dephosphorylation, nuclear translocation, and target gene transcription. AXL inhibition decreased YAP dephosphorylation and nuclear translocation. Mechanistically, Gas6 induced a competitive binding to phosphorylated signal transducers and activators of transcription 3 (STAT3) with large tumor suppressor kinase 1 (LATS1) and inhibited the Hippo pathway. This study revealed a novel non-transcriptional effect of STAT3 in Gas6/AXL-induced YAP activity, suggesting that STAT3 acted as a critical "molecular switch" during the mutual promotion between AXL and YAP, which might be a promising therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chaoji Shi
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yong Han
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shengming Xu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
34
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
35
|
Wang X, Shao X, Gu L, Jiang K, Wang S, Chen J, Fang J, Guo X, Yuan M, Shi J, Ding C, Meng S, Xu Q. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells. J Cell Mol Med 2020; 24:4286-4297. [PMID: 32100392 PMCID: PMC7171322 DOI: 10.1111/jcmm.15089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Oncolytic Newcastle disease virus (NDV) induces immunogenic cell death (ICD), liberating danger-associated molecular patterns (DAMPs) that provokes defiance in neoplastic malignancy. The present study aims to investigate whether and how oncolytic NDV triggers ICD in prostate cancer cells. We show that NDV/FMW, an oncolytic NDV strain FMW, elicited the expression and release of several ICD markers, that is calreticulin (CRT), heat shock proteins (HSP70/90) and high-mobility group box 1 (HMGB1), in prostate cancer cells. Furthermore, pharmacological repression of apoptosis, necroptosis, autophagy or endoplasmic reticulum (ER) stress exerted diverse effects on the HMGB1 and HSP70/90 evacuation in NDV/FMW-infected prostate cancer cells. Moreover, ICD markers induced in prostate cancer cells upon NDV/FMW infection, were enhanced by either treatment with a STAT3 (signal transducer and activator of transcription 3) inhibitor or shRNA-mediated knockdown of STAT3. In nude mice bearing prostate cancer cell-derived tumours, the tumours injected with the supernatants of NDV/FMW-infected cells grew smaller than mock-treated tumours. These results indicate that oncolytic NDV provokes the expression of ICD makers in prostate cancer cells. Our data also suggest that a combination of inhibition of STAT3 with oncolytic NDV could boost NDV-based anti-tumour effects against prostate cancer.
Collapse
Affiliation(s)
- Xueke Wang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Radio therapyHwa Mei HospitalUniversity of Chinese Academy of ScienceNingboZhejiangChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Xiaoyan Shao
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Linaer Gu
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Ke Jiang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalianChina
| | - Sitong Wang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Jianhua Chen
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Juemin Fang
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Xianling Guo
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Min Yuan
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| | - Ji Shi
- Department of NeurosurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyangChina
| | - Chan Ding
- Department of Avian Infectious DiseasesShanghai Veterinary Research InstituteChinese Academy of Agricultural ScienceShanghaiChina
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalianChina
| | - Qing Xu
- Department of Medical OncologyShanghai Tenths People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Oncology, Dermatology HospitalTongji UniversityShanghaiChina
- Tongji University Cancer CenterShanghaiChina
| |
Collapse
|
36
|
Luo S, Shao L, Chen Z, Hu D, Jiang L, Tang W. NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway. Exp Cell Res 2020; 390:111981. [PMID: 32234375 DOI: 10.1016/j.yexcr.2020.111981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
Docetaxel-based chemotherapy is recommended for metastatic castration-resistant prostate cancer (mCRPC). However, chemoresistance is inevitable and eventually progresses after several rounds of chemotherapy. Therefore, exploration of new therapeutic targets and molecular mechanisms that contribute to chemoresistance remains necessary. Our previous study accidentally demonstrated that expression of nitrogen permease regulator-like 2 (NPRL2), which is defined as a tumor suppressor, is upregulated in prostate cancer (PCa) and linked to poor prognosis, particularly in CRPC. The aim of this study was to investigate the role of NPRL2 in the chemoresistant CRPC cells. We found that NPRL2 was significantly overexpressed in docetaxel-resistant CRPC cells, while autophagy was enhanced and mTOR signaling was inhibited. Inhibiting NPRL2 increased the sensitivity to docetaxel in docetaxel-resistant CRPC cells, enhanced apoptosis and inhibited autophagy, and the opposite trends were observed when the mTOR inhibitor torin 1 was added to NPRL2-silenced cells. We further found that NPRL2 silenced docetaxel-resistant CRPC cells were sensitive to docetaxel in vivo. Briefly, our research reveals that overexpression of NPRL2 promotes chemoresistance by regulating autophagy via mTOR signaling and inhibits apoptosis in CRPC cells.
Collapse
Affiliation(s)
- Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lan Shao
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhixiong Chen
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing, China.
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Lombard AP, Gao AC. Resistance Mechanisms to Taxanes and PARP Inhibitors in Advanced Prostate Cancer. ACTA ACUST UNITED AC 2020; 10:16-22. [PMID: 32258820 DOI: 10.1016/j.coemr.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical landscape concerning advanced prostate cancer is rapidly changing and reaching beyond androgen deprivation therapy and androgen receptor targeted therapies. Taxane chemotherapy is a critical tool in the management of advanced prostate cancer. Additionally, novel drug classes such as PARP inhibitors are being investigated. Despite tremendous progress, resistance to therapy remains as a major impediment to further improvement. Resistance mechanisms appear diverse and are not fully known or understood. This review will highlight recent advances in research regarding mechanisms of resistance to both taxanes (such as increased drug efflux capacity) and PARP inhibitors (such as reversion mutations which restore DNA-repair proficiency). Understanding resistance to therapy promises to remove barriers blocking progress toward improved patient outcomes.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA.,UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.,VA Northern California Health Care System Sacramento, CA, USA
| |
Collapse
|
38
|
Wang Y, Huang Z, Chen CZ, Liu C, Evans CP, Gao AC, Zhou F, Chen HW. Therapeutic Targeting of MDR1 Expression by RORγ Antagonists Resensitizes Cross-Resistant CRPC to Taxane via Coordinated Induction of Cell Death Programs. Mol Cancer Ther 2020; 19:364-374. [PMID: 31712394 DOI: 10.1158/1535-7163.mct-19-0327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1)-encoded multidrug resistance protein 1 (MDR1) constitutes a major mechanism of cancer drug resistance including docetaxel (DTX) and cabazitaxel (CTX) resistance in castration-resistant prostate cancer (CRPC). However, no therapeutics that targets MDR1 is available at clinic for taxane sensitization. We report here that retinoic acid receptor-related orphan receptor γ (RORγ), a nuclear receptor family member, unexpectedly mediates MDR1/ABCB1 overexpression. RORγ plays an important role in controlling the functions of subsets of immune cells and has been an attractive target for autoimmune diseases. We found that its small-molecule antagonists are efficacious in resensitizing DTX and CTX cross-resistant CRPC cells and tumors to taxanes in both androgen receptor-positive and -negative models. Our mechanistic analyses revealed that combined treatment with RORγ antagonists and taxane elicited a robust synergy in killing the resistant cells, which involves a coordinated alteration of p53, Myc, and E2F-controlled programs critical for both intrinsic and extrinsic apoptosis, survival, and cell growth. Our results suggest that targeting RORγ with small-molecule inhibitors is a novel strategy for chemotherapy resensitization in tumors with MDR1 overexpression.
Collapse
Affiliation(s)
- Yongqiang Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zenghong Huang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California
| | - Christopher Z Chen
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California
| | - Chengfei Liu
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Allen C Gao
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System-Mather, Mather, California
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System-Mather, Mather, California
| |
Collapse
|
39
|
Lin JZ, Wang WW, Hu TT, Zhu GY, Li LN, Zhang CY, Xu Z, Yu HB, Wu HF, Zhu JG. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Lett 2020; 469:481-489. [PMID: 31738958 DOI: 10.1016/j.canlet.2019.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Docetaxel-mediated chemotherapy is the first line therapy for metastatic castration-resistant prostate cancer (CRPC) patients, but its therapeutic benefit is limited by the development of resistance. Although Forkhead box protein M1 (FOXM1) has been implicated in prostate tumorigenesis and metastasis, its role in docetaxel resistance has not been studied. Here, we showed that FOXM1 expression was upregulated in the docetaxel resistant CRPC cell lines (PC3-DR and VCaP-DR) and knockdown of FOXM1 sensitized the cells to docetaxel both in vitro and in vivo. In addition, autophagy was found to be significantly enhanced in resistant cells. Moreover, FOXM1 overexpression cells showed increased autophagic flux and higher numbers of autophagosomes. Knockdown of ATG7, beclin-1 or cotreatment with chloroquine, partly restored sensitivity to docetaxel in the FOXM1-overexpressing cells. Mechanistically, FOXM1 targeted AMPK/mTOR to activate the autophagy pathway and altered docetaxel response in CRPC. These findings identify the role of FOXM1 as well as the mechanism underlying FOXM1 action in docetaxel sensitivity and may, therefore, aid in design of CRPC therapies.
Collapse
Affiliation(s)
- Jian-Zhong Lin
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China.
| | - Wei-Wan Wang
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Ting-Ting Hu
- Department of Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing, 210009, China
| | - Gang-Yi Zhu
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Li-Nan Li
- Department of Oncology, Academy of Pediatrics, Nanjing Medical University, Nanjing, 210009, China
| | - Cheng-Yang Zhang
- Department of Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Bo Yu
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Hong-Fei Wu
- Department of Urology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
40
|
Chu Y, Wang Y, Li K, Liu M, Zhang Y, Li Y, Hu X, Liu C, Zhou H, Zuo J, Peng W. Human omental adipose-derived mesenchymal stem cells enhance autophagy in ovarian carcinoma cells through the STAT3 signalling pathway. Cell Signal 2020; 69:109549. [PMID: 31987780 DOI: 10.1016/j.cellsig.2020.109549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Our previous study showed that human omental adipose-derived stem cells (ADSCs) promote ovarian cancer growth and metastasis. In this study, the role of autophagy in the ovarian cancer-promoting effects of omental ADSCs was further determined. METHODS The growth and invasion of ovarian cancer cells were detected by CCK-8 and Transwell assays, respectively. The autophagy of ovarian cancer cells transfected with MRFP-GFP-LC3 adenoviral vectors was evaluated by confocal microscopy and western blot assay. Transfection of STAT3 siRNA was used to inhibit the expression of STAT3. RESULTS Our results show that autophagy plays a vital role in ovarian cancer and is promoted by ADSCs. Specifically, we show that proliferation and invasion are correlated with autophagy induction by ADSCs in two ovarian cancer cell lines under hypoxic conditions. Mechanistically, ADSCs activate the STAT3 signalling pathway, thereby promoting autophagy. Knockdown of STAT3 expression using siRNA decreased hypoxia-induced autophagy and decreased the proliferation and metastasis of ovarian cancer cells. CONCLUSION Taken together, our data indicate that STAT3-mediated autophagy induced by ADSCs promotes ovarian cancer growth and metastasis.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixin Liu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Hu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Peng
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
Xiong H, Shen J, Chen Z, Yang J, Xie B, Jia Y, Jayasinghe U, Wang J, Zhao W, Xie S, Wang L, Zhou J. H19/let‑7/Lin28 ceRNA network mediates autophagy inhibiting epithelial‑mesenchymal transition in breast cancer. Int J Oncol 2020; 56:794-806. [PMID: 32124962 DOI: 10.3892/ijo.2020.4967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNA (lncRNA) H19 and Lin28 protein have been shown to participate in various pathophysiological processes, including cellular proliferation, autophagy and epithelial‑mesenchymal transition (EMT). A number of studies have investigated lncRNAs, microRNAs and mRNAs, and their roles in the initiation and progression of cancer, in doing so identifying competitive endogenous RNA (ceRNA) networks, including the H19/let‑7/Lin28 network. However, whether the H19/let‑7/Lin28 ceRNA network is involved in autophagy and EMT in breast cancer (BC) remains unclear. The present study demonstrated that the H19/let‑7/Lin28 loop was required for the downregulation of autophagy in BC cells via western blot analysis, reverse transcription‑quantitative PCR and autophagy flux monitoring. Using wound healing, migration and invasion assays, and morphological assays, the H19/let‑7/Lin28 loop was revealed to promote EMT in BC cells. Moreover, the H19/let‑7/Lin28 network was found to contribute to autophagy by inhibiting EMT in BC cells. To the best of our knowledge, the present study is the first to suggest the important roles of the H19/let‑7/Lin28 ceRNA network in BC autophagy and EMT, thus providing insight for the use of these molecules as prognostic biomarkers and therapeutic targets in BC metastasis.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianguo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zihan Chen
- Department of Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bojian Xie
- Department of Surgical Oncology, Taizhou Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ushani Jayasinghe
- Department of Surgical Oncology, Rhode Island Hospital, Brown University, Providence, RI 02912, USA
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuduo Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
42
|
He J, Shi XY, Li ZM, Pan XH, Li ZL, Chen Y, Yan SJ, Xiao L. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol Cell Biol 2019; 20:49. [PMID: 31718559 PMCID: PMC6852784 DOI: 10.1186/s12860-019-0227-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Several reports indicated that the expression of Yes-associated protein (YAP) was associated with multi-drug resistance. Acidic microenvironment increased by the overexpression of vacuolar-ATPase (V-ATPase) was also observed in tumor growth and drug resistance. We hypothesize that proton pump inhibitors (PPIs), currently used in the anti-acid treatment of peptic disease, could inhibit the acidification of the tumor microenvironment and increase the sensitivity of tumor cells to cytotoxic agents. Thus, our objective is to explore the reversal of drug resistance by the inhibition of YAP through specific PPIs in the epithelial ovarian carcinoma (EOC) cells. . Results We found that V-ATPase D1 was a positive regulator of YAP. Sub-lethal doses of the proton pump inhibitor esomeprazole (EMSO) in combination with paclitaxel (PTX) increased the PTX sensitivity in PTX-resistant EOC cells, as compared to PTX single treatments by inhibiting YAP and reserving pH gradient created by the V-ATPase D1. Moreover, sub-lethal doses of EMSO combined with PTX decreased autophagy and improved caspases independent apoptosis of PTX-resistant EOC cells. Conclusions These results suggested that sub-lethal doses of esomeprazole reverse YAP-mediated PTX resistance through the inhibiting of both YAP expression and acidic tumor microenvironment created by the V-ATPase D1. Therefore, we think the use of PPIs represents a promising strategy to improve the effectiveness of anti-EOC.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.,Department of Obstetrics and Gynecoloy, An Qing Municipal Hospital, An Qing, 246003, AnHui, People's Republic of China
| | - Xiao-Yan Shi
- Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, People's Republic of China
| | - Zhi-Min Li
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Xiao-Hua Pan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ze-Lian Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Ying Chen
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China
| | - Shi-Jie Yan
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| | - Lan Xiao
- Department of Obstetrics & Gynecology, First Affiliated Hospital, An Hui Medical University, Hefei, 230020, Anhui, People's Republic of China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230020, Anhui, People's Republic of China.
| |
Collapse
|
43
|
Li X, Zhou Y, Yang L, Ma Y, Peng X, Yang S, Li H, Liu J. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J Cell Physiol 2019; 235:3402-3413. [PMID: 31549407 DOI: 10.1002/jcp.29230] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) has been acknowledged in tumorigenesis gradually because of the great importance in different cancers. LncRNA nuclear enriched abundant transcript 1 (NEAT1) is a novel lncRNA and has been reported to promote multiple cancer progression. However, the biological roles of NEAT1 in hepatocellular carcinoma (HCC) is not cleared nowadays. In the present research, the level of NEAT1 was found to be upregulated in HCC by The Cancer Genome Atlas. In addition, NEAT1 expression is negatively correlated with the survival rate in HCC. Further investigation revealed that NEAT1 upregulation inhibited sorafenib efficacy and promoted autophagy. We found that NEAT1 could be a sponge for microRNA-204 (miR-204) and inhibits its level to upregulate ATG3 expression. In addition to the above, we demonstrated that miR-204 mimics also attenuated tumor autophagy. And rescue assays demonstrated that NEAT1 promotes HCC autophagy through modulating miR-204/ATG3 pathway. Collectively, this study first demonstrated that a novel NEAT1/miR-204/ATG3 signaling regulates HCC progression.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yong Zhou
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Sun CY, Nie J, Huang JP, Zheng GJ, Feng B. Targeting STAT3 inhibition to reverse cisplatin resistance. Biomed Pharmacother 2019; 117:109135. [DOI: 10.1016/j.biopha.2019.109135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
|
45
|
Olender J, Wang BD, Ching T, Garmire LX, Garofano K, Ji Y, Knox T, Latham P, Nguyen K, Rhim J, Lee NH. A Novel FGFR3 Splice Variant Preferentially Expressed in African American Prostate Cancer Drives Aggressive Phenotypes and Docetaxel Resistance. Mol Cancer Res 2019; 17:2115-2125. [PMID: 31266816 DOI: 10.1158/1541-7786.mcr-19-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
Abstract
Alternative splicing (AS) has been shown to participate in prostate cancer development and progression; however, a link between AS and prostate cancer health disparities has been largely unexplored. Here we report on the cloning of a novel splice variant of FGFR3 that is preferentially expressed in African American (AA) prostate cancer. This novel variant (FGFR3-S) omits exon 14, comprising 123 nucleotides that encode the activation loop in the intracellular split kinase domain. Ectopic overexpression of FGFR3-S in European American (EA) prostate cancer cell lines (PC-3 and LNCaP) led to enhanced receptor autophosphorylation and increased activation of the downstream signaling effectors AKT, STAT3, and ribosomal S6 compared with FGFR3-L (retains exon 14). The increased oncogenic signaling imparted by FGFR3-S was associated with a substantial gain in proliferative and antiapoptotic activities, as well as a modest but significant gain in cell motility. Moreover, the FGFR3-S-conferred proliferative and motility gains were highly resistant to the pan-FGFR small-molecule inhibitor dovitinib and the antiapoptotic gain was insensitive to the cytotoxic drug docetaxel, which stands in marked contrast with dovitinib- and docetaxel-sensitive FGFR3-L. In an in vivo xenograft model, mice injected with PC-3 cells overexpressing FGFR3-S exhibited significantly increased tumor growth and resistance to dovitinib treatment compared with cells overexpressing FGFR3-L. In agreement with our in vitro and in vivo findings, a high FGFR3-S/FGFR3-L expression ratio in prostate cancer specimens was associated with poor patient prognosis. IMPLICATIONS: This work identifies a novel FGFR3 splice variant and supports the hypothesis that differential AS participates in prostate cancer health disparities.
Collapse
Affiliation(s)
- Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, D. C
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland
| | - Travers Ching
- Cancer Epidemiology Program, University of Hawaii, Honolulu, Hawaii
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kaitlin Garofano
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, D. C
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Tessa Knox
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, D. C
| | - Patricia Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Kenneth Nguyen
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, D. C
| | - Johng Rhim
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, D. C.
| |
Collapse
|
46
|
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, Jiang GM. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer 2019; 18:101. [PMID: 31126310 PMCID: PMC6533683 DOI: 10.1186/s12943-019-1030-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a highly conserved catabolic process that mediates degradation of pernicious or dysfunctional cellular components, such as invasive pathogens, senescent proteins, and organelles. It can promote or suppress tumor development, so it is a “double-edged sword” in tumors that depends on the cell and tissue types and the stages of tumor. The epithelial-mesenchymal transition (EMT) is a complex biological trans-differentiation process that allows epithelial cells to transiently obtain mesenchymal features, including motility and metastatic potential. EMT is considered as an important contributor to the invasion and metastasis of cancers. Thus, clarifying the crosstalk between autophagy and EMT will provide novel targets for cancer therapy. It was reported that EMT-related signal pathways have an impact on autophagy; conversely, autophagy activation can suppress or strengthen EMT by regulating various signaling pathways. On one hand, autophagy activation provides energy and basic nutrients for EMT during metastatic spreading, which assists cells to survive in stressful environmental and intracellular conditions. On the other hand, autophagy, acting as a cancer-suppressive function, is inclined to hinder metastasis by selectively down-regulating critical transcription factors of EMT in the early phases. Therefore, the inhibition of EMT by autophagy inhibitors or activators might be a novel strategy that provides thought and enlightenment for the treatment of cancer. In this article, we discuss in detail the role of autophagy and EMT in the development of cancers, the regulatory mechanisms between autophagy and EMT, the effects of autophagy inhibition or activation on EMT, and the potential applications in anticancer therapy.
Collapse
Affiliation(s)
- Hong-Tao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Jie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuan Tan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.,Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang-Qiong Mo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Meng-Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chu-Yu Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| |
Collapse
|
47
|
Cocchiola R, Rubini E, Altieri F, Chichiarelli S, Paglia G, Romaniello D, Carissimi S, Giorgi A, Giamogante F, Macone A, Perugia G, Gurtner A, Eufemi M. STAT3 Post-Translational Modifications Drive Cellular Signaling Pathways in Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20081815. [PMID: 31013746 PMCID: PMC6514970 DOI: 10.3390/ijms20081815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
STAT3 is an oncoprotein overexpressed in different types of tumors, including prostate cancer (PCa), and its activity is modulated by a variety of post-translational modifications (PTMs). Prostate cancer represents the most common cancer diagnosed in men, and each phase of tumor progression displays specific cellular conditions: inflammation is predominant in tumor’s early stage, whereas oxidative stress is typical of clinically advanced PCa. The aim of this research is to assess the correspondence between the stimulus-specificity of STAT3 PTMs and definite STAT3-mediated transcriptional programs, in order to identify new suitable pharmacological targets for PCa treatment. Experiments were performed on less-aggressive LNCaP and more aggressive DU-145 cell lines, simulating inflammatory and oxidative-stress conditions. Cellular studies confirmed pY705-STAT3 as common denominator of all STAT3-mediated signaling. In addition, acK685-STAT3 was found in response to IL-6, whereas glutC328/542-STAT3 and pS727-STAT3 occurred upon tert-butyl hydroperoxyde (tBHP) treatment. Obtained results also provided evidence of an interplay between STAT3 PTMs and specific protein interactors such as P300 and APE1/Ref-1. In accordance with these outcomes, mRNA levels of STAT3-target genes seemed to follow the differing STAT3 PTMs. These results highlighted the role of STAT3 and its PTMs as drivers in the progression of PCa.
Collapse
Affiliation(s)
- Rossana Cocchiola
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Giuliano Paglia
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| | - Stefania Carissimi
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Alessandra Giorgi
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Flavia Giamogante
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Giacomo Perugia
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University, V.le Dell'Università, 00185 Rome, Italy.
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute; via Elio Chianesi, 53, 00144 Rome, Italy.
| | - Margherita Eufemi
- Department of Biochemical Sciences "A. Rossi Fanelli" and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
48
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
49
|
Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol 2018; 83:17-26. [PMID: 30353226 DOI: 10.1007/s00280-018-3707-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a ubiquitous catabolic process by which damaged or harmful intracellular components are delivered to the lysosomes for self-digestion and recycling. It is critical in cancer treatment. Therapy-induced autophagy predominantly acts as a pro-survival mechanism, but progressive autophagy can lead to non-apoptotic cell death, also known as autophagic cell death. Plants or herbs contain various natural compounds that are widely used in the treatment of many types of malignancies. Emerging evidence indicates that phytochemicals targeting the autophagic pathway are promising agents for cancer treatment. However, these compounds play different roles in autophagy. In this review, we discussed the role of autophagy in cancer development and therapy, and focussed on elucidating the anti-cancer activities of autophagic modulators, especially phytochemicals. Notably, we described a novel premise that the dynamic role of phytochemicals should be evaluated in regulation of autophagy in cancer.
Collapse
|
50
|
Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:73-79. [DOI: 10.1016/j.jphotobiol.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022]
|