1
|
Long G, Wang X, Chen X, Ma S, Sun L, Jiang Z, You Q, Guo X. Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia. J Med Chem 2025; 68:1260-1279. [PMID: 39804067 DOI: 10.1021/acs.jmedchem.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells. Thus, a series of dual-target inhibitors was developed by merging the pharmacophores of the WDR5 and HDAC inhibitors. Among the developed inhibitors, compound 32d displayed an 89-fold increase in antiproliferative efficacy and induced potent cell apoptosis by impeding the DNA damage repair signaling pathway. Furthermore, the administration of 30 mg/kg of compound 32d was well tolerated, inhibiting MV-4-11 xenograft growth by 87.1%. Our investigation established the therapeutic effectiveness of the developed WDR5-MLL1/HDAC dual-target inhibitor against acute myeloid leukemia, providing a valuable tool for further exploration of crosstalk between the two targets.
Collapse
Affiliation(s)
- Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Romero DVL, Balendran T, Hasang W, Rogerson SJ, Aitken EH, Achuthan AA. Epigenetic and transcriptional regulation of cytokine production by Plasmodium falciparum-exposed monocytes. Sci Rep 2024; 14:2949. [PMID: 38316918 PMCID: PMC10844200 DOI: 10.1038/s41598-024-53519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum infection causes the most severe form of malaria, where excessive production of proinflammatory cytokines can drive the pathogenesis of the disease. Monocytes play key roles in host defense against malaria through cytokine production and phagocytosis; however, they are also implicated in pathogenesis through excessive proinflammatory cytokine production. Understanding the underlying molecular mechanisms that contribute to inflammatory cytokine production in P. falciparum-exposed monocytes is key towards developing better treatments. Here, we provide molecular evidence that histone 3 lysine 4 (H3K4) methylation is key for inflammatory cytokine production in P. falciparum-exposed monocytes. In an established in vitro system that mimics blood stage infection, elevated proinflammatory TNF and IL-6 cytokine production is correlated with increased mono- and tri-methylated H3K4 levels. Significantly, we demonstrate through utilizing a pharmacological inhibitor of H3K4 methylation that TNF and IL-6 expression can be suppressed in P. falciparum-exposed monocytes. This elucidated epigenetic regulatory mechanism, controlling inflammatory cytokine production, potentially provides new therapeutic options for future malaria treatment.
Collapse
Affiliation(s)
- David V L Romero
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Teuscher KB, Mills JJ, Tian J, Han C, Meyers KM, Sai J, South TM, Crow MM, Van Meveren M, Sensintaffar JL, Zhao B, Amporndanai K, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors. J Med Chem 2023; 66:16783-16806. [PMID: 38085679 DOI: 10.1021/acs.jmedchem.3c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232-0142, United States
| | | | | | | | | | | | | | | | | | | | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States
| |
Collapse
|
6
|
Mitchell K, Sprowls SA, Arora S, Shakya S, Silver DJ, Goins CM, Wallace L, Roversi G, Schafer RE, Kay K, Miller TE, Lauko A, Bassett J, Kashyap A, D'Amato Kass J, Mulkearns-Hubert EE, Johnson S, Alvarado J, Rich JN, Holland EC, Paddison PJ, Patel AP, Stauffer SR, Hubert CG, Lathia JD. WDR5 represents a therapeutically exploitable target for cancer stem cells in glioblastoma. Genes Dev 2023; 37:86-102. [PMID: 36732025 PMCID: PMC10069451 DOI: 10.1101/gad.349803.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Samuel A Sprowls
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sajina Shakya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
| | - Lisa Wallace
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Gustavo Roversi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel E Schafer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kristen Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Adam Lauko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - John Bassett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anjali Kashyap
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jonathan D'Amato Kass
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Sadie Johnson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Joseph Alvarado
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Christopher G Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, USA;
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio 44106, USA
| |
Collapse
|
7
|
Florian AC, Woodley CM, Wang J, Grieb BC, Slota MJ, Guerrazzi K, Hsu CY, Matlock B, Flaherty D, Lorey S, Fesik SW, Howard G, Liu Q, Weissmiller A, Tansey W. Synergistic action of WDR5 and HDM2 inhibitors in SMARCB1-deficient cancer cells. NAR Cancer 2022; 4:zcac007. [PMID: 35252869 PMCID: PMC8892060 DOI: 10.1093/narcan/zcac007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.
Collapse
Affiliation(s)
- Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Siladi AJ, Wang J, Florian AC, Thomas LR, Creighton JH, Matlock BK, Flaherty DK, Lorey SL, Howard GC, Fesik SW, Weissmiller AM, Liu Q, Tansey WP. WIN site inhibition disrupts a subset of WDR5 function. Sci Rep 2022; 12:1848. [PMID: 35115608 PMCID: PMC8813994 DOI: 10.1038/s41598-022-05947-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.
Collapse
Affiliation(s)
- Andrew J Siladi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Oncocyte Corporation, 2 International Drive, Suite 510, Nashville, TN, 37217, USA
| | - Joy H Creighton
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:biology10070581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
|
10
|
Wang S, Yang H, Su M, Lian F, Cong Z, Wei R, Zhou Y, Li X, Zheng X, Li C, Fu X, Han X, Shi Q, Li C, Zhang N, Geng M, Liu H, Li J, Huang X, Wang J. 5-Aminonaphthalene derivatives as selective nonnucleoside nuclear receptor binding SET domain-protein 2 (NSD2) inhibitors for the treatment of multiple myeloma. Eur J Med Chem 2021; 222:113592. [PMID: 34147909 DOI: 10.1016/j.ejmech.2021.113592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Approximately 20% of multiple myeloma (MM) are caused by a chromosomal translocation t (4; 14) that leads to the overexpression of the nuclear receptor binding SET domain-protein 2 (NSD2) histone methyltransferase. NSD2 catalyzes the methylation of lysine 36 on histone H3 (H3K36me2) and is associated with transcriptionally active regions. Using high-throughput screening (HTS) with biological analyses, a series of 5-aminonaphthalene derivatives were designed and synthesized as novel NSD2 inhibitors. Among all the prepared compounds, 9c displayed a good NSD2 inhibitory activity (IC50 = 2.7 μM) and selectivity against both SET-domain-containing and non-SET-domain-containing methyltransferases. Preliminary research indicates the inhibition mechanism of compound 9c by significantly suppressed the methylation of H3K36me2. Compound 9c specifically inhibits the proliferation of the human B cell precursor leukemia cell line RS4:11 and the human myeloma cell line KMS11 by inducing cell cycle arrest and apoptosis with little cytotoxicity. It has been reported that the anti-cancer effect of compound 9c is partly achieved by completely suppressing the transcriptional activation of NSD2-targeted genes. When administered intraperitoneally at 25 mg/kg, compound 9c suppressed the tumor growth of RS4:11 xenografts in vivo and no body weight loss was detected in the tested SCID mice.
Collapse
Affiliation(s)
- Shuni Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hong Yang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Mingbo Su
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing, 210023, China
| | - Fulin Lian
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zhanqing Cong
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Rongrui Wei
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China
| | - Xingjun Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xingling Zheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xuhong Fu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xu Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qiongyu Shi
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Cong Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Naixia Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing, 210023, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Jia Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing, 210023, China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Xun Huang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
11
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Ye X, Chen G, Jin J, Zhang B, Wang Y, Cai Z, Ye F. The Development of Inhibitors Targeting the Mixed Lineage Leukemia 1 (MLL1)-WD Repeat Domain 5 Protein (WDR5) Protein- Protein Interaction. Curr Med Chem 2020; 27:5530-5542. [PMID: 31132972 DOI: 10.2174/0929867326666190528080514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Mixed Lineage Leukemia 1 (MLL1), an important member of Histone Methyltransferases (HMT) family, is capable of catalyzing mono-, di-, and trimethylation of Histone 3 lysine 4 (H3K4). The optimal catalytic activity of MLL1 requires the formation of a core complex consisting of MLL1, WDR5, RbBP5, and ASH2L. The Protein-Protein Interaction (PPI) between WDR5 and MLL1 plays an important role in abnormal gene expression during tumorigenesis, and disturbing this interaction may have a potential for the treatment of leukemia harboring MLL1 fusion proteins. In this review, we will summarize recent progress in the development of inhibitors targeting MLL1- WDR5 interaction.
Collapse
Affiliation(s)
- Xiaoqing Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gang Chen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Binzhong Zhang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yinda Wang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhenhai Cai
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Kato I, Kasukabe T, Kumakura S. Menin‑MLL inhibitors induce ferroptosis and enhance the anti‑proliferative activity of auranofin in several types of cancer cells. Int J Oncol 2020; 57:1057-1071. [PMID: 32945449 DOI: 10.3892/ijo.2020.5116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022] Open
Abstract
Menin‑mixed‑lineage leukemia (MLL) inhibitors have potential for use as therapeutic agents for MLL‑rearranged leukemia. They are also effective against solid cancers, such as breast cancer. The present study demonstrated that menin‑MLL inhibitors, such as MI‑463, unexpectedly induced the ferroptotic cell death of several cancer cell lines. MI‑463 at a double‑digit nM concentration markedly decreased the viable number of OVCAR‑8 ovarian cancer cells for 3 days. Ferrostatin‑1 (a ferroptosis inhibitor) almost completely abrogated the MI‑463‑induced decrease in viable cell numbers. Furthermore, the cancer cell‑killing activity was inhibited by N‑acetylcysteine [a scavenger of reactive oxygen species (ROS)], deferoxamine (DFO, an iron chelator), PD146176 (a specific inhibitor of arachidonate 15‑lipoxygenase), idebenone (a membrane‑permeable analog of CoQ10) and oleic acid [a monounsaturated fatty acid and one of the end products of stearoyl‑CoA desaturase 1 (SCD1)], whereas Z‑VAD‑FMK (an apoptosis inhibitor) had a negligible effect on cell death. It was also found that MI‑463 in combination with auranofin (a thioredoxin reductase inhibitor) synergistically increased cancer the death of breast, ovarian, pancreatic and lung cancer cell lines (88%, 14/16 cell lines). The synergistic induction of cell death was abrogated by ferroptosis inhibitor and DFO. Inhibitors of SCD1, similar to MI‑463, also enhanced cancer cell death synergistically with auranofin, while inhibitors of SCD1 and MI‑463 did not additively induce cell death. Treatment with zinc protoporphyrin‑9, a specific inhibitor of heme oxygenase‑1 (HO‑1), markedly attenuated the cell death induced by MI‑463 plus auranofin. On the whole, these results suggest that the MI‑463‑induced decrease in cell viability may be at least partly associated with the inhibition of SCD1 activity. In addition, the potent induction of HO‑1 contributed to the synergistic effects of MI‑463 plus auranofin. Therefore, menin‑MLL inhibitors, such as MI‑463, in combination with auranofin represent an effective therapeutic approach for several types of cancer via the induction of ferroptosis.
Collapse
Affiliation(s)
- Ichiroh Kato
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| |
Collapse
|
14
|
Han Q, Zhang Q, Song H, Bamme Y, Song C, Ge Z. FBXW4 Is Highly Expressed and Associated With Poor Survival in Acute Myeloid Leukemia. Front Oncol 2020; 10:149. [PMID: 32175272 PMCID: PMC7056870 DOI: 10.3389/fonc.2020.00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
The F-box and WD repeat domain-containing (FBXW) proteins play an important role in ubiquitin proteasome by inducing protein degradation. Ten FBXW proteins have been identified in humans. The functions of FBXW proteins, like FBXW7, have been well-established in many human cancers. However, little is known about their transcriptional expression profiles and relationship with prognosis in acute myeloid leukemia (AML). Here we investigated the roles of FBXW proteins in AML by analyzing their mRNA expression profiles and association with clinical features using data from EMBL-EBI, the Cancer Cell Line Encyclopedia, Gene Expression Profiling Interactive Analysis, and cBioPortal databases. Our results showed that the mRNA level of FBXW proteins were highly detected by microarray in 14 AML cell lines, although there were no obvious differences. The expression of FBXW4 was significantly higher in AML patients compared with that in normal controls (P < 0.01). Patients whose age was ≥60 years old had a higher FBXW4 expression when compared with those who were <60 years old (P < 0.05). Cytogenetic favorable-risk group patients had a much lower FBXW4 expression than the intermediate- and poor-risk group patients (P < 0.0001). Moreover, patients with high FBXW4 expression exhibited significantly shorter event-free survival (EFS) and overall survival (OS) than those with low FBXW4 expression (median EFS: 5.3 vs. 10.0 months, P = 0.025; median OS: 8.1 vs. 19.0 months, P= 0.015). A multivariate analysis indicated that high FBXW4 expression was an independent risk factor for poor EFS in AML patients who received intensive chemotherapy followed by allo-SCT. In summary, our data suggested that FBXW4 is aberrantly expressed in AML and high FBXW4 expression might be a poor prognostic biomarker; future functional and mechanistic studies will further illuminate the roles of FBXW4 in AML.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qi Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Ye P, Shao Y, Ye X, Zhang F, Li R, Sun J, Xu B, Chen J. Homoleptic Bis(trimethylsilyl)amides of Yttrium Complexes Catalyzed Hydroboration Reduction of Amides to Amines. Org Lett 2020; 22:1306-1310. [PMID: 32013446 DOI: 10.1021/acs.orglett.9b04606] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homoleptic lanthanide complex Y[N(TMS)2]3 is an efficient homogeneous catalyst for the hydroboration reduction of secondary amides and tertiary amides to corresponding amines. A series of amides containing different functional groups such as cyano, nitro, and vinyl groups were found to be well-tolerated. This transformation has also been nicely applied to the synthesis of indoles and piribedil. Detailed isotopic labeling experiments, control experiments, and kinetic studies provided cumulative evidence to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Pengqing Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China.,Institute of New Materials & Industrial Technology , Wenzhou University , Wenzhou , P.R. China
| | - Xuanzeng Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P.R. China
| | - Renhao Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P.R. China
| | - Jiani Sun
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Beihang Xu
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| |
Collapse
|
16
|
Stoeber R. Role of WDR5 in breast cancer prognosis. EXCLI JOURNAL 2020; 18:1094-1096. [PMID: 31938027 PMCID: PMC6953539 DOI: 10.17179/excli2019-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Regina Stoeber
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)
| |
Collapse
|
17
|
Wang F, Zhang J, Ke X, Peng W, Zhao G, Peng S, Xu J, Xu B, Cui H. WDR5-Myc axis promotes the progression of glioblastoma and neuroblastoma by transcriptional activating CARM1. Biochem Biophys Res Commun 2020; 523:699-706. [PMID: 31948749 DOI: 10.1016/j.bbrc.2019.12.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
The WD repeat domain 5 (WDR5), also known as SWD3 and BIG-3, is often overexpressed in cancers, however its molecular function in cancer remains to be elucidated. In this study, we found that WDR5 promoted the proliferation and self-renewal of glioblastoma and neuroblastoma cells. The data from databases and Western blot assay showed that CARM1 is a downstream gene of WDR5-Myc axis. In addition, we observed that WDR5 promoted the binding of Myc to CARM1 promoter by interacting with Myc and inducing histone 3 lysine 4 trimethylation (H3K4me3). Dual luciferase reporter system indicated that Myc binds to the upstream region (-520 to -515) before transcription start site (TSS) of CARM1 promoter. These findings suggest a novel regulatory model for the proliferation and tumorigenesis of glioblastoma and neuroblastoma by WDR5-Myc axis.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Bo Xu
- School Hospital of Southwest University, Southwest University, Beibei, Chongqing, 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
18
|
Byun WS, Kim WK, Han HJ, Chung HJ, Jang K, Kim HS, Kim S, Kim D, Bae ES, Park S, Lee J, Park HG, Lee SK. Targeting Histone Methyltransferase DOT1L by a Novel Psammaplin A Analog Inhibits Growth and Metastasis of Triple-Negative Breast Cancer. Mol Ther Oncolytics 2019; 15:140-152. [PMID: 31720371 PMCID: PMC6838941 DOI: 10.1016/j.omto.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most intractable cancer in women with a high risk of metastasis. While hyper-methylation of histone H3 catalyzed by disruptor of telomeric silencing 1-like (DOT1L), a specific methyltransferase for histone H3 at lysine residue 79 (H3K79), is reported as a potential target for TNBCs, early developed nucleoside-type DOT1L inhibitors are not sufficient for effective inhibition of growth and metastasis of TNBC cells. We found that TNBC cells had a high expression level of DOT1L and a low expression level of E-cadherin compared to normal breast epithelial cells and non-TNBC cells. Here, a novel psammaplin A analog (PsA-3091) exhibited a potent inhibitory effect of DOT1L-mediated H3K79 methylation. Consistently, PsA-3091 also significantly inhibited the proliferation, migration, and invasion of TNBC cells along with the augmented expression of E-cadherin and the suppression of N-cadherin, ZEB1, and vimentin expression. In an orthotopic mouse model, PsA-3091 effectively inhibited lung metastasis and tumor growth by the regulation of DOT1L activity and EMT biomarkers. Together, we report here a new template of DOT1L inhibitor and suggest that targeting DOT1L-mediated H3K79 methylation by a novel PsA analog may be a promising strategy for the treatment of metastatic breast cancer patients.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Ju Han
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungkuk Jang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Sun Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeung-geun Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Cai S, Zhu Q, Guo C, Yuan R, Zhang X, Nie Y, Chen L, Fang Y, Chen K, Zhang J, Mo D, Chen Y. MLL1 promotes myogenesis by epigenetically regulating Myf5. Cell Prolif 2019; 53:e12744. [PMID: 31840352 PMCID: PMC7046306 DOI: 10.1111/cpr.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives Mixed lineage leukaemia protein‐1 (MLL1) mediates histone 3 lysine 4 (H3K4) trimethylation (me3) and plays vital roles during early embryonic development and hematopoiesis. In our previous study, we found its expression was positively correlated with embryonic myogenic ability in pigs, indicating its potential roles in mammalian muscle development. The present work aimed to explore the roles and regulation mechanisms of MLL1 in myogenesis. Materials and methods The expression of MLL1 in C2C12 cells was experimentally manipulated using small interfering RNAs (siRNA). 5‐ethynyl‐2′‐deoxyuridine (EdU) assay, cell cycle assay, immunofluorescence, qRT‐PCR and Western blot were performed to assess myoblast proliferation and differentiation. Chromatin immunoprecipitation assay was conducted to detect H3K4me3 enrichment on myogenic factor 5 (Myf5) promoter. A cardiotoxin (CTX)‐mediated muscle regeneration model was used to investigate the effects of MLL1 on myogenesis in vivo. Results MLL1 was highly expressed in proliferating C2C12 cells, and expression decreased after differentiation. Knocking down MLL1 suppressed myoblast proliferation and impaired myoblast differentiation. Furthermore, knockdown of MLL1 resulted in the arrest of cell cycle in G1 phase, with decreased expressions of Myf5 and Cyclin D1. Mechanically, MLL1 transcriptionally regulated Myf5 by mediating H3K4me3 on its promoter. In vivo data implied that MLL1 was required for Pax7‐positive satellite cell proliferation and muscle repair. Conclusion MLL1 facilitates proliferation of myoblasts and Pax7‐positive satellite cells by epigenetically regulating Myf5 via mediating H3K4me3 on its promoter.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cilin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zhang FY, Lan XB, Xu C, Yao HG, Li T, Liu FS. Rigid hindered N-heterocyclic carbene palladium precatalysts: synthesis, characterization and catalytic amination. Org Chem Front 2019. [DOI: 10.1039/c9qo00726a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rigid hindered N-heterocyclic carbene palladium complexes have been developed and exhibited high activities for a variety of (hetero)aryl chlorides with (hetero)anilines and amines under aerobic conditions.
Collapse
Affiliation(s)
- Fei-Yi Zhang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Xiao-Bing Lan
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Chang Xu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Hua-Gang Yao
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Tian Li
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| |
Collapse
|
21
|
Lu K, Tao H, Si X, Chen Q. The Histone H3 Lysine 4 Presenter WDR5 as an Oncogenic Protein and Novel Epigenetic Target in Cancer. Front Oncol 2018; 8:502. [PMID: 30488017 PMCID: PMC6246693 DOI: 10.3389/fonc.2018.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
The histone H3 lysine 4 (H3K4) presenter WDR5 forms protein complexes with H3K4 methyltransferases MLL1-MLL4 and binding partner proteins including RBBP5, ASH2L, and DPY30, and plays a key role in histone H3K4 trimethylation, chromatin remodeling, transcriptional activation of target genes, normal biology, and diseases such as MLL-rearranged leukemia. By forming protein complexes with other proteins such as Myc, WDR5 induces transcriptional activation of key oncogenes, tumor cell cycle progression, DNA replication, cell proliferation, survival, tumor initiation, progression, invasion, and metastasis of cancer of a variety of organ origins. Several small molecule MLL/WDR5 protein-protein interaction inhibitors, such as MM-401, MM-589, WDR5-0103, Piribedil, and OICR-9429, have been confirmed to reduce H3K4 trimethylation, oncogenic gene expression, cell cycle progression, cancer cell proliferation, survival and resistance to chemotherapy without general toxicity to normal cells. Derivatives of the MLL/WDR5 interaction inhibitors with improved pharmacokinetic properties and in vivo bioavailability are expected to have the potential to be trialed in cancer patients.
Collapse
Affiliation(s)
- Kebin Lu
- Department of Paediatrics, Shan Xian Central Hospital, Heze, China
| | - He Tao
- Department of Medical Oncology, Shan Xian Haijiya Hospital, Heze, China
| | - Xiaomin Si
- Department of Medical Oncology, Xian Yang Central Hospital, Xianyang, China
| | - Qingjuan Chen
- Department of Medical Oncology, Xian Yang Central Hospital, Xianyang, China
| |
Collapse
|