1
|
Lefler DS, Manobianco SA, Bashir B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions. Cancer Biol Ther 2024; 25:2315655. [PMID: 38389121 PMCID: PMC10896138 DOI: 10.1080/15384047.2024.2315655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
While the emergence of immunotherapies has fundamentally altered the management of solid tumors, cancers exploit many complex biological mechanisms that result in resistance to these agents. These encompass a broad range of cellular activities - from modification of traditional paradigms of immunity via antigen presentation and immunoregulation to metabolic modifications and manipulation of the tumor microenvironment. Intervening on these intricate processes may provide clinical benefit in patients with solid tumors by overcoming resistance to immunotherapies, which is why it has become an area of tremendous research interest with practice-changing implications. This review details the major ways cancers avoid both natural immunity and immunotherapies through primary (innate) and secondary (acquired) mechanisms of resistance, and it considers available and emerging therapeutic approaches to overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Daniel S. Lefler
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven A. Manobianco
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Li J, Wang G, Wen Z, Sun S, Han Z, Yang Y, Wu J, Pei Z, Liu L, Chen Y, Cheng L. Modulating the Electronic Structure of MnNi 2S 3 Nanoelectrodes to Activate Pyroptosis for Electrocatalytic Hydrogen-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412925. [PMID: 39400361 DOI: 10.1002/adma.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Hydrogen (H2) therapy has demonstrated antitumor effect, but the therapeutic efficacy is restricted by the low solubility and nontarget delivery of H2. Electrolysis of H2O by electrocatalysts sustainably releases enormous amounts of H2 and inspires the precise delivery of H2 for tumor therapy. Herein, manganese-doped Ni2S3 nanoelectrodes (MnNi2S3 NEs) are designed for the electrocatalytic delivery of H2 and the activation of antitumor immunity to effectively potentiate H2-immunotherapy. Ni atoms featuring empty 3d orbitals reduce the initial energy barrier of the hydrogen evolution reaction (HER) by promoting the adsorption of H2O. Moreover, Mn atoms with different electronegativity modulate the electronic structure of Ni atoms and facilitate the desorption of the generated H2, thus enhancing the HER activity of the MnNi2S3 NEs. Based on the high HER activity, controllable delivery of H2 for electrocatalytic hydrogen therapy (EHT) is achieved in a voltage-dependent manner. Mechanistically, MnNi2S3 NE-mediated EHT induces mitochondrial dysfunction and oxidative stress, which subsequently activates pyroptosis through the typical ROS/caspase-1/GSDMD signaling pathway. Furthermore, MnNi2S3 NE-mediated EHT enhances the infiltration of CD8+ T lymphocytes into tumors and reverses the immunosuppressive microenvironment. This work demonstrates an electrocatalyst with high HER activity for synergistic gas-immunotherapy, which may spark electrocatalyst-based tumor therapy strategies.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Gang Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoyu Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shumin Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhihui Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuqi Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Luyao Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youdong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
5
|
Peng W, Cao Y, Zhang Y, Zhong A, Zhang C, Wei Z, Liu X, Dong S, Wu J, Xue Y, Wu M, Yao C. Optimal Irreversible Electroporation Combined with Nano-Enabled Immunomodulatory to Boost Systemic Antitumor Immunity. Adv Healthc Mater 2024; 13:e2302549. [PMID: 38059737 DOI: 10.1002/adhm.202302549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Indexed: 12/08/2023]
Abstract
In this work, we proposed nµPEF, a novel pulse configuration combining nanosecond and microsecond pulses (nµPEF), to enhance tumor ablation in irreversible electroporation (IRE) for oncological therapy. nµPEF demonstrated improved efficacy in inducing immunogenic cell death, positioning it as a potential candidate for next-generation ablative therapy. However, the immune response elicited by nµPEF alone was insufficient to effectively suppress distant tumors. To address this limitation, we developed PPR@CM-PD1, a genetically engineered nanovesicle. PPR@CM-PD1 employed a polyethylene glycol-polylactic acid-glycolic acid (PEG-PLGA) nanoparticle encapsulating the immune adjuvant imiquimod and coated with a genetically engineered cell membrane expressing programmed cell death protein 1 (PD1). This design allowed PPR@CM-PD1 to target both the innate immune system through toll-like receptor 7 (TLR7) agonism and the adaptive immune system through programmed cell death protein 1/programmed cell death-ligand 1 (PD1/PDL1) checkpoint blockade. In turn, nµPEF facilitated intratumoral infiltration of PPR@CM-PD1 by modulating the tumor stroma. The combination of nµPEF and PPR@CM-PD1 generated a potent and systemic antitumor immune response, resulting in remarkable suppression of both nµPEF-treated and untreated distant tumors (abscopal effects). This interdisciplinary approach presents a promising perspective for oncotherapy and holds great potential for future clinical applications.
Collapse
Affiliation(s)
- Wencheng Peng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shoulong Dong
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingcheng Wu
- Department of Health Science, Technology and Education, National Health Commission of the People's Republic of China, Beijing, 100088, P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, and School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
6
|
Jacobs Iv EJ, Campelo SN, Charlton A, Altreuter S, Davalos RV. Characterizing reversible, irreversible, and calcium electroporation to generate a burst-dependent dynamic conductivity curve. Bioelectrochemistry 2024; 155:108580. [PMID: 37788520 DOI: 10.1016/j.bioelechem.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
The relationships between burst number, reversible, irreversible, and calcium electroporation have not been comprehensively evaluated in tumor tissue-mimics. Our findings indicate that electroporation effects saturate with a rate constant (τ) of 20 bursts for both conventional and high frequency waveforms (R2 > 0.88), with the separation between reversible and irreversible electroporation thresholds converging at 50 bursts. We find the lethal thresholds for calcium electroporation are statistically similar to reversible electroporation (R2 > 0.99). We then develop a burst-dependent dynamic conductivity curve that now incorporates electroporation effects due to both the electric field magnitude and burst number. Simulated ablation and thermal damage volumes vary significantly between finite element models using either the conventional or new burst-dependent dynamic conductivity curve (p < 0.05). Lastly, for clinically relevant protocols, thermal damage is indicated to not begin until 50 bursts, with maximum nonthermal ablation volumes at 100 bursts (1.5-13% thermal damage by volume). We find that >100 bursts generated negligible increases in ablation volumes with 40-70% thermal damage by volume at 300 bursts. Our results illustrate the need for considering burst number in minimizing thermal damage, choosing adjuvant therapies, and in modeling electroporation effects at low burst numbers.
Collapse
Affiliation(s)
- Edward J Jacobs Iv
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech - Emory University, Atlanta, GA, USA
| | - Sabrina N Campelo
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Alyssa Charlton
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Sara Altreuter
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech - Wake Forest School of Biomedical Engineering, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech - Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Narayanan G, Koethe Y, Gentile N. Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:251. [PMID: 38399539 PMCID: PMC10890312 DOI: 10.3390/medicina60020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Liver cancer remains a leading cause of cancer-related deaths worldwide despite numerous advances in treatment. While surgical resection remains the gold standard for curative treatment, it is only possible for a minority of patients. Thermal ablation is an effective option for the treatment of smaller tumors; however, its use is limited to tumors that are not located in proximity to sensitive structures due to the heat sink effect and the potential of thermal damage. Irreversible electroporation (IRE) is a non-thermal ablative modality that can deliver targeted treatment and the effective destruction of tumors that are in close proximity to or even surrounding vascular or biliary ducts with minimal damage to these structures. IRE produces short pulses of high-frequency energy which opens pores in the lipid bilayer of cells leading to apoptosis and cell death. IRE has been utilized clinically for over a decade in the treatment of liver cancers with multiple studies documenting an acceptable safety profile and high efficacy rates.
Collapse
Affiliation(s)
- Govindarajan Narayanan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Miami Cardiac and Vascular, Baptist Health South Florida, 8900 North Kendall Drive, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | - Nicole Gentile
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
| |
Collapse
|
8
|
Duan Y, Zhang H, Tan T, Ye W, Yin K, Yu Y, Kang M, Yang J, Liao R. The immune response of hepatocellular carcinoma after locoregional and systemic therapies: The available combination option for immunotherapy. Biosci Trends 2024; 17:427-444. [PMID: 37981319 DOI: 10.5582/bst.2023.01275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is associated with a highly heterogeneous immune environment that produces an immune response to various locoregional treatments (LRTs), which in turn affects the effectiveness of immunotherapy. Although LRTs still dominate HCC therapies, 50-60% of patients will ultimately be treated with systemic therapies and might receive those treatments for the rest of their life. TACE, SIRT, and thermal ablation can dramatically increase the immunosuppressive state of HCC, a condition that can be addressed by combination with immunotherapy to restore the activity of lymphocytes and the secretion of cellular immune factors. Immune treatment with locoregional and systemic treatments has dramatically changed the management of HCC. In this review, we examine the research on the changes in the immune microenvironment after locoregional or systemic treatment. We also summarize the regulation of various immune cells and immune factors in the tumor microenvironment and discuss the different infiltration degrees of immune cells and factors on the prognosis of HCC to better compare the efficacy between different treatment methods from the perspective of the tumor microenvironment. This information can be used to help develop treatment options for the upcoming new era of HCC treatment in the future.
Collapse
Affiliation(s)
- Yuxin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Tan
- Chongqing Health Statistics Information Center, Chongqing, China
| | - Wentao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kunli Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meiqing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Fesmire CC, Peal B, Ruff J, Moyer E, McParland TJ, Derks K, O’Neil E, Emke C, Johnson B, Ghosh S, Petrella RA, DeWitt MR, Prange T, Fogle C, Sano MB. Investigation of integrated time nanosecond pulse irreversible electroporation against spontaneous equine melanoma. Front Vet Sci 2024; 11:1232650. [PMID: 38352036 PMCID: PMC10861690 DOI: 10.3389/fvets.2024.1232650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Integrated time nanosecond pulse irreversible electroporation (INSPIRE) is a novel tumor ablation modality that employs high voltage, alternating polarity waveforms to induce cell death in a well-defined volume while sparing the underlying tissue. This study aimed to demonstrate the in vivo efficacy of INSPIRE against spontaneous melanoma in standing, awake horses. Methods A custom applicator and a pulse generation system were utilized in a pilot study to treat horses presenting with spontaneous melanoma. INSPIRE treatments were administered to 32 tumors across 6 horses and an additional 13 tumors were followed to act as untreated controls. Tumors were tracked over a 43-85 day period following a single INSPIRE treatment. Pulse widths of 500ns and 2000ns with voltages between 1000 V and 2000 V were investigated to determine the effect of these variables on treatment outcomes. Results Treatments administered at the lowest voltage (1000 V) reduced tumor volumes by 11 to 15%. Higher voltage (2000 V) treatments reduced tumor volumes by 84 to 88% and eliminated 33% and 80% of tumors when 500 ns and 2000 ns pulses were administered, respectively. Discussion Promising results were achieved without the use of chemotherapeutics, the use of general anesthesia, or the need for surgical resection in regions which are challenging to keep sterile. This novel therapeutic approach has the potential to expand the role of pulsed electric fields in veterinary patients, especially when general anesthesia is contraindicated, and warrants future studies to demonstrate the efficacy of INSPIRE as a solid tumor treatment.
Collapse
Affiliation(s)
- Chris C. Fesmire
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Bridgette Peal
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Jennifer Ruff
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Elizabeth Moyer
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Thomas J. McParland
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Kobi Derks
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Erin O’Neil
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Carrie Emke
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Brianna Johnson
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Shatorupa Ghosh
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Ross A. Petrella
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Matthew R. DeWitt
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Timo Prange
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Callie Fogle
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Michael B. Sano
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
- Department of Molecular Biomedical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
10
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
11
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
12
|
Dai Z, Zhu W, Hou Y, Zhang X, Ren X, Lei K, Liao J, Liu H, Chen Z, Peng S, Li S, Lin S, Kuang M. METTL5-mediated 18S rRNA m 6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther 2023; 31:3225-3242. [PMID: 37735874 PMCID: PMC10638452 DOI: 10.1016/j.ymthe.2023.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-β pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.
Collapse
Affiliation(s)
- Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wanjie Zhu
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Yingdong Hou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xinyue Zhang
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Kai Lei
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhihang Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
13
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Li H, Zhou Y, Guo X, Zhang Q, Ding X. The effects of irreversible electroporation triggering anti-tumor immunity and the value of its combination with immunotherapy. J Interv Med 2023; 6:107-110. [PMID: 37846332 PMCID: PMC10577062 DOI: 10.1016/j.jimed.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 10/18/2023] Open
Abstract
Recently, interventional ablation techniques have gained prominence in tumor treatment guidelines and complement traditional approaches, such as surgery, chemotherapy, and radiotherapy. Conventional ablation techniques, such as microwave, radiofrequency, and cryoablation, have been used; however, they have certain limitations, including the risk of damaging surrounding normal tissues and the heat sink effect caused by tumor blood flow.1 Irreversible electroporation (IRE), an ablation technology independent of thermal energy, is a promising alternative.2 Clinical studies have demonstrated IRE's efficacy in treating tumors, such as pancreatic and liver tumors.3 Recent research has shown that IRE can elicit specific anti-tumor immune responses in the body.5 IRE also plays a crucial role in eliminating residual tumor cells postoperatively and preventing tumor recurrence.
Collapse
Affiliation(s)
- Hengyu Li
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Yu Zhou
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoxia Guo
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Qiwei Zhang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| |
Collapse
|
15
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
16
|
Young S, Hannallah J, Goldberg D, Sanghvi T, Arshad J, Scott A, Woodhead G. Friend or Foe? Locoregional Therapies and Immunotherapies in the Current Hepatocellular Treatment Landscape. Int J Mol Sci 2023; 24:11434. [PMID: 37511193 PMCID: PMC10380625 DOI: 10.3390/ijms241411434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last several decades, a number of new treatment options for patients with hepatocellular carcinoma (HCC) have been developed. While treatment decisions for some patients remain clear cut, a large numbers of patients have multiple treatment options, and it can be hard for multidisciplinary teams to come to unanimous decisions on which treatment strategy or sequence of treatments is best. This article reviews the available data with regard to two treatment strategies, immunotherapies and locoregional therapies, with a focus on the potential of locoregional therapies to be combined with checkpoint inhibitors to improve outcomes in patients with locally advanced HCC. In this review, the available data on the immunomodulatory effects of locoregional therapies is discussed along with available clinical data on outcomes when the two strategies are combined.
Collapse
Affiliation(s)
- Shamar Young
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Jack Hannallah
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Dan Goldberg
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Tina Sanghvi
- Department of Radiology, Southern Arizona VA, Tucson, AZ 85723, USA
| | - Junaid Arshad
- Department of Medicine, Division of Hematology and Oncology, University of Arizona, Tucson, AZ 85724, USA
| | - Aaron Scott
- Department of Medicine, Division of Hematology and Oncology, University of Arizona, Tucson, AZ 85724, USA
| | - Gregory Woodhead
- Department of Medical Imaging, Division of Interventional Radiology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| |
Collapse
|
17
|
Devan AR, Nair B, Aryan MK, Liju VB, Koshy JJ, Mathew B, Valsan A, Kim H, Nath LR. Decoding Immune Signature to Detect the Risk for Early-Stage HCC Recurrence. Cancers (Basel) 2023; 15:2729. [PMID: 37345066 DOI: 10.3390/cancers15102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is often recognized as an inflammation-linked cancer, which possesses an immunosuppressive tumor microenvironment. Curative treatments such as surgical resection, liver transplantation, and percutaneous ablation are mainly applicable in the early stage and demonstrate significant improvement of survival rate in most patients. However, 70-80% of patients report HCC recurrence within 5 years of curative treatment, representing an important clinical issue. However, there is no effective recurrence marker after surgical and locoregional therapies, thus, tumor size, number, and histological features such as cancer cell differentiation are often considered as risk factors for HCC recurrence. Host immunity plays a critical role in regulating carcinogenesis, and the immune microenvironment characterized by its composition, functional status, and density undergoes significant alterations in each stage of cancer progression. Recent studies reported that analysis of immune contexture could yield valuable information regarding the treatment response, prognosis and recurrence. This review emphasizes the prognostic value of tumors associated with immune factors in HCC recurrence after curative treatment. In particular, we review the immune landscape and immunological factors contributing to early-stage HCC recurrence, and discuss the immunotherapeutic interventions to prevent tumor recurrence following curative treatments.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | | | - Vijayastelar B Liju
- The Shraga Segal Department of Microbiology-Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Joel Joy Koshy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Arun Valsan
- Department of Gastroenterology and Epatology, Amrita Institute of Medical Science, Kochi 682041, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
18
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
19
|
Woeste MR, Shrestha R, Geller AE, Li S, Montoya-Durango D, Ding C, Hu X, Li H, Puckett A, Mitchell RA, Hayat T, Tan M, Li Y, McMasters KM, Martin RCG, Yan J. Irreversible electroporation augments β-glucan induced trained innate immunity for the treatment of pancreatic ductal adenocarcinoma. J Immunother Cancer 2023; 11:e006221. [PMID: 37072351 PMCID: PMC10124260 DOI: 10.1136/jitc-2022-006221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a challenging diagnosis that is yet to benefit from the advancements in immuno-oncologic treatments. Irreversible electroporation (IRE), a non-thermal method of tumor ablation, is used in treatment of select patients with locally-advanced unresectable PC and has potentiated the effect of certain immunotherapies. Yeast-derived particulate β-glucan induces trained innate immunity and successfully reduces murine PC tumor burden. This study tests the hypothesis that IRE may augment β-glucan induced trained immunity in the treatment of PC. METHODS β-Glucan-trained pancreatic myeloid cells were evaluated ex vivo for trained responses and antitumor function after exposure to ablated and unablated tumor-conditioned media. β-Glucan and IRE combination therapy was tested in an orthotopic murine PC model in wild-type and Rag-/- mice. Tumor immune phenotypes were assessed by flow cytometry. Effect of oral β-glucan in the murine pancreas was evaluated and used in combination with IRE to treat PC. The peripheral blood of patients with PC taking oral β-glucan after IRE was evaluated by mass cytometry. RESULTS IRE-ablated tumor cells elicited a potent trained response ex vivo and augmented antitumor functionality. In vivo, β-glucan in combination with IRE reduced local and distant tumor burden prolonging survival in a murine orthotopic PC model. This combination augmented immune cell infiltration to the PC tumor microenvironment and potentiated the trained response from tumor-infiltrating myeloid cells. The antitumor effect of this dual therapy occurred independent of the adaptive immune response. Further, orally administered β-glucan was identified as an alternative route to induce trained immunity in the murine pancreas and prolonged PC survival in combination with IRE. β-Glucan in vitro treatment also induced trained immunity in peripheral blood monocytes obtained from patients with treatment-naïve PC. Finally, orally administered β-glucan was found to significantly alter the innate cell landscape within the peripheral blood of five patients with stage III locally-advanced PC who had undergone IRE. CONCLUSIONS These data highlight a relevant and novel application of trained immunity within the setting of surgical ablation that may stand to benefit patients with PC.
Collapse
Affiliation(s)
- Matthew R Woeste
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Anne E Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shu Li
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Diego Montoya-Durango
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron Puckett
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Traci Hayat
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Min Tan
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yan Li
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert C G Martin
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Gajewska-Naryniecka A, Szwedowicz U, Łapińska Z, Rudno-Rudzińska J, Kielan W, Kulbacka J. Irreversible Electroporation in Pancreatic Cancer-An Evolving Experimental and Clinical Method. Int J Mol Sci 2023; 24:4381. [PMID: 36901812 PMCID: PMC10002122 DOI: 10.3390/ijms24054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer has no symptoms until the disease has advanced and is aggressive cancer with early metastasis. Up to now, the only curative treatment is surgical resection, which is possible in the early stages of the disease. Irreversible electroporation treatment offers new hope for patients with unresectable tumors. Irreversible electroporation (IRE) is a type of ablation therapy that has been explored as a potential treatment for pancreatic cancer. Ablation therapies involve the use of energy to destroy or damage cancer cells. IRE involves using high-voltage, low-energy electrical pulses to create resealing in the cell membrane, causing the cell to die. This review summarizes experiential and clinical findings in terms of the IRE applications. As was described, IRE can be a non-pharmacological approach (electroporation) or combined with anticancer drugs or standard treatment methods. The efficacy of irreversible electroporation (IRE) in eliminating pancreatic cancer cells has been demonstrated through both in vitro and in vivo studies, and it has been shown to induce an immune response. Nevertheless, further investigation is required to assess its effectiveness in human subjects and to comprehensively understand IRE's potential as a treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
21
|
Jeon SM, Davaa E, Jiang Y, Jenjob R, Truong NT, Shin KJ, Jeong S, Yang SG. Assessment of Hepatic Lesions After non-Thermal Tumor Ablation by Irreversible Electroporation in a Pig Model. Technol Cancer Res Treat 2023; 22:15330338221147122. [PMID: 37861099 PMCID: PMC10590046 DOI: 10.1177/15330338221147122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 10/21/2023] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal and minimal invasive modality to ablate pathologic lesions such as hepatic tumors. Histological analysis of the initial lesions after IRE can help predict ablation efficacy. We aimed to investigate the histological characteristics of early hepatic lesions after IRE application using animal models. IRE (1500 V/cm, a pulse length of 100 μs, 60 or 90 pulses) was applied to the liver of miniature pigs. H&E and TUNEL staining were performed and analyzed. Ablated zones of pig liver were discolored and separated from the normal zone after IRE. Histologic characteristics of ablation zones included preserved hepatic lobular architecture with a unique hexagonal-like structure. Apoptotic cells were detected, and sinusoidal dilatation and blood congestion were observed, but hepatic arteries and bile ducts were intact around the ablation zones. The early lesions obtained by delivering monophasic square wave pulses through needle electrodes reflected typical histological changes induced by IRE. Therefore, it was found that the histological assessment of the early hepatic lesion after IRE can be utilized to predict the IRE ablation effect.
Collapse
Affiliation(s)
- Sung-Min Jeon
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| | - Enkhzaya Davaa
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
| | - Yixin Jiang
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| | - Ratchapol Jenjob
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Ngoc-Thuan Truong
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Ju Shin
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Seok Jeong
- Division of Gastroenterology, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Su-Geun Yang
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
22
|
Chen Z, Meng L, Zhang J, Zhang X. Progress in the cryoablation and cryoimmunotherapy for tumor. Front Immunol 2023; 14:1094009. [PMID: 36761748 PMCID: PMC9907027 DOI: 10.3389/fimmu.2023.1094009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
With the rapid advancement of imaging equipment and minimally invasive technology, cryoablation technology is being used more frequently in minimally invasive treatment of tumors, primarily for patients with early tumors who voluntarily consent to ablation as well as those with advanced tumors that cannot be surgically removed or cannot be tolerated. Cryoablation is more effective and secure for target lesions than other thermal ablation methods like microwave and radiofrequency ablation (RFA). The study also discovered that cryoablation, in addition to causing tumor tissue necrosis and apoptosis, can facilitate the release of tumor-derived autoantigens into the bloodstream and activate the host immune system to elicit beneficial anti-tumor immunological responses against primary. This may result in regression of the primary tumor and distant metastasis. The additional effect called " Accompanying effects ". It is the basis of combined ablation and immunotherapy for tumor. At present, there is a lot of research on the mechanism of immune response induced by cryoablation. Trying to solve the question: how positively induce immune response. In this review, we focus on: 1. the immune effects induced by cryoablation. 2. the effect and mechanism of tumor immunotherapy combined with cryoablation. 3.The clinical research of this combination therapy in the treatment of tumors.
Collapse
Affiliation(s)
- Zenan Chen
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liangliang Meng
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Radiology, Chinese People's Armed Police (PAP) Force Hospital of Beijing, Beijing, China
| | - Jing Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiao Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
23
|
Qin YT, Li YP, He XW, Wang X, Li WY, Zhang YK. Biomaterials promote in vivo generation and immunotherapy of CAR-T cells. Front Immunol 2023; 14:1165576. [PMID: 37153571 PMCID: PMC10157406 DOI: 10.3389/fimmu.2023.1165576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy based on functional immune cell transfer is showing a booming situation. However, complex manufacturing processes, high costs, and disappointing results in the treatment of solid tumors have limited its use. Encouragingly, it has facilitated the development of new strategies that fuse immunology, cell biology, and biomaterials to overcome these obstacles. In recent years, CAR-T engineering assisted by properly designed biomaterials has improved therapeutic efficacy and reduced side effects, providing a sustainable strategy for improving cancer immunotherapy. At the same time, the low cost and diversity of biomaterials also offer the possibility of industrial production and commercialization. Here, we summarize the role of biomaterials as gene delivery vehicles in the generation of CAR-T cells and highlight the advantages of in-situ construction in vivo. Then, we focused on how biomaterials can be combined with CAR-T cells to better enable synergistic immunotherapy in the treatment of solid tumors. Finally, we describe biomaterials' potential challenges and prospects in CAR-T therapy. This review aims to provide a detailed overview of biomaterial-based CAR-T tumor immunotherapy to help investigators reference and customize biomaterials for CAR-T therapy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ya-Ping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
| | - Xi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
24
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
25
|
Zang C, Zhao Y, Liu G, Li K, Qin L, Zhang Y, Sun J, Wang Q, Ma L, Zhao P, Sun Y, Guo D, Yuan C, Dong T, Zhang Y. Variations in dynamic tumor-associated antigen-specific T cell responses correlate with HCC recurrence after thermal ablation. Front Immunol 2022; 13:982578. [PMID: 36618423 PMCID: PMC9813410 DOI: 10.3389/fimmu.2022.982578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Ablative therapy is a recommended treatment for hepatocellular carcinoma (HCC) not only for its effective eradication of tumors, but also for its induction of host immunity. However, the high 5-year recurrence rate after ablation underlines the poor understanding of the antitumor immunity response. Here, we investigated the effects of thermal ablation on antitumor immunity. Methods We analyzed the dynamics of tumor-associated antigen (TAA)-specific immune responses and changes in peripheral blood mononuclear cell phenotype in patients with HCC before and after tumor ablation. We used the IFN-γ ELISPOT assay and immunophenotyping by flow cytometry to evaluate the effects of ablation on host immunity. The correlation between the T cell response and disease outcome was explored to uncover the efficacy of the immune response in inhibiting HCC recurrence. Results Different TAA-specific T cell responses were identified among patients before and after ablation. One week after ablation, there was an improved immune state, with a switch from the dominance of an AFP-specific T cell response to that of a SMNMS-specific T cell response, which was correlated with better survival. Furthermore, an improvement in immune status was accompanied by a lower level of PD1+ and Tim3+ T cells in CD8+ T cells. Although this functional state was not durable, there was a higher degree of AFP-specific T cell responses at 4-weeks post-ablation. Furthermore, T cells presented a more exhausted phenotype at 4-weeks post-ablation than at the 1-week timepoint. Conclusions Ablation elicits a transient antitumor immune response in patients with HCC by changing the profile of the T cell response and the expression of immune checkpoint molecules, which correlated with longer recurrence-free survival of patients with HCC.
Collapse
Affiliation(s)
- Chaoran Zang
- Interventional Therapy Center of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Pancreatic Center Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yan Zhao
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Guihai Liu
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Medical Research Council (MRC) Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Kang Li
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Ling Qin
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuewei Zhang
- Pancreatic Center Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianping Sun
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Interventional Therapy Center of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Liang Ma
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Peng Zhao
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yu Sun
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Dandan Guo
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Chunwang Yuan
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Tao Dong
- Medical Research Council (MRC) Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Yonghong Zhang
- Interventional Therapy Center of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Biomedical Information Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Chen S, Zeng X, Su T, Xiao H, Lin M, Peng Z, Peng S, Kuang M. Combinatory local ablation and immunotherapies for hepatocellular carcinoma: Rationale, efficacy, and perspective. Front Immunol 2022; 13:1033000. [PMID: 36505437 PMCID: PMC9726793 DOI: 10.3389/fimmu.2022.1033000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Local ablation, such as radiofrequency ablation, microwave ablation, cryoablation and irreversible electroporation, etc., are well established in elimination and control of HCC. However, high recurrence rate after local ablation remains the biggest challenge for HCC management. Novel and effective therapeutic strategies to improve long-term survival are urgently needed. Accumulating studies have reported the role of ablation in modulating the tumor signaling pathway and the immune microenvironment to both eliminate residual/metastatic tumor and promote tumor progression. Ablation has been shown to elicit tumor-specific immune responses by inducing massive cell death and releasing tumor antigen. Immunotherapies that unleash the immune system have the potential to enhance the anti-tumor immunity induced by ablation. Multiple combinatory strategies have been explored in preclinical and clinical studies. In this review, we comprehensively summarize the latest progress on different mechanisms underlying the effects of ablation on tumor cells and tumor microenvironment. We further analyze the clinical trials testing the combination of ablation and immunotherapies, and discuss the possible role of immunomodulation to boost the anti-tumor effects of ablation and prevent HCC recurrence.
Collapse
Affiliation(s)
- Shuling Chen
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuezhen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianhong Su
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Han Xiao
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manxia Lin
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Ming Kuang,
| |
Collapse
|
27
|
Zhao G, Bi M, Liu S, Ma J, Xu F, Liu Y, Gao F, Yu Y, Zhou J, Feng Z, Wu J. Variation of NK, NKT, CD4 + T, CD8 + T cells, and IL-17A by CalliSpheres ® microspheres-transarterial chemoembolization in refractory liver metastases patients. Scand J Clin Lab Invest 2022; 82:549-555. [PMID: 36344035 DOI: 10.1080/00365513.2022.2129438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune environment plays an important role in the management of liver cancer. The current study aimed to explore the change of NK and NKT cells, IL-17A, CD4+ T and CD8+ T cells in refractory liver metastases patients before and after CalliSpheres® microspheres transarterial chemoembolization (CSM-TACE). Peripheral blood (PB) samples from 35 refractory liver metastases patients were collected before CSM-TACE (baseline), 2 days (D2) and 5 days (D5) after CSM-TACE. Then, NK and NKT cells, IL-17A, CD4+ T and CD8+ T cells from PB samples were detected. All enrolled patients successfully completed CSM-TACE procedure and achieved disease control rate of 100% after 1 month. NKT cells were increased from baseline to D2 and D5 [median (range): 5.88% (1.53%-12.05%) vs. 9.54% (5.19%-15.71%) vs. 7.12% (2.77%-13.29%)], NK cells were also enhanced from baseline to D2 and D5 [median (range): 14.35% (5.85%-20.52%) vs. 20.36% (15.88%-27.30%) vs. 30.82% (22.18%-37.72%)], while IL-17A was declined from baseline to D2 and D5 [median (range): 22.11 (9.46-39.18) pg/ml vs. 12.41 (3.24-26.84) pg/ml vs. 6.55 (1.11-20.98) pg/ml]. Furthermore, IL-17A was negatively correlated with the NK and NKT cells at baseline, D2 and D5 (all p < .05), respectively. Additionally, CD4+ T cells and CD4+ T/CD8+ T ratio were increased while CD8+ T cells were declined from baseline to D2 and D5 (all p < .05). NK cells, NKT cells, and CD4+ T cells are increased but IL-17A and CD8+ T cells are declined after CSM-TACE in refractory liver metastases.
Collapse
Affiliation(s)
- Guangsheng Zhao
- Cancer Interventional Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Mei Bi
- Department of Clinical Nutrition and Metabolism, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Song Liu
- Cancer Interventional Center, Linyi Cancer Hospital, Linyi, China
| | - Jian Ma
- Cancer Interventional Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fang Xu
- Cancer Interventional Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ying Liu
- Hepatobiliary and Pancreatic Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Fei Gao
- Cancer Interventional Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Yu
- Medical Development Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jun Zhou
- Cancer Interventional Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhuo Feng
- Department of Emergency, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
28
|
Image-guided in situ cancer vaccination with combination of multi-functional nano-adjuvant and an irreversible electroporation technique. Biomaterials 2022; 289:121762. [DOI: 10.1016/j.biomaterials.2022.121762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022]
|
29
|
Xu M, Xie LT, Xiao YY, Liang P, Zhao QY, Wang ZM, Chai WL, Wei YT, Xu LF, Hu XK, Kuang M, Niu LZ, Yao CG, Kong HY, Tian G, Xie XY, Cui XW, Xu D, Zhao J, Jiang TA. Chinese clinical practice guidelines for ultrasound-guided irreversible electroporation of liver cancer (version 2022). Hepatobiliary Pancreat Dis Int 2022; 21:462-471. [PMID: 36058782 DOI: 10.1016/j.hbpd.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Min Xu
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Li-Ting Xie
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Yue-Yong Xiao
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - Ping Liang
- Department of Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yu Zhao
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Zhong-Min Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Lu Chai
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Ying-Tian Wei
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - Lin-Feng Xu
- Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiao-Kun Hu
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Kuang
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li-Zhi Niu
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou 510665, China
| | - Chen-Guo Yao
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China
| | - Hai-Ying Kong
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guo Tian
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Xu
- Department of Interventional Ultrasound, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian-An Jiang
- Department of Ultrasound Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China.
| | | | | |
Collapse
|
30
|
Wang Y, Jiang T, Xie L, Wang H, Zhao J, Xu L, Fang C. Effect of pulsed field ablation on solid tumor cells and microenvironment. Front Oncol 2022; 12:899722. [PMID: 36081554 PMCID: PMC9447365 DOI: 10.3389/fonc.2022.899722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian’an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian’an Jiang,
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
32
|
Szlasa W, Janicka N, Sauer N, Michel O, Nowak B, Saczko J, Kulbacka J. Chemotherapy and Physical Therapeutics Modulate Antigens on Cancer Cells. Front Immunol 2022; 13:889950. [PMID: 35874714 PMCID: PMC9299262 DOI: 10.3389/fimmu.2022.889950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells possess specific properties, such as multidrug resistance or unlimited proliferation potential, due to the presence of specific proteins on their cell membranes. The release of proliferation-related proteins from the membrane can evoke a loss of adaptive ability in cancer cells and thus enhance the effects of anticancer therapy. The upregulation of cancer-specific membrane antigens results in a better outcome of immunotherapy. Moreover, cytotoxic T-cells may also become more effective when stimulated ex-vivo toward the anticancer response. Therefore, the modulation of membrane proteins may serve as an interesting attempt in anticancer therapy. The presence of membrane antigens relies on various physical factors such as temperature, exposure to radiation, or drugs. Therefore, changing the tumor microenvironment conditions may lead to cancer cells becoming sensitized to subsequent therapy. This paper focuses on the therapeutic approaches modulating membrane antigens and enzymes in anticancer therapy. It aims to analyze the possible methods for modulating the antigens, such as pharmacological treatment, electric field treatment, photodynamic reaction, treatment with magnetic field or X-ray radiation. Besides, an overview of the effects of chemotherapy and immunotherapy on the immunophenotype of cancer cells is presented. Finally, the authors review the clinical trials that involved the modulation of cell immunophenotype in anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bernadetta Nowak
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
33
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Macek Jilkova Z, Ghelfi J, Decaens T. Immunomodulation for hepatocellular carcinoma therapy: current challenges. Curr Opin Oncol 2022; 34:155-160. [PMID: 34923550 DOI: 10.1097/cco.0000000000000812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The emergence of novel immunotherapies, such as immune-checkpoint inhibitors has changed the landscape of systemic cancer treatment. In hepatocellular carcinoma (HCC) patients, despite initial enthusiasm, the proportion of responders to immune-checkpoint inhibitors remains low. We provide a brief update of this rapidly evolving field, with specific focus on the development in the field of predictive factors and the immunomodulation induced by locoregional therapies. RECENT FINDINGS Even if the immune contexture of HCC before the treatment remains the most promising predictive marker for response to immunotherapies, recent findings show that the cause of HCC may have also a key role. Specific inflammatory mechanisms induced by NASH may result in limited efficacy of immunotherapy compared with viral HCC. Other recent findings showed that percutaneous ablations are responsible for intratumoral immune changes and systemic immune system activation that may help to prevent recurrence when combined with immunotherapies. In case of multifocal HCC, transarterial therapies (TACE and SIRT) may help to turn a cold tumor type to a hot tumor type and could be associated with immune-checkpoint inhibitors to improve outcomes. SUMMARY The future HCC management will focus on patient stratification for specific immunotherapies depending on the signature and cause of HCC and the best combined approaches in which locoregional therapies may play a pivotal role.
Collapse
Affiliation(s)
- Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309
- Service d'hépato-gastroentérologie, Pôle Digidune
| | - Julien Ghelfi
- Université Grenoble Alpes, Grenoble
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309
- Service de radiologie, Pôle Imagerie, CHU Grenoble Alpes, La Tronche, France
| | - Thomas Decaens
- Université Grenoble Alpes, Grenoble
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309
- Service d'hépato-gastroentérologie, Pôle Digidune
| |
Collapse
|
35
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an “in-situ tumor vaccine,” inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Wang K, Wang C, Jiang H, Zhang Y, Lin W, Mo J, Jin C. Combination of Ablation and Immunotherapy for Hepatocellular Carcinoma: Where We Are and Where to Go. Front Immunol 2022; 12:792781. [PMID: 34975896 PMCID: PMC8714655 DOI: 10.3389/fimmu.2021.792781] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is increasing in incidence. Local ablative therapy plays a leading role in HCC treatment. Radiofrequency (RFA) is one of the first-line therapies for early local ablation. Other local ablation techniques (e.g., microwave ablation, cryoablation, irreversible electroporation, phototherapy.) have been extensively explored in clinical trials or cell/animal studies but have not yet been established as a standard treatment or applied clinically. On the one hand, single treatment may not meet the needs. On the other hand, ablative therapy can stimulate local and systemic immune effects. The combination strategy of immunotherapy and ablation is reasonable. In this review, we briefly summarized the current status and progress of ablation and immunotherapy for HCC. The immune effects of local ablation and the strategies of combination therapy, especially synergistic strategies based on biomedical materials, were discussed. This review is hoped to provide references for future researches on ablative immunotherapy to arrive to a promising new era of HCC treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weidong Lin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
37
|
Fujimori M, Kimura Y, Ueshima E, Dupuy DE, Adusumilli PS, Solomon SB, Srimathveeravalli G. Lung Ablation with Irreversible Electroporation Promotes Immune Cell Infiltration by Sparing Extracellular Matrix Proteins and Vasculature: Implications for Immunotherapy. Bioelectricity 2021; 3:204-214. [PMID: 34734168 DOI: 10.1089/bioe.2021.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: This study investigated the sparing of the extracellular matrix (ECM) and blood vessels at the site of lung irreversible electroporation (IRE), and its impact on postablation T cell and macrophage populations. Materials and Methods: Normal swine (n = 8) lung was treated with either IRE or microwave ablation (MWA), followed by sacrifice at 2 and 28 days (four animals/timepoint) after treatment. En bloc samples of ablated lung were stained for blood vessels (CD31), ECM proteins (Collagen, Heparan sulfate, and Decorin), T cells (CD3), and macrophages (Iba1). Stained slides were analyzed with an image processing software (ImageJ) to count the number of positive staining cells or the percentage area of tissue staining for ECM markers, and the statistical difference was evaluated with Student's t-test. Results: Approximately 50% of the blood vessels and collagen typically seen in healthy lung were evident in IRE treated samples at Day 2, with complete destruction within MWA treated lung. These levels increased threefold by Day 28, indicative of post-IRE tissue remodeling and regeneration. Decorin and Heparan sulfate levels were reduced, and it remained so through the duration of observation. Concurrently, numbers of CD3+ T cells and macrophages were not different from healthy lung at Day 2 after IRE, subsequently increasing by 2.5 and 1.5-fold by Day 28. Similar findings were restricted to the peripheral inflammatory rim of MWA samples, wherein the central necrotic regions remained acellular through Day 28. Conclusion: Acute preservation of blood vessels and major ECM components was observed in IRE treated lung at acute time points, and it was associated with the increased infiltration and presence of T cells and macrophages, features that were spatially restricted in MWA treated lung.
Collapse
Affiliation(s)
- Masashi Fujimori
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Mie University, Mie, Japan
| | - Yasushi Kimura
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Damian E Dupuy
- Department of Radiology, Cape Cod Healthcare, Hyannis, Massachusetts, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen B Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Mie University, Mie, Japan
| | - Govindarajan Srimathveeravalli
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA.,Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
38
|
Burbach BJ, O'Flanagan SD, Shao Q, Young KM, Slaughter JR, Rollins MR, Street TJL, Granger VE, Beura LK, Azarin SM, Ramadhyani S, Forsyth BR, Bischof JC, Shimizu Y. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat Commun 2021; 12:3862. [PMID: 34162858 PMCID: PMC8222297 DOI: 10.1038/s41467-021-24132-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Memory CD8+ T cells populate non-lymphoid tissues (NLTs) following pathogen infection, but little is known about the establishment of endogenous tumor-specific tissue-resident memory T cells (TRM) during cancer immunotherapy. Using a transplantable mouse model of prostate carcinoma, here we report that tumor challenge leads to expansion of naïve neoantigen-specific CD8+ T cells and formation of a small population of non-recirculating TRM in several NLTs. Primary tumor destruction by irreversible electroporation (IRE), followed by anti-CTLA-4 immune checkpoint inhibitor (ICI), promotes robust expansion of tumor-specific CD8+ T cells in blood, tumor, and NLTs. Parabiosis studies confirm that TRM establishment following dual therapy is associated with tumor remission in a subset of cases and protection from subsequent tumor challenge. Addition of anti-PD-1 following dual IRE + anti-CTLA-4 treatment blocks tumor growth in non-responsive cases. This work indicates that focal tumor destruction using IRE combined with ICI is a potent in situ tumor vaccination strategy that generates protective tumor-specific TRM.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| | - Stephen D O'Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
| | - Qi Shao
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Katharine M Young
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Joseph R Slaughter
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Meagan R Rollins
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Boston Scientific Corporation, Maple Grove, MN, USA
| | - Tami Jo L Street
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Victoria E Granger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Lalit K Beura
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Samira M Azarin
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | | | | | - John C Bischof
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
39
|
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological Effects of Histotripsy for Cancer Therapy. Front Oncol 2021; 11:681629. [PMID: 34136405 PMCID: PMC8200675 DOI: 10.3389/fonc.2021.681629] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide despite major advancements in diagnosis and therapy over the past century. One of the most debilitating aspects of cancer is the burden brought on by metastatic disease. Therefore, an ideal treatment protocol would address not only debulking larger primary tumors but also circulating tumor cells and distant metastases. To address this need, the use of immune modulating therapies has become a pillar in the oncology armamentarium. A therapeutic option that has recently emerged is the use of focal ablation therapies that can destroy a tumor through various physical or mechanical mechanisms and release a cellular lysate with the potential to stimulate an immune response. Histotripsy is a non-invasive, non-ionizing, non-thermal, ultrasound guided ablation technology that has shown promise over the past decade as a debulking therapy. As histotripsy therapies have developed, the full picture of the accompanying immune response has revealed a wide range of immunogenic mechanisms that include DAMP and anti-tumor mediator release, changes in local cellular immune populations, development of a systemic immune response, and therapeutic synergism with the inclusion of checkpoint inhibitor therapies. These studies also suggest that there is an immune effect from histotripsy therapies across multiple murine tumor types that may be reproducible. Overall, the effects of histotripsy on tumors show a positive effect on immunomodulation.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
40
|
Lucarini V, Melaiu O, Tempora P, D’Amico S, Locatelli F, Fruci D. Dendritic Cells: Behind the Scenes of T-Cell Infiltration into the Tumor Microenvironment. Cancers (Basel) 2021; 13:433. [PMID: 33498755 PMCID: PMC7865357 DOI: 10.3390/cancers13030433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor-infiltrating CD8+ T cells have been shown to play a crucial role in controlling tumor progression. However, the recruitment and activation of these immune cells at the tumor site are strictly dependent on several factors, including the presence of dendritic cells (DCs), the main orchestrators of the antitumor immune responses. Among the various DC subsets, the role of cDC1s has been demonstrated in several preclinical experimental mouse models. In addition, the high density of tumor-infiltrating cDC1s has been associated with improved survival in many cancer patients. The ability of cDC1s to modulate antitumor activity depends on their interaction with other immune populations, such as NK cells. This evidence has led to the development of new strategies aimed at increasing the abundance and activity of cDC1s in tumors, thus providing attractive new avenues to enhance antitumor immunity for both established and novel anticancer immunotherapies. In this review, we provide an overview of the various subsets of DCs, focusing in particular on the role of cDC1s, their ability to interact with other intratumoral immune cells, and their prognostic significance on solid tumors. Finally, we outline key therapeutic strategies that promote the immunogenic functions of DCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Silvia D’Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| |
Collapse
|