1
|
Tang H, Geng Y, Wang K, Zhu Y, Fan Y, Wang Y. Integrative analysis of FADS3 as a marker for prognosis and immunity in head and neck squamous cell carcinoma. Cell Signal 2024; 124:111437. [PMID: 39343114 DOI: 10.1016/j.cellsig.2024.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Long-chain polyunsaturated fatty acid formation requires fatty acid desaturase (FADS), which is strongly linked to cancer progression. Nevertheless, it's unclear how FADS3 functions in head and neck squamous cell carcinoma (HNSCC). METHODS HNSCC cases were retrieved from TCGA and GEO databases, and FADS members with transcriptionally differential expression were identified. Clinical survival, tumor microenvironment (TME), and potential pathogenic mechanism in HNSCC were also investigated. These results were validated using tissue staining, flow cytometry and functional studies in HNSCC cell lines. RESULTS When comparing HNSCC to normal epithelial tissues, FADS3 expression was much higher in the former. FADS3 upregulation was correlated with poor clinical outcomes. FADS3 was an independent prognostic factor for poor overall survival in HNSCC patients. KEGG, GO, and GSEA revealed that FADS3 expression correlated with several immune-related pathways and the epithelial-mesenchymal transition (EMT). Knocking down FADS3 restrained HNSCC cell proliferation, migration, invasion, and EMT. Single-cell dataset analysis showed an association between FADS3 and TME features. Further investigation revealed that FADS3high tumor was accompanied with less CD8+ T cells in situ tissue and peripheral blood. FADS3 was positively correlated with immune-related molecules and could predict the adverse efficacy of immunotherapy. Finally, we constructed a CYTOR/hsa-let-7c-5p axis regulating FADS3 expression in HNSCC progression. CONCLUSIONS FADS3 may represent a target for treatment in HNSCC, which is linked to prognosis, EMT, immune infiltration, and ceRNA regulatory network of HNSCC.
Collapse
Affiliation(s)
- Haonan Tang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yanlin Geng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Keyi Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yuchi Zhu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| | - Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| |
Collapse
|
2
|
Wu H, Luo H, Wang M, Du Y, Li J. NAP1L5 promotes epithelial-mesenchymal transition by regulating PEG10 expression in acute myeloid leukaemia. Leuk Res 2024; 148:107623. [PMID: 39579659 DOI: 10.1016/j.leukres.2024.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy that poses a serious threat to human health. Studies have shown that the expression of NAP1L5 is elevated in patients with AML; however, the specific molecular mechanism remains unknown. Therefore, in this study, we aimed to investigate the pathogenic mechanisms of NAP1L5 in AML. The expression level of NAP1L5 was increased in AML, and the upregulation of NAP1L5 was related to tumour growth and epithelial-mesenchymal transition. Furthermore, PEG10 is a downstream regulatory factor of NAP1L5, and its overexpression promotes tumour growth and epithelial-mesenchymal transition. More importantly, the loss of PEG10 inhibited the negative effects induced by NAP1L5 overexpression. Our results suggest that NAP1L5 is a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Huan Wu
- School of Mental Health, Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Hang Luo
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - YuQing Du
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Jiajia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China.
| |
Collapse
|
3
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Li P, Ma X, Gu X. The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors. Front Cell Dev Biol 2024; 12:1442193. [PMID: 39161590 PMCID: PMC11330846 DOI: 10.3389/fcell.2024.1442193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
7
|
Gong J, Han G, Chen Z, Zhang Y, Xu B, Xu C, Gao W, Wu J. CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J Transl Med 2024; 22:517. [PMID: 38816735 PMCID: PMC11137954 DOI: 10.1186/s12967-024-05233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Exosomes/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm/genetics
- Neovascularization, Pathologic/genetics
- Disease Progression
- Animals
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Cell Line, Tumor
- Pyridines/pharmacology
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Male
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Mice
- Mice, Inbred BALB C
- Female
- Base Sequence
- Human Umbilical Vein Endothelial Cells/metabolism
- Middle Aged
- Angiogenesis
Collapse
Affiliation(s)
- Jiahao Gong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Bin Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong Province, China
| | - Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
9
|
Li F, Wang Y, Wen M, Aizezi G, Yuan J, Zhou T, Shen G. NPHS2-6 drives cervical squamous cell carcinoma (CSCC) progression via hsa-miR-1323/SMC1B axis to activate PI3K-Akt pathway. Clin Transl Oncol 2024; 26:245-259. [PMID: 37322227 DOI: 10.1007/s12094-023-03248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE A substantial amount of evidence demonstrates suggests that long non-coding RNAs (lncRNAs) play a key role in the progression of various malignancies, cervical squamous cell carcinoma (CSCC) included. In our study, we deeply investigated the role and molecular mechanism of lncRNA NPHS2-6 in CSCC. METHODS The expression level of gene and protein expression were measured by qRT-PCR and western blot. To test the cell proliferation and cell metastasis ability, we carried out the CCK-8 experiment, clone formation assay, transwell assay and wound healing, respectively. The interactivity among NPHS2-6, miR-1323 and SMC1B were co demonstrated using the bioinformatics tool, dual-luciferase reporter system, and RNA pulldown assay. The subcutaneous tumor model of nude mice was established to verify the results of previous studies at the in vivo. NPHS2-6 was upregulated in CSCC tissues and cells. RESULTS NPHS2-6 deficiency significantly inhibited CSCC cell growth and EMT in vitro. In addition, NPHS2-6 deficiency also inhibited the growth of CSCC xenograft tumors in mice in vivo. Importantly, NPHS2-6 was a competing endogenous RNA (ceRNA) to increases SMC1B levels by binding to miR-1323, leading to activate the PI3K/Akt pathway, thereby exacerbating tumorigenesis of CSCC. CONCLUSIONS In conclusion, NPHS2-6/miR-1323/SMC1B/PI3K/Akt signaling accelerates the progression of CSCC, providing a new direction for the treatment strategy of CSCC.
Collapse
Affiliation(s)
- Fen Li
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Yan Wang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Mengke Wen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Gulibiya Aizezi
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Jinrui Yuan
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Tongjunnan Zhou
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Guqun Shen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China.
| |
Collapse
|
10
|
Meng Q, Zhou Q, Chen X, Chen J. Prognostic hub gene CBX2 drives a cancer stem cell-like phenotype in HCC revealed by multi-omics and multi-cohorts. Aging (Albany NY) 2023; 15:12817-12851. [PMID: 37980163 DOI: 10.18632/aging.205173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/07/2023] [Indexed: 11/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a high prevalence and fatality rate. CBX2 has been demonstrated to impact the development and advancement of various cancers, albeit it has received limited attention in relation to HCC. In this study, CBX2 and CEP55 were screened out with the refined triple regulatory networks constructed by total RNA-seq datasets (TCGA-LIHC, GSE140845) and a robust prognostic model. Aberrantly higher expression levels of CBX2 and CEP55 in HCC may be caused by CNV alterations, promoter hypo-methylation, open chromatin accessibility, and greater active marks such as H3K4me3, H3K4me1, and H3K27ac. Functionally, CBX2, which was highly correlated with CD44, shaped a cancer stem cell-like phenotype by positively regulating cell-cycle progression, proliferation, invasion, metastasis, wound healing, and radiation resistance, revealed by combining bulk RNA-seq and scRNA-seq datasets. CBX2 knockdown validated its role in affecting the cell cycle. Importantly, we revealed CBX2 could activate gene by cooperating with co-regulators or not rather than a recognizer of the repressive mark H3K27me3. For instance, we uncovered CBX2 bound to promoter of CTNNB1 and CEP55 to augment their expressions. CBX2 showed a highly positive correlation with CEP55 at pan-cancer level. In addition, CBX2 and CEP55 may enhance extracellular matrix reprograming via cancer-associated fibroblast. Surprisingly, patients with high expression of CBX2 or CEP55 exhibited a higher response to immunotherapy, indicating that CBX2 and CEP55 may be promising therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518000, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518100, Guangdong, China
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518100, Guangdong, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518100, Guangdong, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518000, Guangdong, China
| |
Collapse
|
11
|
Tao ZG, Yuan YX, Wang GW. Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis. World J Gastrointest Oncol 2023; 15:1974-1987. [DOI: 10.4251/wjgo.v15.i11.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND A series of long non-coding RNAs (lncRNAs) have been reported to play a crucial role in cancer biology. Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies. However, its role in hepatocellular carcinoma (HCC) has not been fully deciphered.
AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.
METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction. The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method, EdU method, and flow cytometry, respectively. RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1 (E2F1). Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z (GNAZ). E2F1 and GNAZ were detected by western blot in HCC cells.
RESULTS In HCC tissues, CDKN2B-AS1 was upregulated. Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells, and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis. CDKN2B-AS1 could interact with E2F1. Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region. Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.
CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression.
Collapse
Affiliation(s)
- Zhi-Gang Tao
- Department of Radiology, Hangzhou Cancer Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Yu-Xiao Yuan
- Department of Radiology, Hangzhou Xixi Hospital, Hangzhou 310012, Zhejiang Province, China
| | - Guo-Wei Wang
- Department of Radiology, Hangzhou Xixi Hospital, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
12
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
13
|
Sun L, Yang Y, Li Y, Li Y, Zhang B, Shi R. The past, present, and future of liver cancer research in China. Cancer Lett 2023; 574:216334. [PMID: 37574184 DOI: 10.1016/j.canlet.2023.216334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Liver cancer is among the leading causes of cancer-related death worldwide and China accounts for nearly half of the global burden of liver cancer. Effective interventions such as hepatitis vaccinations, new blood tests and imaging tests significantly decreased the incidence worldwide, especially in China. Unraveling the systemic and molecular mechanisms of liver cancer would contribute to develop more effective therapies to prolong the 5 year survival of the patients. The Chinese funding agencies have been paying high attention to the basic and translational research of liver cancer. Over the last decade, the National Natural Science Foundation of China (NSFC) initiated a panel of research programs which supported liver cancer research in multiple directions. Besides, great progress has been made in basic and clinical research, platform construction and drug development in the field of liver cancer. In this article, we summarized the funding landscape, research progress, cooperation among countries and institutions, and drug discovery in China, with an attempt to compare the status and outcome with our peers globally.
Collapse
Affiliation(s)
- Lichao Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, PR China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Yuan Yang
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, PR China.
| | - Yang Li
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, PR China.
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, 230031, Anhui, PR China.
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Rong Shi
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, PR China.
| |
Collapse
|
14
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
15
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
16
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
17
|
Mosca N, Russo A, Potenza N. Making Sense of Antisense lncRNAs in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:8886. [PMID: 37240232 PMCID: PMC10219390 DOI: 10.3390/ijms24108886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Transcriptome complexity is emerging as an unprecedented and fascinating domain, especially by high-throughput sequencing technologies that have unveiled a plethora of new non-coding RNA biotypes. This review covers antisense long non-coding RNAs, i.e., lncRNAs transcribed from the opposite strand of other known genes, and their role in hepatocellular carcinoma (HCC). Several sense-antisense transcript pairs have been recently annotated, especially from mammalian genomes, and an understanding of their evolutionary sense and functional role for human health and diseases is only beginning. Antisense lncRNAs dysregulation is significantly involved in hepatocarcinogenesis, where they can act as oncogenes or oncosuppressors, thus playing a key role in tumor onset, progression, and chemoradiotherapy response, as deduced from many studies discussed here. Mechanistically, antisense lncRNAs regulate gene expression by exploiting various molecular mechanisms shared with other ncRNA molecules, and exploit special mechanisms on their corresponding sense gene due to sequence complementarity, thus exerting epigenetic, transcriptional, post-transcriptional, and translational controls. The next challenges will be piecing together the complex RNA regulatory networks driven by antisense lncRNAs and, ultimately, assigning them a function in physiological and pathological contexts, in addition to defining prospective novel therapeutic targets and innovative diagnostic tools.
Collapse
Affiliation(s)
| | | | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (A.R.)
| |
Collapse
|
18
|
Huang L, Lou K, Wang K, Liang L, Chen Y, Zhang J. Let-7c-5p Represses Cisplatin Resistance of Lung Adenocarcinoma Cells by Targeting CDC25A. Appl Biochem Biotechnol 2023; 195:1644-1655. [PMID: 36355336 DOI: 10.1007/s12010-022-04219-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
Cisplatin broadly functions as a routine treatment for lung adenocarcinoma (LUAD) patients. However, primary and acquired cisplatin resistances frequently occur in the treatment of LUAD patients, seriously affecting the therapeutic effect of cisplatin in patients. We intended to illustrate the impact of let-7c-5p/cell division cycle 25A (CDC25A) axis on cisplatin resistance in LUAD. Expression of let-7c-5p and CDC25A was analyzed via quantitative real-time polymerase chain reaction. The interaction between the two was verified by dual-luciferase reporter detection. For detecting half-maximal inhibitory concentration value of cisplatin in LUAD cells and cell proliferation, we separately applied Cell Counting Kit-8 and colony formation assays. Furthermore, we measured cell apoptosis and cell cycle distribution via flow cytometry, as well as cell cycle-related protein expression via Western blot. Let-7c-5p was evidently downregulated in LUAD, while CDC25A was remarkably upregulated. Let-7c-5p upregulation arrested LUAD cells to proliferate, stimulated cell apoptosis, and arrested cell cycle in G0/G1 phase, thus enhancing sensitivity of LUAD cells to cisplatin. In terms of mechanism, CDC25A was directly targeted by let-7c-5p, and the influence of let-7c-5p overexpression on LUAD proliferation, apoptosis, cell cycle, and cisplatin resistance could be reversed by CDC25A upregulation. Let-7c-5p improved sensitivity of LUAD cells to cisplatin by modulating CDC25A, and let-7c-5p/CDC25A axis was an underlying target for the intervention of LUAD cisplatin resistance.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, 318020, China
| | - Kai Lou
- Emergency Department, Taizhou First People's Hospital, Taizhou, 318020, China
| | - Kunyu Wang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Lingxin Liang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Yi Chen
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Jichen Zhang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China.
| |
Collapse
|
19
|
Shen G, Li F, Wang Y, Huang Y, Aizezi G, Yuan J, Ma C, Lin C. New insights on the interaction between m 6A modification and non-coding RNA in cervical squamous cell carcinoma. World J Surg Oncol 2023; 21:25. [PMID: 36710350 PMCID: PMC9885588 DOI: 10.1186/s12957-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/26/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND N6-Methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are both crucial regulators in human cancer growth and metastasis. However, their regulation on cervical squamous cell carcinoma (CSCC) is largely unclear. The present study aimed to explore the role of m6A-associated lncRNAs in CSCC. METHODS We screened the expression of methylation modification-related enzymes in CECC samples from TCGA. The qRT-PCR was used to detect METTL3 and lncRNA METTL4-2 expression. The biological activities of METTL3 in CSCC cells were evaluated by CCK-8, colony formation, transwell, wound healing, and xenograft tumor assays, respectively. The SRAMP tool was used to screen m6A modification sites of METTL4-2. Finally, the quantitative analysis of m6A modification was carried out by MeRIP. RESULTS METTL3 expression was upregulated in CSCC cells and tissues. Biological function and function loss analysis indicated that METTL3 promoted the migration and proliferation of CSCC cells. In addition, METTL3 promoted CSCC tumor growth in vivo. Mechanically, METTL3 installed the m6A modification and enhanced METTL4-2 transcript stability to increase its expression. Meanwhile, the m6A "reader" YTHDF1 recognized METTL4-2 installed by METTL3 and facilitated the translation of METTL4-2. CONCLUSIONS In conclusion, our study highlights the function and mechanism of METTL3-induced METTL4-2 in CSCC. These findings support that METTL3-stabilized METTL4-2 promoted CSCC progression via a m6A-dependent modality, which provides new insights into therapeutic strategies for CSCC.
Collapse
Affiliation(s)
- Guqun Shen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Fen Li
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yan Wang
- Xinjiang Key Laboratory of Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yongmei Huang
- Operating Theatre, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Gulibiya Aizezi
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jinrui Yuan
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Chen Lin
- Department of Pathology, School of Basic Medicine, Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, China.
| |
Collapse
|
20
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Li Z, Zhang Y, Fang J, Xu Z, Zhang H, Mao M, Chen Y, Zhang L, Pian C. NcPath: a novel platform for visualization and enrichment analysis of human non-coding RNA and KEGG signaling pathways. Bioinformatics 2022; 39:6917072. [PMID: 36525367 PMCID: PMC9825761 DOI: 10.1093/bioinformatics/btac812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Non-coding RNAs play important roles in transcriptional processes and participate in the regulation of various biological functions, in particular miRNAs and lncRNAs. Despite their importance for several biological functions, the existing signaling pathway databases do not include information on miRNA and lncRNA. Here, we redesigned a novel pathway database named NcPath by integrating and visualizing a total of 178 308 human experimentally validated miRNA-target interactions (MTIs), 32 282 experimentally verified lncRNA-target interactions (LTIs) and 4837 experimentally validated human ceRNA networks across 222 KEGG pathways (including 27 sub-categories). To expand the application potential of the redesigned NcPath database, we identified 556 798 reliable lncRNA-protein-coding genes (PCG) interaction pairs by integrating co-expression relations, ceRNA relations, co-TF-binding interactions, co-histone-modification interactions, cis-regulation relations and lncPro Tool predictions between lncRNAs and PCG. In addition, to determine the pathways in which miRNA/lncRNA targets are involved, we performed a KEGG enrichment analysis using a hypergeometric test. The NcPath database also provides information on MTIs/LTIs/ceRNA networks, PubMed IDs, gene annotations and the experimental verification method used. In summary, the NcPath database will serve as an important and continually updated platform that provides annotation and visualization of the pathways on which non-coding RNAs (miRNA and lncRNA) are involved, and provide support to multimodal non-coding RNAs enrichment analysis. The NcPath database is freely accessible at http://ncpath.pianlab.cn/. AVAILABILITY AND IMPLEMENTATION NcPath database is freely available at http://ncpath.pianlab.cn/. The code and manual to use NcPath can be found at https://github.com/Marscolono/NcPath/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zutan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210023, China
| | - Hao Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Minfang Mao
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Cong Pian
- To whom correspondence should be addressed. or or
| |
Collapse
|
22
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14225584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Fax: +86-28-854-228-72
| |
Collapse
|
23
|
Zhao R, Ge Y, Gong Y, Li B, Xiao B, Zuo S. NAP1L5 targeting combined with MYH9 Inhibit HCC progression through PI3K/AKT/mTOR signaling pathway. Aging (Albany NY) 2022; 14:9000-9019. [PMID: 36374212 PMCID: PMC9740361 DOI: 10.18632/aging.204377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Nucleosome assembly protein 1-like 5 (NAP1L5) is a protein-coding gene that encodes a protein similar to nucleosome assembly protein 1 (NAP1). It is a histone chaperone that plays an important role in gene transcription in organisms. However, the role of NAP1L5 in the pathogenesis of hepatocellular carcinoma remains to be elucidated. In this study, low expression of NAP1L5 was found in hepatocellular carcinoma, and the downregulation of NAP1L5 was related to shorter survival and disease-free survival. In addition, its expression is also related to the tumor size and recurrence of hepatocellular carcinoma. The overexpression and knockdown of NAP1L5 by plasmid and siRNA showed that NAP1L5 inhibited the proliferation, migration and invasion and induced apoptosis of hepatoma cells. In vivo experiments confirmed that NAP1L5 can inhibit the growth and metastasis of hepatocellular carcinoma cells. In the mechanistic study, we found that NAP1L5 affects the occurrence and development of hepatocellular carcinoma by regulating MYH9 to inhibit the PI3K/AKT/mTOR signaling pathway. As a functional tumor suppressor, NAP1L5 is expressed at low levels in HCC. NAP1L5 inhibits the PI3K/AKT/mTOR signaling pathway in hepatocellular carcinoma by regulating MYH9. It may be a new potential target for liver cancer treatment.
Collapse
Affiliation(s)
- Rui Zhao
- Guizhou Medical University, Guiyang, Guizhou 550001, China,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Yuzhen Ge
- Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Yongjun Gong
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Bo Li
- Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Benli Xiao
- Guizhou Medical University, Guiyang, Guizhou 550001, China
| | - Shi Zuo
- Guizhou Medical University, Guiyang, Guizhou 550001, China,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China
| |
Collapse
|
24
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
25
|
Abstract
Colon cancer is a common malignant tumor. However, its pathogenesis still needs further study. In this study, we explored the role of nucleosome assembly protein 1-like 1 (NAP1L1) in colon cancer and its underlying mechanism. Based on analysis of The Cancer Genome Atlas data, we found that NAP1L1 is augmented in colorectal cancer, and the elevated NAP1L1 expression is associated with a poor prognosis in patients with colon cancer. Immunohistochemistry staining results showed that upregulated NAP1L1 protein level is an unfavorable factor that stimulates colon cancer progression. To further investigate the role of NAP1L1 in colon cancer, we established a colon cancer cell line with NAP1L1 knockdown, and found that repressing NAP1L1 expression in colon cancer cells markedly reduces cell proliferation in vivo and in vitro by MTT assay, colony formation, EdU incorporation, and subcutaneous tumorigenesis in nude mice. Furthermore, we found that NAP1L1 binds to HDGF, recruits DDX5, and induces β-catenin/CCND1 signaling, which promotes colon cancer cell proliferation. Finally, transfection with HDGF or DDX5restores cell growth in NAP1L1-knockdown colon cancer cells by upregulating DDX5/β-catenin/CCND1 signaling. Our study demonstrates that NAP1L1 functions as a potential oncogene that promotes colon cancer tumorigenesis by binding to HDGF, which stimulates DDX5/β-catenin/CCND1 signaling.
Collapse
|
26
|
Liu Y, Zhu L, Zhao W, Zhou Y, Shao S. High expression of ANRIL correlated with the poor prognosis in patients with cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e30531. [PMID: 36086708 PMCID: PMC10980395 DOI: 10.1097/md.0000000000030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND ANRIL, also called CDKN2B antisense RNA 1, is an important genetic susceptibility locus for cardiovascular diseases and associated with numerous pathologies, including several human cancers. OBJECTIVE The relationship between ANRIL and the clinical outcome or prognosis of cancer patients was analyzed in this meta-analysis. METHODS One thousand seven hundred eight cancer patients were selected in 23 studies from 3 databases (Pubmed, Cochrane Library, and EMBASE). RESULTS A fixed-effects model indicated that the high expression of ANRIL is obviously linked to poor overall survival (OS) (Hazard ratio [HR] = 1.77, 95% confidence interval [CI] = 1.57-2.00, P < .00001); the random-effects model revealed poor disease-free survival (DFS) (HR = 1.86, 95% CI: 1.46-2.37, P < .00001). A high level of ANRIL expression was also associated with the tumor size (small vs large, odds ratio [OR] = 0.57, 95% CI: 0.39-0.83, P = .003), TNM stage (I + II vs III + IV; OR = 0.40, 95% CI: 0.24-0.69, P = .0008), and lymph node metastasis (LNM) (Yes vs No, OR = 3.66, 95% CI: 1.46-9.17, P = .006). ANRIL was not related significantly to histologic differentiation compared to poor with moderate + well; the OR value is 0.74, 95% CI: 0.26-2.12, P = .58. In addition, evidence suggested that a high level of ANRIL was positively associated with human cancer type, follow-up time, and sample size. CONCLUSION This meta-analysis demonstrated that ANRIL may be a valuable biomarker for predicting poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Yun Liu
- Department of Digestive, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linqi Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenjun Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Zhou
- Department of Digestive, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
27
|
Significance of lncRNA CDKN2B-AS1 in Interventional Therapy of Liver Cancer and the Mechanism under Its Participation in Tumour Cell Growth via miR-199a-5p. JOURNAL OF ONCOLOGY 2022; 2022:2313416. [PMID: 36081669 PMCID: PMC9448535 DOI: 10.1155/2022/2313416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Methods Totally 34 LC patients admitted to our hospital between January 2020 and March 2021 (Obs group) and 32 healthy individuals over the same time span (Con group) were enrolled. CDKN2B-AS1 and miR-199a-5p in the two groups were PCR quantified, and their association and value for the diagnosis and therapy of LC were analyzed. In addition, purchased LC cells were adopted for in vitro assays, and the influences of CDKN2B-AS1 and miR-199a-5p on biological behaviours of LC cells were assessed through CCK-8, Transwell, and flow cytometry experiment, and their regulatory association was verified by the dual luciferase reporter (DLR) assay and rescue assay. And the autophagic protein expression was tested by the western blot to confirm the effect of both on the autophagic capacity of LC cells. Results CDKN2B-AS1 in LC cases presented high expression and dropped after therapy (P < 0.05), and the opposite situation of miR-199a-5p was found in the LC cases (P < 0.05). In vitro assays, after silencing of CDKN2B-AS1 and upregulation of miR-199a-5p, LC cells presented weaker viability, invasion and migration activities, and stronger apoptotic activity (all P < 0.05). The DLR assay revealed suppressed fluorescence activity of CDKN2B-AS1-WT by miR-199a-5p (P < 0.05). Moreover, according to the rescue assay, the impacts of silencing CDKN2B-AS1 on LC cells could be completely offset by silencing miR-199a-5p (P < 0.05). According to the clone formation and WB assay, the growth and autophagy of LC cells were under the regulation of CDKN2B-AS1 targeting miR-199a-5p (P < 0.05). Conclusion With high expression in LC cases, CDKN2B-AS1 is implicated in the development and progression of LC by suppressing cell autophagy through targeting miR-199a-5p.
Collapse
|
28
|
Ferroptosis-Related lncRNA for the Establishment of Novel Prognostic Signature and Therapeutic Response Prediction to Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2056913. [PMID: 35937391 PMCID: PMC9352484 DOI: 10.1155/2022/2056913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
Background Ferroptosis is a recently described form of intentional cellular damage that is iron-dependent and separate from apoptosis, cellular necrosis, and autophagy. It has been demonstrated to be adequately regulated by long noncoding RNAs (lncRNAs) in various cancers. However, the predictive profile of ferroptosis-related lncRNAs (FRLs) in endometrial carcinoma (EC) is unknown. Herein, FRLs associated with uterine corpus endometrial carcinoma (UCEC) prognosis were screened to predict treatment response in EC. Methods Samples of EC and adjacent normal tissues were obtained from The Cancer Genome Atlas (TCGA) dataset repository. Limma and survival packages in R software were used to screen FRLs associated with the prognosis of EC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) chord and circle plots of FRLs were also plotted. Next, FRLs screened by the least absolute shrinkage and selection operator (LASSO) method were applied to construct and validate a multivariate Cox proportional risk regression model. Nomogram plots were created to forecast the outcome of UCEC patients, and gene set enrichment analysis (GSEA), principal component analysis (PCA), and immunoassays were performed on the prognostic models. Finally, limma, ggpubr, pRRophetic, and ggplot2 programs were used for drug sensitivity analysis of the prognostic models. Results A signature based on nine FRLs (CFAP58-DT, LINC00443, EMSLR, HYI-AS1, ADIRF-AS1, LINC02474, CDKN2B-AS1, LINC01629, and LINC00942) was constructed. The developed FRL prognostic model effectively discriminated UCEC patients into low-risk and high-risk groups. Immunological checkpoints CD80 and CD40 were strongly expressed in the high-risk group. In addition, the nine FRLs were all more expressed in the high-risk group compared to the low-risk group. Conclusion These findings significantly contribute to the understanding of the function of FRLs in UCEC and provide promising therapeutic strategies for UCEC.
Collapse
|
29
|
Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol 2022; 24:2081-2089. [DOI: 10.1007/s12094-022-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
|
30
|
Zhang H, Yao Y, Wu J, Zhou J, Zhao C, He J, Xu B. Comprehensive Analysis Identifies and Validates the Tumor Microenvironment Subtypes to Predict Anti-Tumor Therapy Efficacy in Hepatocellular Carcinoma. Front Immunol 2022; 13:838374. [PMID: 35924239 PMCID: PMC9339643 DOI: 10.3389/fimmu.2022.838374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe objective of this study was to explore and verify the subtypes in hepatocellular carcinoma based on the immune (lymphocyte and myeloid cells), stem, and stromal cells in the tumor microenvironment and analyze the biological characteristics and potential relevance of each cluster.MethodsWe used the xCell algorithm to calculate cell scores and got subtypes by k-means clustering. In the external validation sets, we verified the conclusion stability by a neural network model. Simultaneously, we speculated the inner connection between clusters by pseudotime trajectory analysis and confirmed it by pathway enrichment, TMB, CNV, etc., analysis.ResultAccording to the results of the consensus cluster, we chose k = 4 as the optimal value and got four different subtypes (C1, C2, C3, and C4) with different biological characteristics based on infiltrating levels of 48 cells in TME. In univariable Cox regression, the hazard ratio (HR) value of C3 versus C1 was 2.881 (95% CI: 1.572–5.279); in multivariable Cox regression, we corrected the age and TNM stage, and the HR value of C3 versus C1 was 2.510 (95% CI: 1.339–4.706). C1 and C2 belonged to the immune-active type, C3 and C4 related to the immune-insensitive type and the potential conversion relationships between clusters. We established a neural network model, and the area under the curves of the neural network model was 0.949 in the testing cohort; the same survival results were also observed in the external validation set. We compared the differences in cell infiltration, immune function, pathway enrichment, TMB, and CNV of four clusters and speculated that C1 and C2 were more likely to benefit from immunotherapy and C3 may benefit from FGF inhibitors.DiscussionOur analysis provides a new approach for the identification of four tumor microenvironment clusters in patients with liver cancer and identifies the biological differences and predicts the immunotherapy efficacy between the four subtypes.
Collapse
Affiliation(s)
- Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junju He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Bin Xu,
| |
Collapse
|
31
|
Wang D, Zhang L, Zhang Y, Zhang Y, Xu S. A ferroptosis-associated lncRNAs signature predicts the prognosis of hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e29546. [PMID: 35839000 PMCID: PMC11132323 DOI: 10.1097/md.0000000000029546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been implicated in the development of hepatocellular carcinoma (HCC). Mounting evidence shows that lncRNAs can be used as prognostic biomarkers of HCC. Here, we developed a multi-lncRNA prognostic signature comprising ferroptosis-related lncRNAs in HCC. METHODS Gene expression data and clinical information of HCC were obtained from the TCGA dataset. Differentially expressed genes of ferroptosis (DE-Ferrs) were screened. Correlation analysis was carried between lncRNAs and DE-Ferrs to identify ferroptosis-related lncRNAs. lncRNAs associated with prognosis and ferroptosis were identified using Univariate Cox analysis. Data from a TCGA dataset were randomly grouped into training and verification sets. The least absolute shrinkage and selection operator method analysis was carried out to identify lncRNAs with prognostic value. These lncRNAs were used to construct a prognostic signature using the training set. The signature was validated in the verification set. RESULTS A total of 90 DE-Ferrs-related lncRNAs were identified which were significantly correlated with HCC prognosis. Seven lncRNAs were used to construct a 7-lncRNA signature. The area under the curves for 1-, 3-, and 5-year overall survival (OS) were 0.748, 0.681, and 0.659 in the training set, and 0.791, 0.731, and 0.815 in the validation set, respectively. The results demonstrated that a high-risk score was significantly associated with a high tumor grade, high infiltration of macrophages and fibroblasts in the tumor, and high expression of m6A methylation regulatory factors. A nomogram was constructed using the risk score and clinical features for predicting the prognosis of HCC. The nomogram showed high prediction accuracy. CONCLUSION In conclusion, the established 7 ferroptosis-related lncRNAs signature can accurately predict HCC prognosis.
Collapse
Affiliation(s)
- Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Zhang
- Oncology Department, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - YingJie Zhang
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
32
|
Shen B, Zhu W, Liu X, Jiang J. NAP1L1 Functions as a Novel Prognostic Biomarker Associated With Macrophages and Promotes Tumor Progression by Influencing the Wnt/β-Catenin Pathway in Hepatocellular Carcinoma. Front Genet 2022; 13:876253. [PMID: 35664324 PMCID: PMC9161088 DOI: 10.3389/fgene.2022.876253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is regarded as one of the universal cancers in the world. Therefore, our study is based on clinical, molecular mechanism and immunological perspectives to analyze how NAP1L1 affects the progression of HCC. To begin with, the gene expression datasets and clinical data of GSE14520, GSE76427, ICGC, and TCGA are originated from GEO, ICGC, and TCGA databases. Subsequently, DEG screening was performed on data using R studio, and we finally found that 2,145 overlapping DEGs were screened from four datasets at the end. Then, we used R studio to filter the survival-related genes of the GSE76427 and ICGC datasets, and we screened out 101 survival-related genes. Finally, 33 common genes were screened out from 2,145 overlapping DEGs and 101 survival-related genes. Then, NAP1L1 was screened from 33 common genes using the CytoHubba plug-in in Cytoscape software. Furthermore, ground on GEO, ICGC, and TCGA databases, the survival analysis, clinical feature analysis, univariate/multivariate regression analysis, and multiple GSEA were used to study NAP1L1. The Conclusion claimed that HCC patients with higher expression levels of NAP1L1 had a poorer prognosis than those with lower expression levels. Thus, we believe that NAP1L1 is an independent prognostic factor for HCC. In order to shed light on NAP1L1’s molecular mechanism promoting the progression of HCC closely, the GSEA tool was applied to complete the GSEA of the four datasets. Furthermore, the results confirmed that NAP1L1 could promote HCC progression by regulating the G2/M transition of the cell cycle and Wnt signaling pathway. Western blot and flow cytometry were also performed to understand those mechanisms in this study. The result of Western blot showed that NAP1L1 silencing led to downregulation of CDK1 and β-catenin proteins; the result of flow cytometry showed that cell numbers in the G2 phase were significantly increased when NAP1L1 was silenced. Thus, we claimed that NAP1L1 might promote HCC progression by activating the Wnt signaling pathway and promoting cell cycle G2/M transition. In addition, ground on GSE14520 and GSE76427 datasets, and ICGC and TCGA databases, the correlation between NAP1L1 and immune cells was analyzed in HCC patients. At the same time, the TISIDB online database and the TIMER online database were testified to the association between NAP1L1 and immune cells. Hence, the summary shows that NAP1L1 was connected with a certain amount of immune cells. We can speculate that NAP1L1 may influence macrophages to promote HCC progression through some potential mechanisms.
Collapse
Affiliation(s)
- Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjie Zhu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyuan Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Hepatic–Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianxin Jiang,
| |
Collapse
|
33
|
Hyperglycemia induces gastric carcinoma proliferation and migration via the Pin1/BRD4 pathway. Cell Death Dis 2022; 8:224. [PMID: 35461311 PMCID: PMC9035156 DOI: 10.1038/s41420-022-01030-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Diabetes is a potential risk factor for gastric cancer (GC). Pin1, a peptidyl–prolyl cis/trans isomerase, promotes GC cell proliferation and migration. The role and underlying mechanism of the Pin1/BRD4 axis in hyperglycemia-induced proliferation and migration of GC cells were analyzed in vivo and in vitro. Proliferation and migration of GC cells were measured; Pin1 and BRD4 expression of the cell cycle were determined. Pin1 and BRD4 were downregulated by transfecting Pin1 shRNA lentivirus into GC cells and JQ1-intervention GC cells. Tumor formation and lung metastasis were assessed in vivo. Inhibition of Pin1 and BRD4 significantly suppressed high-glucose (HG)-induced GC cell proliferation and migration. HG enhanced G1/S cell-cycle transition, associated with increased Pin1 and BRD4 expression. Silencing Pin1 significantly downregulated the expression of BRD4 and NAP1L1 and upregulated that of P21 in GC cells. In vivo studies indicated that hyperglycemia promotes tumor growth and lung metastasis by inducing Pin1 and BRD4 expression. Thus, Pin1/BRD4 plays an important role in hyperglycemia-promoted tumor growth. The significance of these findings toward improved prognosis of diabetic patients with GC cannot be underestimated.
Collapse
|
34
|
Li H, Ye Z, Li Z. Identification of the potential biological target molecules related to primary open-angle glaucoma. BMC Ophthalmol 2022; 22:188. [PMID: 35461232 PMCID: PMC9034601 DOI: 10.1186/s12886-022-02368-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background To identify the potential biological target molecules and the corresponding interaction networks in primary open-angle glaucoma (POAG) development. Methods The microarray datasets of GSE138125 and GSE27276 concerning lncRNA and mRNA expression profiles in trabecular meshwork of POAG were downloaded from the Gene Expression Omnibus database. The R software was applied to identify differentially expressed (DE) lncRNAs and mRNAs in POAG, and to perform GO and KEGG functional enrichment analysis. Protein–protein interaction (PPI) network and module analysis, and lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network were performed by Cytoscape software. Results A total of 567 DE-mRNAs were identified from GSE138125 and GSE27276, including 298 up-regulated and 269 down-regulated mRNAs, which were found enriching in biological processes of extracellular matrix organization and epidermis development, respectively. KEGG pathway enrichment analysis further revealed that module genes in PPI network were primarily involved in the AGE-PAGE, PI3K-Akt and TGF-β signaling pathways. Moreover, 897 up-regulated and 1036 down-regulated DE-lncRNAs were identified from GSE138125. Through literature review and databases searching, we obtained 712 lncRNA-miRNA and 337 miRNA-mRNA pairs based on the selected eight POAG-related miRNAs. After excluding 702 lncRNAs and 284 mRNAs that were not comprised in the DE-lncRNA and DE-mRNAs, a total of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA nodes, and 78 edges were included in the final ceRNA network. Conclusions This study demonstrated the lncRNA and mRNA expression profiles of trabecular meshwork in POAG patients and the normal controls, and identified potentially ceRNAs and pathways which might improve the pathogenic understanding of this ocular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02368-0.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
35
|
Zhang Z, Huang L, Li J, Wang P. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system. BMC Bioinformatics 2022; 23:124. [PMID: 35395711 PMCID: PMC8991575 DOI: 10.1186/s12859-022-04657-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Immune microenvironment was closely related to the occurrence and progression of colorectal cancer (CRC). The objective of the current research was to develop and verify a Machine learning survival predictive system for CRC based on immune gene expression data and machine learning algorithms. Methods The current study performed differentially expressed analyses between normal tissues and tumor tissues. Univariate Cox regression was used to screen prognostic markers for CRC. Prognostic immune genes and transcription factors were used to construct an immune-related regulatory network. Three machine learning algorithms were used to create an Machine learning survival predictive system for CRC. Concordance indexes, calibration curves, and Brier scores were used to evaluate the performance of prognostic model. Results Twenty immune genes (BCL2L12, FKBP10, XKRX, WFS1, TESC, CCR7, SPACA3, LY6G6C, L1CAM, OSM, EXTL1, LY6D, FCRL5, MYEOV, FOXD1, REG3G, HAPLN1, MAOB, TNFSF11, and AMIGO3) were recognized as independent risk factors for CRC. A prognostic nomogram was developed based on the previous immune genes. Concordance indexes were 0.852, 0.778, and 0.818 for 1-, 3- and 5-year survival. This prognostic model could discriminate high risk patients with poor prognosis from low risk patients with favorable prognosis. Conclusions The current study identified twenty prognostic immune genes for CRC patients and constructed an immune-related regulatory network. Based on three machine learning algorithms, the current research provided three individual mortality predictive curves. The Machine learning survival predictive system was available at: https://zhangzhiqiao8.shinyapps.io/Artificial_Intelligence_Survival_Prediction_for_CRC_B1005_1/, which was valuable for individualized treatment decision before surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04657-3.
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Liwen Huang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Jing Li
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China.
| |
Collapse
|
36
|
Yang Y, Gao L, Chen J, Xiao W, Liu R, Kan H. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma. Bioengineered 2022; 13:9211-9231. [PMID: 35436411 PMCID: PMC9161935 DOI: 10.1080/21655979.2022.2057896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy. Previous studies have found that lamin B1 (LMNB1) contributes to the development of human cancers. However, the biological functions and prognostic values of LMNB1 in HCC have not been adequately elucidated. In our present research, the expression pattern of LMNB1 was analyzed. The prognostic values of LMNB1 were evaluated by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. The effects of LMNB1 on HCC progression were assessed by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, Transwell and in vivo xenograft assays. The mechanisms of LMNB1 in HCC progression were elucidated by gene set enrichment analysis (GSEA) and loss-of-function assays. Besides, a nomogram for predicting overall survival (OS) was constructed. The results demonstrated that LMNB1 was overexpressed in HCC and that increased LMNB1 expression predicted a dismal prognosis. Further experiments showed that LMNB1 facilitated cell proliferation and metastasis in HCC. Functional enrichment analysis revealed that LMNB1 modulated metastasis-associated biological functions such as focal adhesion, extracellular matrix, cell junctions and cell adhesion. Mechanistically, we revealed that LMNB1 promoted HCC progression by regulating the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Moreover, incorporating LMNB1, Ki67 and Barcelona Clinic Liver Cancer (BCLC) stage into a nomogram showed better predictive accuracy than the Tumor-Node-Metastasis (TNM) stage and BCLC stage. In conclusion, LMNB1 may serve as an effective therapeutic target as well as a reliable prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Yongyu Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Gao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junzhang Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wang Xiao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruoqi Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Heping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Yu J, Zhang W, Ding D, Hu Y, Guo G, Wang J, Han Y. Bioinformatics Analysis Combined With Experiments Predicts PUDP as a Potential Prognostic Biomarker for Hepatocellular Carcinoma Through Its Interaction With Tumor Microenvironment. Front Oncol 2022; 12:830174. [PMID: 35350563 PMCID: PMC8957838 DOI: 10.3389/fonc.2022.830174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest tumors in the world and is notorious for poor prognosis. There is mounting evidence that pseudouridine performs key functions in the initiation and progression of several cancers. A previous study demonstrated that Pseudouridine 5’-phosphatase (PUDP) may be a novel prognostic biomarker in colorectal cancer. However, in the past, we have paid little attention to PUDP and we are still not clear about its function and role in cancer. In this study, a pan-cancer analysis of PUDP expression and prognosis was performed firstly using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data and we found that PUDP may be a potential oncogene for HCC. Then the most potential upstream microRNA contributing to PUDP was identified as let-7c-5p through expression analysis, correlation analysis, and survival analysis. Subsequently, the result of single cell RNA sequencing (scRNA-seq) demonstrated that PUDP was significantly highly expressed on malignant cells. In addition, there are significantly positive correlations between PUDP and tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression, especially with tumor-promoting immune cells such as T cell regulatory (Treg), Myeloid-derived suppressor cell (MDSC), cancer-associated fibroblast (CAF). Moreover, we found the methylation level of three loci was positively correlated with PUDP expression and four loci were negatively correlated. 15 pairs of HCC and normal adjacent tissues from HCC patients who were treated at our center were used to verify the results of the bioinformatics analysis and the results of experiments are similar to the bioinformatics analysis. Our study demonstrated that HCC patients with high PUDP expression are less likely to benefit from immunotherapy, and in addition, we explored the relationship between PUDP and anticancer drugs. Finally, we explored the clinical relevance of PUDP, identified PUDP as an independent risk factor for HCC patients and constructed a prognostic model, used International Cancer Genome Consortium (ICGC) data to do external validation. Collectively, our study demonstrated that high expression of PUDP suggested a poor prognosis and low response to immunotherapy, providing new insight into the treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Jiahao Yu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Dawei Ding
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
Immune Infiltrates of m5C RNA Methylation-Related LncRNAs in Uterine Corpus Endometrial Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1531474. [PMID: 35392434 PMCID: PMC8983181 DOI: 10.1155/2022/1531474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
Abstract
Aberrant 5-methylcytidine (m5C) modification plays an essential role in the progression of different cancers. More and more researchers are focusing on developing a lncRNA-based risk model to assess the clinical prognosis of cancer patients. However, the impact of m5C-related lncRNAs on the prognosis of patients with uterine corpus endometrial carcinoma (UCEC), as well as the immune microenvironment of UCEC, remains unclear. Here, we comprehensively analyzed the predictive value of m5C-associated lncRNAs in UCEC and their association with the tumor immune microenvironment, according to the information extracted from the TCGA-UCEC dataset. We identified a total of 32 m5C-associated lncRNAs that were significantly correlated with the prognosis of UCEC patients. Two molecular subtypes were determined by consensus clustering analysis of these 32 m5C-associated prognostic lncRNAs. Further data showed that cluster 1 was associated with poor clinical prognosis, advanced tumor grade, higher PD-L1 expression levels, higher ESTIMATEScore, and higher immuneScore, as well as the immune cell infiltration. Then, 17 m5C-associated lncRNAs with prognostic values were obtained using LASSO regression analysis. And a risk model was constructed based on these 17 lncRNAs. It was revealed that the risk model could be used as an independent factor for UCEC prognosis. In addition, patients with UCEC in the high-risk group had higher tumor grades and immune scores. The risk model based on m5C-related lncRNAs was also closely associated with infiltrating immune cells. In conclusion, our study elucidated the crucial roles of the identified m5C-related lncRNAs in the UCEC patients' prognoses, as well as in the immune microenvironment in UCEC. The results suggest that the components of risk models based on the m5C-related lncRNAs may serve as important mediators of the immune microenvironment in UCEC.
Collapse
|
39
|
lncRNA SNHG26 promoted the growth, metastasis, and cisplatin resistance of tongue squamous cell carcinoma through PGK1/Akt/mTOR signal pathway. Mol Ther Oncolytics 2022; 24:355-370. [PMID: 35118193 PMCID: PMC8783117 DOI: 10.1016/j.omto.2021.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is closely linked to head and neck cancers. Here, we sought to explore the role and mechanism of lncRNAs in the occurrence and progression of TSCC and cisplatin resistance. The results of next-generation transcriptomic sequencing revealed that lncRNA-SNHG26 was differentially expressed and was associated with TSCC cisplatin resistance. The Cancer Genome Atlas dataset and tumor tissue analysis revealed that high SHNG26 expression was associated with the occurrence, progression, and poor prognosis of TSCC. Evidence from cell and animal experiments showed that SNHG26 expression was positively correlated with TSCC proliferation, epithelial-mesenchymal transformation, migration, invasion, and cisplatin resistance. Furthermore, in TSCC cells, SNHG26 was found to bind directly to the PGK1 protein, inhibiting its ubiquitination and activating the Akt/mTOR signaling pathway. These findings suggest that lncRNA-SNHG26 may be a promising target for inhibiting TSCC progression and improving sensitivity to cisplatin chemotherapy in TSCC.
Collapse
|
40
|
Talotta R, Bahrami S, Laska MJ. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166291. [PMID: 34662705 PMCID: PMC8518135 DOI: 10.1016/j.bbadis.2021.166291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Objectives To investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes. Methods The FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases. Results A total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders. Conclusion This pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| | - Shervin Bahrami
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
41
|
Liang JH, Xu QD, Gu SG. LncRNA RSU1P2-microRNA let-7a-Testis-Expressed Protein 10 axis modulates tumorigenesis and cancer stem cell-like properties in liver cancer. Bioengineered 2022; 13:4285-4300. [PMID: 35156514 PMCID: PMC8974045 DOI: 10.1080/21655979.2022.2031394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
LncRNAs exert important functions in the modulation of tumorigenesis and cancer stem cell-like properties in liver cancer. However, the role of LncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) in modulating tumorigenesis and cancer stem cell-like properties in liver cancer is still not known. In this study, the expression of LncRNA RSU1P2 was significantly elevated in liver cancer tissues and cells. Besides, knockdown of RSU1P2 repressed cell viability, invasion, epithelial-mesenchymal transition (EMT) of liver cancer cells and the expressions of cancer stem cell-related genes, whereas facilitated the apoptosis of liver cancer cells. In addition, LncRNA RSU1P2 can interact with microRNA let-7a (let-7a), and repress let-7a expression. Testis-Expressed Protein 10 (Tex10) was identified to be a target of let-7a, and let-7a repressed Tex10 expression. Finally, RSU1P2 knockdown suppressed tumor volume, tumor weight, and EMT in a xenograft model. Therefore, LncRNA RSU1P2 promotes tumorigenesis and cancer stem cell-like properties in liver cancer through let-7a/Tex10 pathway.
Collapse
Affiliation(s)
- Jia-Hong Liang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiao-Dong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Song-Gang Gu
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
- CONTACT Song-Gang Gu Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, ShantouChina
| |
Collapse
|
42
|
Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers. Mol Biotechnol 2022; 64:725-742. [DOI: 10.1007/s12033-021-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
43
|
Sun Q, Chong F, Jiang X, Wang Y, Xu K, Zou Y, Song C. Association study of SNPs in LncRNA CDKN2B-AS1 with breast cancer susceptibility in Chinese Han population. Int J Biochem Cell Biol 2021; 143:106139. [PMID: 34954153 DOI: 10.1016/j.biocel.2021.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The study aimed to analysis the genetic variation of the lncRNA CDKN2B-AS1 SNPs, and explored the regulation of SNPs on the invasion and metastasis of Breast cancer (BC). METHODS The SNPs (Single Nucleotide Polymorphisms) was screened for genotyping among 504 Chinese Han patients and 505 controls, which were frequency-matched for age ( ± 2 years). Logistic analysis was to explore the relationship between SNPs and the BC risk. Interactions between SNPs and reproductive factors was explored using the multifactor dimensionality reduction (MDR) method. qRT-PCR was conducted to detect the CDKN2B-AS1 expression in plasma of different rs10965215 and rs2518723 genotypes. The effect of rs10965215 A>G mutation on the binding ability of CDKN2B-AS1 and miR-4440 was verified by dual luciferase experiment. CCK-8, scratch and Transwell experiment were performed to explore the effect of miR-4440 over-expression on BC cell proliferation, migration and invasion. RESULTS A total of 13 SNP was screened. The individuals with SNPs rs2518723C>T, rs10965215 A>G, rs77792598C>G, rs4977753 T > C, rs75917766C>T and rs78545330C>G mutations might increase the BC risk. MDR results revealed that individuals with rs10965215 G genotype who age at menarche≥ 13 and regardless of the number of abortion< 2 or ≥ 2 had a higher risk of BC. The relative expression of CDKN2B-AS1 in rs10965215 homozygous wild AA genotype (8.88 ± 3.43) was lower than heterozygous GA (11.08 ± 2.90) and homozygous mutant GG genotype (11.31 ± 2.90). When rs10965215 wild A genotype was carried, there was an interaction between CDKN2B-AS1 and miR-4440. The CCK-8, Transwell, and scratch experiment were all found that miR-4440 over-expression might enhance the proliferation, invasion and migration of BC cells. - CONCLUSION CDKN2B-AS1 gene polymorphism might be related to the susceptibility of BC, CDKN2B-AS1 rs10965215 A/G genotype probably affect the proliferation, invasion and migration of BC cells by modulating the interactions with of miR-4440.
Collapse
Affiliation(s)
- Qiuyu Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Feifei Chong
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaoru Jiang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yanli Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Kedi Xu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yuanlin Zou
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
44
|
Ren H, Guo X, Li F, Xia Q, Chen Z, Xing Y. Four Autophagy-Related Long Noncoding RNAs Provide Coexpression and ceRNA Mechanisms in Retinoblastoma through Bioinformatics and Experimental Evidence. ACS OMEGA 2021; 6:33976-33984. [PMID: 34926945 PMCID: PMC8674985 DOI: 10.1021/acsomega.1c05259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignant tumor that lowers the quality of life among children worldwide. Long noncoding RNAs (lncRNAs) are reported to play a dual role in tumorigenesis and development of RB. Autophagy is also reported to be involved in RB occurrence. Although several studies of autophagy-related lncRNAs in RB have been explored before, there are still unknown potential mechanisms in RB. In the present study, we mined dataset GSE110811 from the Gene Expression Omnibus database and downloaded autophagy-related genes from the Human Autophagy Database for further bioinformatic analysis. By implementing the differential expression analysis and Pearson correlation analysis on the lncRNA expression matrix and autophagy-related genes expression matrix, we identified four autophagy-related lncRNAs (namely, N4BP2L2-IT2, SH3BP5-AS1, CDKN2B-AS1, and LINC-PINT) associated with RB. We then performed differential expression analysis on microRNA (miRNA) from dataset GSE39105 for further analyses of lncRNA-miRNA-mRNA regulatory mechanisms. With the miRNA-lncRNA module on the StarBase 3.0 website, we predicted the differentially expressed miRNAs that could target the autophagy-related lncRNAs and constructed a potential lncRNA-miRNA-mRNA regulatory network. Furthermore, the functional annotations of these target genes in regulatory networks were presented using the Cytoscape and the Metascape annotation tool. Finally, the expression pattern of the four autophagy-related lncRNAs was evaluated via qRT-PCR. In conclusion, our findings suggest that the four autophagy-related lncRNAs could be critical molecules associated with the development of RB and affect the occurrence and development of RB through the lncRNA-miRNA-mRNA regulatory network. Genes (GRP13B, IFT88, EPHA3, GABARAPL1, and EIF4EBP1) may serve as potential novel therapeutic targets and biomarkers in RB.
Collapse
|
45
|
Gan H, Xu X, Bai Y. Trametes robiniophila represses angiogenesis and tumor growth of lung cancer via strengthening let-7d-5p and targeting NAP1L1. Bioengineered 2021; 13:6698-6710. [PMID: 34898380 PMCID: PMC8973683 DOI: 10.1080/21655979.2021.2012619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trametes robiniophila (Huaier) is available to refrain lung cancer (LC) cell progression, but its impact and mechanism on angiogenesis of LC are not proved. The study was to explore the potential mechanism of Huaier repressing angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Let-7d-5p and NAP1L1 expression was detected in LC tissues and cells (A549). Pretreatment of A549 cells was with Huaier. Transfection of changed let-7d-5p and NAP1L1 was to A549 cells to uncover their roles in LC cell progression with angiogenesis. Evaluation of the impact of let-7d-5p on angiogenesis in LC was in vitro in a mouse xenograft model. Identification of the targeting of let-7d-5p with NAP1L1 was clarified. The results clarified reduced let-7d-5p but elevated NAP1L1 were manifested in LC. Huaier restrained angiogenesis and tumor growth of LC in vivo and in vitro; Augmented let-7d-5p or declined NAP1L1 motivated the therapy of Huaier on LC; Let-7d-5p negatively modulated NAP1L1; Elevated NAP1L1 reversed the influence of enhancive let-7d-5p. These results strongly suggest that Huaier represses angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Huaier/let-7d-5p/NAP1L1 axis is supposed to be a promising target for the treatment of angiogenesis and tumor growth in LC via elevated let-7d-5p and targeted NAP1L1.
Collapse
Affiliation(s)
- HuiZhu Gan
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| | - XinXin Xu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| | - YinYin Bai
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| |
Collapse
|
46
|
Liu S, Zhang Y, Cui S, Song D, Li B, Chen Q, Yao G, Gong B. NAP1L1 interacts with hepatoma-derived growth factor to recruit c-Jun inducing breast cancer growth. Cancer Cell Int 2021; 21:605. [PMID: 34774047 PMCID: PMC8590370 DOI: 10.1186/s12935-021-02301-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/26/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Breast cancer is a common cancer among women in the world. However, its pathogenesis is still to be determined. The role and molecular mechanism of Nucleosome Assembly Protein 1 Like 1 (NAP1L1) in breast cancer have not been reported. Elucidation of molecular mechanism might provide a novel therapeutic target for breast cancer treatment. METHODS A bioinformatics analysis was conducted to determine the differential expression of NAP1L1 in breast cancer and find the potential biomarker that interacts with NAP1L1 and hepatoma-derived growth factor (HDGF). The expression of NAP1L1 in tissues was detected by using immunohistochemistry. Breast cancer cells were transfected with the corresponding lentiviral particles and siRNA. The efficiency of transfection was measured by RT-qPCR and western blotting. Then, MTT, Edu, plate clone formation, and subcutaneous tumorigenesis in nude mice were used to detect the cell proliferation in breast cancer. Furthermore, coimmunoprecipitation (Co-IP) assay and confocal microscopy were performed to explore the detailed molecular mechanism of NAP1L1 in breast cancer. RESULTS In this study, NAP1L1 protein was upregulated based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Consistent with the prediction, immunohistochemistry staining showed that NAP1L1 protein expression was significantly increased in breast cancer tissues. Its elevated expression was an unfavorable factor for breast cancer clinical progression and poor prognosis. Stably or transiently knocking down NAP1L1 reduced the cell growth in vivo and in vitro via repressing the cell cycle signal in breast cancer. Furthermore, the molecular basis of NAP1L1-induced cell cycle signal was further studied. NAP1L1 interacted with the HDGF, an oncogenic factor for tumors, and the latter subsequently recruited the key oncogenic transcription factor c-Jun, which finally induced the expression of cell cycle promoter Cyclin D1(CCND1) and thus the cell growth of breast cancer. CONCLUSIONS Our data demonstrated that NAP1L1 functions as a potential oncogene via interacting with HDGF to recruit c-Jun in breast cancer.
Collapse
Affiliation(s)
- Shu Liu
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China. .,Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yewei Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shien Cui
- Breast Center, Department of General Surgery, Nanfang Hospital Southern Medical University, Guangzhou, China.,Breast Center, Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, Guangzhou, China
| | - Dajiang Song
- Department of Oncology Plastic Surgery, Hunan Province Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Li
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Chen
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital Southern Medical University, Guangzhou, China.
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Pan J, Lin M, Xu Z, Xu M, Zhang J, Weng Z, Lin B, Lin X. CDKN2B antisense RNA 1 suppresses tumor growth in human colorectal cancer by targeting MAPK inactivator dual-specificity phosphatase 1. Carcinogenesis 2021; 42:1399-1409. [PMID: 34436551 DOI: 10.1093/carcin/bgab077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/07/2023] Open
Abstract
Aberrant expression of long noncoding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) has been detected in human colorectal cancer (CRC). This study aimed to investigate the role of CDKN2B-AS1 and the underlying mechanism in human CRC. Gain- and loss-of-function assays were performed to explore the role of CDKN2B-AS1 in the malignant behavior of HCT116 and SW480 CRC cells in vitro and in vivo. RNA pull-down assay was conducted to identify the target of CDKN2B-AS1 in CRC cells. The physical and functional interactions between CDKN2B-AS1 and the target were examined. CDKN2B-AS1 inhibited CRC cell proliferation and migration while promoting apoptosis in vitro via activation of mitogen-activated protein kinase kinases (MEK)/extracellular signal-regulated kinase (ERK)/p38 signaling. CDKN2B-AS1 bound to mitogen-activated protein kinase (MAPK) inactivator dual-specificity phosphatase 1 (DUSP1) in CRC cells. In contrast to CDKN2B-AS1, DUSP1 promoted CRC cell proliferation, suppressed apoptosis and inactivated MEK/ERK/p38 signaling in CRC cells. Furthermore, CDKN2B-AS1 overexpression attenuated DUSP1 expression in normal colonic myofibroblasts and CRC cells. Overexpression of DUSP1 effectively countered the activation of MEK/ERK/p38 signaling induced by CDKN2B-AS1 overexpression or further blocked MEK/ERK/p38 signaling suppressed by CDKN2B-AS1 silencing. In the mouse xenograft model, CDKN2B-AS1 suppressed CRC growth, whereas DUSP1 promoted CRC growth. CDKN2B-AS1 induced cell apoptosis while suppressing EMT (epithelial-mesenchymal transition), whereas DUSP1 suppressed cell apoptosis while inducing EMT in CRC, as evidenced by the alterations in the protein levels of apoptosis and EMT markers in tumor tissue samples. CDKN2B-AS1 regulates CRC cell growth and survival by targeting MAPK inactivator DUSP1.
Collapse
Affiliation(s)
- Jie Pan
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Mengxin Lin
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zongbin Xu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Junrong Zhang
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zongqi Weng
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bingqiang Lin
- Department of Emergency Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaoyan Lin
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
48
|
Liu Y, Li X, Zhang Y, Tang Y, Fang W, Liu X, Liu Z. NAP1L1 targeting suppresses the proliferation of nasopharyngeal carcinoma. Biomed Pharmacother 2021; 143:112096. [PMID: 34563951 DOI: 10.1016/j.biopha.2021.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Nucleosome assembly protein 1-like 1 (NAP1L1) is significantly involved in the development of various cancers. However, its role in the molecular mechanism of nasopharyngeal carcinoma (NPC) remains undetermined. In this study, we detected the upregulated expression of NAP1L1 mRNA and protein levels by quantitative polymerase chain reaction and Western blot analysis in NPC cell lines. Results of the immunohistochemistry analysis of NPC tissue biopsies showed that upregulated NAP1L1 protein expression promoted NPC progression and negatively correlated with poor prognosis in NPC patients. Suppression of NAP1L1 expression by small interfering RNA (siRNA) or small hairpin RNA (shRNA) methods significantly decreased cell proliferation in vivo and in vitro. Mechanism analysis revealed that the regulation of cell growth was enriched by Gene Set Enrichment Analysis based on RNA sequencing data. Cell cycle-induced genes CCND1 and E2F1 were downregulated in NAP1L1 knockdown NPC cells. Reduced NAP1L1 suppressed the recruitment of hepatoma-derived growth factor (HDGF) and decreased its expression. Knockdown of HDGF reduced the expression of c-JUN, a key oncogenic transcription factor that can induce the expression of cyclin D1 (CCND1), reducing cell cycle progression and suppressing cell growth in NPC. Transfecting HDGF or c-JUN could reverse the growth-suppressive effects in NAP1L1-downregulated NPC cells. The data obtained in this study suggest that NAP1L1 acts as a potential oncogene by activating HDGF/c-JUN/CCND1 signaling in NPC.
Collapse
Affiliation(s)
- YaHui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - XiaoNing Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - YeWei Zhang
- Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Yao Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - WeiYi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| | - Xiong Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China.
| |
Collapse
|
49
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
50
|
Xiao M, Bai S, Chen J, Li Y, Zhang S, Hu Z. CDKN2B-AS1 participates in high glucose-induced apoptosis and fibrosis via NOTCH2 through functioning as a miR-98-5p decoy in human podocytes and renal tubular cells. Diabetol Metab Syndr 2021; 13:107. [PMID: 34649592 PMCID: PMC8518318 DOI: 10.1186/s13098-021-00725-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most common causes of end-stage renal disease. Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is connected with the development of DN, but the role of CDKN2B-AS1 in DN has not been entirely elucidated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to measure CDKN2B-AS1 and miR-98-5p levels. Cell viability, proliferation, and apoptosis were analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) or flow cytometry assays. Protein levels were measured by western blotting. The relationship between CDKN2B-AS1 or notch homolog 2 (NOTCH2) and miR-98-5p was verified via dual-luciferase reporter assay. RESULTS CDKN2B-AS1 and NOTCH2 were upregulated in the serum of DN patients and high glucose-disposed human podocytes (HPCs) and human renal tubular cells (HK-2), whereas miR-98-5p was downregulated. High glucose repressed viability and accelerated apoptosis of HPCs and HK-2 cells. CDKN2B-AS1 knockdown impaired high glucose-induced apoptosis and fibrosis of HPCs and HK-2 cells. Mechanistically, CDKN2B-AS1 sponged miR-98-5p to regulate NOTCH2 expression. Also, CDKN2B-AS1 inhibition-mediated effects on apoptosis and fibrosis of high glucose-disposed HPCs and HK-2 cells were weakened by miR-98-5p inhibitor. Also, NOTCH2 knockdown partly reversed miR-98-5p inhibitor-mediated impacts on apoptosis and fibrosis of high glucose-disposed HPCs and HK-2 cells. CONCLUSION High glucose-induced CDKN2B-AS1 promoted apoptosis and fibrosis via the TGF-β1 signaling mediated by the miR-98-5p/NOTCH2 axis in HPCs and HK-2 cells.
Collapse
Affiliation(s)
- Min Xiao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA
| | - Shu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|