1
|
Bourdillon AT. Computer Vision-Radiomics & Pathognomics. Otolaryngol Clin North Am 2024; 57:719-751. [PMID: 38910065 DOI: 10.1016/j.otc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The role of computer vision in extracting radiographic (radiomics) and histopathologic (pathognomics) features is an extension of molecular biomarkers that have been foundational to our understanding across the spectrum of head and neck disorders. Especially within head and neck cancers, machine learning and deep learning applications have yielded advances in the characterization of tumor features, nodal features, and various outcomes. This review aims to overview the landscape of radiomic and pathognomic applications, informing future work to address gaps. Novel methodologies will be needed to potentially engineer ways of integrating multidimensional data inputs to examine disease features to guide prognosis comprehensively and ultimately clinical management.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
2
|
Xie C, Yu X, Tan N, Zhang J, Su W, Ni W, Li C, Zhao Z, Xiang Z, Shao L, Li H, Wu J, Cao Z, Jin J, Jin X. Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy. Radiother Oncol 2024; 199:110438. [PMID: 39013503 DOI: 10.1016/j.radonc.2024.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT) and radiation dose (RD) distribution images. MATERIALS AND METHODS A total of 273 EC patients underwent VMAT were retrospectively reviewed and enrolled from two centers and divided into training (n = 152), internal validation (n = 66), and external validation (n = 55) cohorts, respectively. Radiomic and dosiomic features along with DL features using convolutional neural networks were extracted and screened from CT and RD images to predict RE. The performance of these models was evaluated and compared using the area under curve (AUC) of the receiver operating characteristic curves (ROC). RESULTS There were 5 and 10 radiomic and dosiomic features were screened, respectively. XGBoost achieved a best AUC of 0.703, 0.694 and 0.801, 0.729 with radiomic and dosiomic features in the internal and external validation cohorts, respectively. ResNet34 achieved a best prediction AUC of 0.642, 0.657 and 0.762, 0.737 for radiomics based DL model (DLR) and RD based DL model (DLD) in the internal and external validation cohorts, respectively. Combined model of DLD + Dosiomics + clinical factors achieved a best AUC of 0.913, 0.821 and 0.805 in the training, internal, and external validation cohorts, respectively. CONCLUSION Although the dose was not responsible for the prediction accuracy, the combination of various feature extraction methods was a factor in improving the RE prediction accuracy. Combining DLD with dosiomic features was promising in the pretreatment prediction of RE for EC patients underwent VMAT.
Collapse
Affiliation(s)
- Congying Xie
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xianwen Yu
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315000, PR China
| | - Ninghang Tan
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315000, PR China
| | - Jicheng Zhang
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wanyu Su
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315000, PR China
| | - Weihua Ni
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315000, PR China
| | - Chenyu Li
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zeshuo Zhao
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Ziqing Xiang
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Li Shao
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Heng Li
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jianping Wu
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Radiotherapy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People' s Hospital, Quzhou 324000, PR China
| | - Zhuo Cao
- Department of Respiratory, Lishui People's Hospital, Lishui 323000, PR China.
| | - Juebin Jin
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Xiance Jin
- Department of Radiotherapy Center, 1(st) Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
3
|
Michalet M, Valenzuela G, Debuire P, Riou O, Azria D, Nougaret S, Tardieu M. Robustness of radiomics features on 0.35 T magnetic resonance imaging for magnetic resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100613. [PMID: 39140002 PMCID: PMC11320460 DOI: 10.1016/j.phro.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background and purpose MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robustness of these models is often challenged. Materials and methods To assess the robustness of feature extraction, we conducted reproducibility studies using a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and only first-order and textural features from phantom-derived images. The impact of the delay between simulation and first fraction images was also assessed with an equivalence test. Results From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to patient-derived data. Conclusion Our findings show that a significant proportion of radiomic features extracted from this dual dataset were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model development, particularly for MR-guided radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Morgan Michalet
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Gladis Valenzuela
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Pierre Debuire
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Olivier Riou
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - David Azria
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Stéphanie Nougaret
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
- Institut du Cancer de Montpellier, Service d’imagerie médicale, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Marion Tardieu
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| |
Collapse
|
4
|
Zhang X, Iqbal Bin Saripan M, Wu Y, Wang Z, Wen D, Cao Z, Wang B, Xu S, Liu Y, Marhaban MH, Dong X. The impact of the combat method on radiomics feature compensation and analysis of scanners from different manufacturers. BMC Med Imaging 2024; 24:137. [PMID: 38844854 PMCID: PMC11157873 DOI: 10.1186/s12880-024-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning models. MATERIALS AND METHODS 135 CT images of Credence Cartridge Radiomic phantoms were collected and screened from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic features were screened according to the Lasso regression method. The radiomic features extracted from the rubber and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of the machine learning model. Radiomics features were divided into three groups based on the different scanner manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and area under the receiver curve (AUC) were used as evaluation metrics for model classification. RESULTS The principal component and ANOVA analysis results show that the variability of different scanner manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning models for classification improved, with the Random Forest model showing the most significant enhancement. The AUC value increased from 0.88 to 0.92. CONCLUSIONS The Combat algorithm has reduced variability in radiomic features from different scanners. In the phantom CT dataset, it appears that the machine learning model's classification performance may have improved after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat's impact on radiomic features in medical imaging.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
- Department of Biomedical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
| | | | - Yanjun Wu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Zhongxiao Wang
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| | - Zhendong Cao
- Department of Radiology, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Bingzhen Wang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Shiqi Xu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | - Yanli Liu
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China
| | | | - Xianling Dong
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.
- Hebei Provincial Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde City, Hebei Province, China.
| |
Collapse
|
5
|
Wang X, Gong G, Sun Q, Meng X. Prediction of pCR based on clinical-radiomic model in patients with locally advanced ESCC treated with neoadjuvant immunotherapy plus chemoradiotherapy. Front Oncol 2024; 14:1350914. [PMID: 38571506 PMCID: PMC10989074 DOI: 10.3389/fonc.2024.1350914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Background The primary objective of this research is to devise a model to predict the pathologic complete response in esophageal squamous cell carcinoma (ESCC) patients undergoing neoadjuvant immunotherapy combined with chemoradiotherapy (nICRT). Methods We retrospectively analyzed data from 60 ESCC patients who received nICRT between 2019 and 2023. These patients were divided into two cohorts: pCR-group (N = 28) and non-pCR group (N = 32). Radiomic features, discerned from the primary tumor region across plain, arterial, and venous phases of CT, and pertinent laboratory data were documented at two intervals: pre-treatment and preoperation. Concurrently, related clinical data was amassed. Feature selection was facilitated using the Extreme Gradient Boosting (XGBoost) algorithm, with model validation conducted via fivefold cross-validation. The model's discriminating capability was evaluated using the area under the receiver operating characteristic curve (AUC). Additionally, the clinical applicability of the clinical-radiomic model was appraised through decision curve analysis (DCA). Results The clinical-radiomic model incorporated seven significant markers: postHALP, ΔHB, post-ALB, firstorder_Skewness, GLCM_DifferenceAverage, GLCM_JointEntropy, GLDM_DependenceEntropy, and NGTDM_Complexity, to predict pCR. The XGBoost algorithm rendered an accuracy of 0.87 and an AUC of 0.84. Notably, the joint omics approach superseded the performance of solely radiomic or clinical model. The DCA further cemented the robust clinical utility of our clinical-radiomic model. Conclusion This study successfully formulated and validated a union omics methodology for anticipating the therapeutic outcomes of nICRT followed by radical surgical resection. Such insights are invaluable for clinicians in identifying potential nICRT responders among ESCC patients and tailoring optimal individualized treatment plans.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Guanzhong Gong
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Qifeng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
6
|
Montin E, Deniz CM, Kijowski R, Youm T, Lattanzi R. The impact of data augmentation and transfer learning on the performance of deep learning models for the segmentation of the hip on 3D magnetic resonance images. INFORMATICS IN MEDICINE UNLOCKED 2024; 45:101444. [PMID: 39119151 PMCID: PMC11308385 DOI: 10.1016/j.imu.2023.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Different pathologies of the hip are characterized by the abnormal shape of the bony structures of the joint, namely the femur and the acetabulum. Three-dimensional (3D) models of the hip can be used for diagnosis, biomechanical simulation, and planning of surgical treatments. These models can be generated by building 3D surfaces of the joint's structures segmented on magnetic resonance (MR) images. Deep learning can avoid time-consuming manual segmentations, but its performance depends on the amount and quality of the available training data. Data augmentation and transfer learning are two approaches used when there is only a limited number of datasets. In particular, data augmentation can be used to artificially increase the size and diversity of the training datasets, whereas transfer learning can be used to build the desired model on top of a model previously trained with similar data. This study investigates the effect of data augmentation and transfer learning on the performance of deep learning for the automatic segmentation of the femur and acetabulum on 3D MR images of patients diagnosed with femoroacetabular impingement. Transfer learning was applied starting from a model trained for the segmentation of the bony structures of the shoulder joint, which bears some resemblance to the hip joint. Our results suggest that data augmentation is more effective than transfer learning, yielding a Dice similarity coefficient compared to ground-truth manual segmentations of 0.84 and 0.89 for the acetabulum and femur, respectively, whereas the Dice coefficient was 0.78 and 0.88 for the model based on transfer learning. The Accuracy for the two anatomical regions was 0.95 and 0.97 when using data augmentation, and 0.87 and 0.96 when using transfer learning. Data augmentation can improve the performance of deep learning models by increasing the diversity of the training dataset and making the models more robust to noise and variations in image quality. The proposed segmentation model could be combined with radiomic analysis for the automatic evaluation of hip pathologies.
Collapse
Affiliation(s)
- Eros Montin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Cem M. Deniz
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard Kijowski
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Youm
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Xing X, Li L, Sun M, Zhu X, Feng Y. A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma. Ther Adv Respir Dis 2024; 18:17534666241249168. [PMID: 38757628 PMCID: PMC11102675 DOI: 10.1177/17534666241249168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Invasive lung adenocarcinoma with MPP/SOL components has a poor prognosis and often shows a tendency to recurrence and metastasis. This poor prognosis may require adjustment of treatment strategies. Preoperative identification is essential for decision-making for subsequent treatment. OBJECTIVE This study aimed to preoperatively predict the probability of MPP/SOL components in lung adenocarcinomas by a comprehensive model that includes radiomics features, clinical characteristics, and serum tumor biomarkers. DESIGN A retrospective case control, diagnostic accuracy study. METHODS This study retrospectively recruited 273 patients (males: females, 130: 143; mean age ± standard deviation, 63.29 ± 10.03 years; range 21-83 years) who underwent resection of invasive lung adenocarcinoma. Sixty-one patients (22.3%) were diagnosed with lung adenocarcinoma with MPP/SOL components. Radiomic features were extracted from CT before surgery. Clinical, radiomic, and combined models were developed using the logistic regression algorithm. The clinical and radiomic signatures were integrated into a nomogram. The diagnostic performance of the models was evaluated using the area under the curve (AUC). Studies were scored according to the Radiomics Quality Score and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines. RESULTS The radiomics model achieved the best AUC values of 0.858 and 0.822 in the training and test cohort, respectively. Tumor size (T_size), solid tumor size (ST_size), consolidation-to-tumor ratio (CTR), years of smoking, CYFRA 21-1, and squamous cell carcinoma antigen were used to construct the clinical model. The clinical model achieved AUC values of 0.741 and 0.705 in the training and test cohort, respectively. The nomogram showed higher AUCs of 0.894 and 0.843 in the training and test cohort, respectively. CONCLUSION This study has developed and validated a combined nomogram, a visual tool that integrates CT radiomics features with clinical indicators and serum tumor biomarkers. This innovative model facilitates the differentiation of micropapillary or solid components within lung adenocarcinoma and achieves a higher AUC, indicating superior predictive accuracy.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liangping Li
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Mingxia Sun
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yue Feng
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Amintas S, Giraud N, Fernandez B, Dupin C, Denost Q, Garant A, Frulio N, Smith D, Rullier A, Rullier E, Vuong T, Dabernat S, Vendrely V. The Crying Need for a Better Response Assessment in Rectal Cancer. Curr Treat Options Oncol 2023; 24:1507-1523. [PMID: 37702885 PMCID: PMC10643426 DOI: 10.1007/s11864-023-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 09/14/2023]
Abstract
OPINION STATEMENT Since total neoadjuvant treatment achieves almost 30% pathologic complete response, organ preservation has been increasingly debated for good responders after neoadjuvant treatment for patients diagnosed with rectal cancer. Two organ preservation strategies are available: a watch and wait strategy and a local excision strategy including patients with a near clinical complete response. A major issue is the selection of patients according to the initial tumor staging or the response assessment. Despite modern imaging improvement, identifying complete response remains challenging. A better selection could be possible by radiomics analyses, exploiting numerous image features to feed data characterization algorithms. The subsequent step is to include baseline and/or pre-therapeutic MRI, PET-CT, and CT radiomics added to the patients' clinicopathological data, inside machine learning (ML) prediction models, with predictive or prognostic purposes. These models could be further improved by the addition of new biomarkers such as circulating tumor biomarkers, molecular profiling, or pathological immune biomarkers.
Collapse
Affiliation(s)
- Samuel Amintas
- Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, F-33600, Pessac, France.
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France.
| | - Nicolas Giraud
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| | | | - Charles Dupin
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| | - Quentin Denost
- Bordeaux Colorectal Institute, F-33000, Bordeaux, France
| | - Aurelie Garant
- UT Southwestern Department of Radiation Oncology, Dallas, USA
| | - Nora Frulio
- Radiology Department, CHU Bordeaux, F-33600, Pessac, France
| | - Denis Smith
- Department of Digestive Oncology, CHU Bordeaux, F-33600, Pessac, France
| | - Anne Rullier
- Histology Department, CHU Bordeaux, F-33000, Bordeaux, France
| | - Eric Rullier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Surgery Department, CHU Bordeaux, F-33600, Pessac, France
| | - Te Vuong
- Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, Canada
| | - Sandrine Dabernat
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Biochemistry Department, CHU Bordeaux, F-33000, Bordeaux, France
| | - Véronique Vendrely
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000, Bordeaux, France
- Department of Radiation Oncology, CHU Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
9
|
Huang Q, Yang C, Pang J, Zeng B, Yang P, Zhou R, Wu H, Shen L, Zhang R, Lou F, Jin Y, Abdilim A, Jin H, Zhang Z, Xie X. CT-based dosiomics and radiomics model predicts radiation-induced lymphopenia in nasopharyngeal carcinoma patients. Front Oncol 2023; 13:1168995. [PMID: 37954080 PMCID: PMC10634512 DOI: 10.3389/fonc.2023.1168995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose This study aims to develop and validate a model predictive for the incidence of grade 4 radiation-induced lymphopenia (G4RIL), based on dosiomics features and radiomics features from the planning CT of nasopharyngeal carcinoma (NPC) treated by radiation therapy. Methods The dataset of 125 NPC patients treated with radiotherapy from August 2018 to March 2019 was randomly divided into two sets-an 85-sample training set and a 40-sample test set. Dosiomics features and radiomics features of the CT image within the skull bone and cervical vertebrae were extracted. A feature selection process of multiple steps was employed to identify the features that most accurately forecast the data and eliminate superfluous or insignificant ones. A support vector machine learning classifier with correction for imbalanced data was trained on the patient dataset for prediction of RIL (positive classifier for G4RIL, negative otherwise). The model's predictive capability was gauged by gauging its sensitivity (the likelihood of a positive test being administered to patients with G4RIL) and specificity in the test set. The area beneath the ROC curve (AUC) was utilized to explore the association of characteristics with the occurrence of G4RIL. Results Three clinical features, three dosiomics features, and three radiomics features exhibited significant correlations with G4RIL. Those features were then used for model construction. The combination model, based on nine robust features, yielded the most impressive results with an ACC value of 0.88 in the test set, while the dosiomics model, with three dosiomics features, had an ACC value of 0.82, the radiomics model, with three radiomics features, had an ACC value of 0.82, and the clinical model, with its initial features, had an ACC value of 0.6 for prediction performance. Conclusion The findings show that radiomics and dosiomics features are correlated with the G4RIL of NPC patients. The model incorporating radiomics features and dosiomics features from planning CT can predict the incidence of G4RIL in NPC patients.
Collapse
Affiliation(s)
- Qingfang Huang
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chao Yang
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- College of Physics and Electronic Science, Shandong Normal University, Jinan, China
| | - Jinmeng Pang
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Biao Zeng
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Pei Yang
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haijun Wu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Zhang
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Fan Lou
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yi Jin
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Albert Abdilim
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Hekun Jin
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Zijian Zhang
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxue Xie
- Department of Radiation Oncology Hunan Cancer Hospital/The Affiliated Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| |
Collapse
|
10
|
Yang J, Cao Y, Zhou F, Li C, Lv J, Li P. Combined deep-learning MRI-based radiomic models for preoperative risk classification of endometrial endometrioid adenocarcinoma. Front Oncol 2023; 13:1231497. [PMID: 37909025 PMCID: PMC10613647 DOI: 10.3389/fonc.2023.1231497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Differences exist between high- and low-risk endometrial cancer (EC) in terms of whether lymph node dissection is performed. Factors such as tumor grade, myometrial invasion (MDI), and lymphovascular space invasion (LVSI) in the European Society for Medical Oncology (ESMO), European SocieTy for Radiotherapy & Oncology (ESTRO) and European Society of Gynaecological Oncology (ESGO) guidelines risk classification can often only be accurately assessed postoperatively. The aim of our study was to estimate the risk classification of patients with endometrial endometrioid adenocarcinoma before surgery and offer individualized treatment plans based on their risk classification. Methods Clinical information and last preoperative pelvic magnetic resonance imaging (MRI) of patients with postoperative pathologically determined endometrial endometrioid adenocarcinoma were collected retrospectively. The region of interest (ROI) was subsequently plotted in T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) MRI scans, and the traditional radiomics features and deep-learning image features were extracted. A final radiomics nomogram model integrating traditional radiomics features, deep learning image features, and clinical information was constructed to distinguish between low- and high-risk patients (based on the 2020 ESMO-ESGO-ESTRO guidelines). The efficacy of the model was evaluated in the training and validation sets of the model. Results We finally included 168 patients from January 1, 2020 to July 29, 2021, of which 95 patients in 2021 were classified as the training set and 73 patients in 2020 were classified as the validation set. In the training set, the area under the curve (AUC) of the radiomics nomogram was 0.923 (95%CI: 0.865-0.980) and in the validation set, the AUC of the radiomics nomogram was 0.842 (95%CI: 0.762-0.923). The nomogram had better predictions than both the traditional radiomics model and the deep-learning radiomics model. Conclusion MRI-based radiomics models can be useful for preoperative risk classification of patients with endometrial endometrioid adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Pu Li
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Giraud N, Schneiders FL, van Sornsen de Koste JR, Palacios MA, Senan S. Tumor volume changes during stereotactic ablative radiotherapy for adrenal gland metastases under MRI guidance. Radiother Oncol 2023; 186:109749. [PMID: 37330058 DOI: 10.1016/j.radonc.2023.109749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Gross tumor volume (GTV) changes during stereotactic ablative radiotherapy (SABR) for adrenal tumors are not well characterized. We studied treatment-induced GTV changes during, and after, 5-fraction MR-guided SABR on a 0.35 T unit. METHODS AND MATERIALS Details of patients treated for adrenal metastases using 5-fraction adaptive MR-SABR were accessed. GTV changes between simulation and first fraction (ΔSF1) and all fractions were recorded. Wilcoxon paired tests were used for intrapatient comparisons. Logistic and linear regression models were used for features associated with dichotomous and continuous variables, respectively. RESULTS Once-daily fractions of 8 Gy or 10 Gy were delivered to 70 adrenal metastases. Median simulation-F1 interval was 13 days; F1-F5 interval was 13 days. Median baseline GTVs at simulation and F1 were 26.6 and 27.2 cc, respectively (p < 0.001). Mean ΔSF1 was + 9.1% (2.9 cc) relative to simulation; 47% of GTVs decreased in volume at F5 versus F1. GTV variations of ≥ 20% occurred in 59% treatments at some point between simulation to end SABR, and these did not correlate with baseline tumor characteristics. At a median follow-up of 20.3 months, a radiological complete response (CR) was seen in 23% of 64 evaluable patients. CR was associated with baseline GTV (p = 0.03) and ΔF1F5 (p = 0.03). Local relapses were seen in 6%. CONCLUSION Frequent changes in adrenal GTVs during 5-fraction SABR delivery support the use of on-couch adaptive replanning. The likelihood of a radiological CR correlates with the baseline GTV and intra-treatment GTV decline.
Collapse
Affiliation(s)
- Nicolas Giraud
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Famke L Schneiders
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - John R van Sornsen de Koste
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Miguel A Palacios
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Suresh Senan
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Wang Y, Chen Z, Liu C, Chu R, Li X, Li M, Yu D, Qiao X, Kong B, Song K. Radiomics-based fertility-sparing treatment in endometrial carcinoma: a review. Insights Imaging 2023; 14:127. [PMID: 37466860 DOI: 10.1186/s13244-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
In recent years, with the increasing incidence of endometrial carcinoma in women of child-bearing age, to decision of whether to preserve patients' fertility during treatment has become increasingly complex, presenting a formidable challenge for both physicians and patients. Non-fertility-sparing treatment can remove lesions more thoroughly than fertility-sparing treatment. However, patients will permanently lose their fertility. In contrast, fertility-sparing treatment can treat tumors without impairing fertility, but the risk of disease progression is high as compared with non-fertility-sparing treatment. Therefore, it is extremely important to accurately identify patients who are suitable for fertility-sparing treatments. The evaluation of prognostic factors, including myometrial invasion, the presence of lymph node metastases, and histopathological type, is vital for determining whether a patient can receive fertility-sparing treatment. As a non-invasive and quantitative approach, radiomics has the potential to assist radiologists and other clinicians in determining more precise judgments with regard to the above factors by extracting imaging features and establishing predictive models. In this review, we summarized currently available fertility-sparing strategies and reviewed the performance of radiomics in predicting risk factors associated with fertility-sparing treatment. This review aims to assist clinicians in identifying patients suitable for fertility-sparing treatment more accurately and comprehensively and informs more appropriate and rigorous treatment decisions for endometrial cancer patients of child-bearing age.Critical relevance statement: Radiomics is a promising tool that may assist clinicians identify risk factors about fertility-sparing more accurately and comprehensively.
Collapse
Affiliation(s)
- Yuanjian Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ran Chu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Mingbao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xu Qiao
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Haliasos N, Pediaditis M, Giakoumettis D, Spanaki C, Vakis A, Sakkalis V. Predicting impact of Deep Brain Stimulation on Non-motor symptoms of Parkinson's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082785 DOI: 10.1109/embc40787.2023.10340354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This is the largest study on Radiomics analysis looking into the impact of Deep Brain Stimulation on Non-Motor Symptoms (NMS) of Parkinson's disease. Preoperative brain white matter radiomics of 120 patients integrated with clinical variables were used to predict the DBS effect on NMS after 1 year from the surgery. Patients were classified "suboptimal" vs "good" based on a 10% or more improvement in NMS score. The combined Radiomics-Clinical Random Forrest (RF) model achieved an AUC of 0.96, Accuracy of 0.91, Sensitivity of 0.94 and Specificity of 0.88. The Youden's index showed optimal threshold for the RF of 0.535. The confusion matrix of the RF classifier gave a TPR of 0.92 and a FPR of 0.03. This corresponds to a PPV of 0.93 and a NPV of 0.93. The predictive models can be easily interpreted and after careful large-scale validation be integrated in assisting clinicians and patients to make informed decisions.Clinical Relevance- This paper shows the lesser studied positive impact of Deep Brain Stimulation on Non motor symptoms of Parkinson's disease while allows clinicians to predict non responders to the therapy.
Collapse
|
14
|
Mireștean CC, Iancu RI, Iancu DPT. Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. J Clin Med 2023; 12:jcm12062413. [PMID: 36983413 PMCID: PMC10057404 DOI: 10.3390/jcm12062413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Artificial intelligence (AI) and in particular radiomics has opened new horizons by extracting data from medical imaging that could be used not only to improve diagnostic accuracy, but also to be included in predictive models contributing to treatment stratification of cancer. Head and neck cancers (HNC) are associated with higher recurrence rates, especially in advanced stages of disease. It is considered that approximately 50% of cases will evolve with loco-regional recurrence, even if they will benefit from a current standard treatment consisting of definitive chemo-radiotherapy. Radiotherapy, the cornerstone treatment in locally advanced HNC, could be delivered either by the simultaneous integrated boost (SIB) technique or by the sequential boost technique, the decision often being a subjective one. The principles of radiobiology could be the basis of an optimal decision between the two methods of radiation dose delivery, but the heterogeneity of HNC radio-sensitivity makes this approach difficult. Radiomics has demonstrated the ability to non-invasively predict radio-sensitivity and the risk of relapse in HNC. Tumor heterogeneity evaluated with radiomics, the inclusion of coarseness, entropy and other first order features extracted from gross tumor volume (GTV) in multivariate models could identify pre-treatment cases that will benefit from one of the approaches (SIB or sequential boost radio-chemotherapy) considered the current standard of care for locally advanced HNC. Computer tomography (CT) simulation and daily cone beam CT (CBCT) could be chosen as imaging source for radiomic analysis.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, "St. Spiridon" Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
15
|
Contrast-enhanced CT radiomics improves the prediction of abdominal aortic aneurysm progression. Eur Radiol 2023; 33:3444-3454. [PMID: 36920519 DOI: 10.1007/s00330-023-09490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/06/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES To determine if three-dimensional (3D) radiomic features of contrast-enhanced CT (CECT) images improve prediction of rapid abdominal aortic aneurysm (AAA) growth. METHODS This longitudinal cohort study retrospectively analyzed 195 consecutive patients (mean age, 72.4 years ± 9.1) with a baseline CECT and a subsequent CT or MR at least 6 months later. 3D radiomic features were measured for 3 regions of the AAA, viz. the vessel lumen only; the intraluminal thrombus (ILT) and aortic wall only; and the entire AAA sac (lumen, ILT, and wall). Multiple machine learning (ML) models to predict rapid growth, defined as the upper tercile of observed growth (> 0.25 cm/year), were developed using data from 60% of the patients. Diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) in the remaining 40% of patients. RESULTS The median AAA maximum diameter was 3.9 cm (interquartile range [IQR], 3.3-4.4 cm) at baseline and 4.4 cm (IQR, 3.7-5.4 cm) at the mean follow-up time of 3.2 ± 2.4 years (range, 0.5-9 years). A logistic regression model using 7 radiomic features of the ILT and wall had the highest AUC (0.83; 95% confidence interval [CI], 0.73-0.88) in the development cohort. In the independent test cohort, this model had a statistically significantly higher AUC than a model including maximum diameter, AAA volume, and relevant clinical factors (AUC = 0.78, 95% CI, 0.67-0.87 vs AUC = 0.69, 95% CI, 0.57-0.79; p = 0.04). CONCLUSION A radiomics-based method focused on the ILT and wall improved prediction of rapid AAA growth from CECT imaging. KEY POINTS • Radiomic analysis of 195 abdominal CECT revealed that an ML-based model that included textural features of intraluminal thrombus (if present) and aortic wall improved prediction of rapid AAA progression compared to maximum diameter. • Predictive accuracy was higher when radiomic features were obtained from the thrombus and wall as opposed to the entire AAA sac (including lumen), or the lumen alone. • Logistic regression of selected radiomic features yielded similar accuracy to predict rapid AAA progression as random forests or support vector machines.
Collapse
|
16
|
Franzese C, Lillo S, Cozzi L, Teriaca MA, Badalamenti M, Di Cristina L, Vernier V, Stefanini S, Dei D, Pergolizzi S, De Virgilio A, Mercante G, Spriano G, Mancosu P, Tomatis S, Scorsetti M. Predictive value of clinical and radiomic features for radiation therapy response in patients with lymph node-positive head and neck cancer. Head Neck 2023; 45:1184-1193. [PMID: 36815619 DOI: 10.1002/hed.27332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Prediction of survival and radiation therapy response is challenging in head and neck cancer with metastatic lymph nodes (LNs). Here we developed novel radiomics- and clinical-based predictive models. METHODS Volumes of interest of LNs were employed for radiomic features extraction. Radiomic and clinical features were investigated for their predictive value relatively to locoregional failure (LRF), progression-free survival (PFS), and overall survival (OS) and used to build multivariate models. RESULTS Hundred and six subjects were suitable for final analysis. Univariate analysis identified two radiomic features significantly predictive for LRF, and five radiomic features plus two clinical features significantly predictive for both PFS and OS. The area under the curve of receiver operating characteristic curve combining clinical and radiomic predictors for PFS and OS resulted 0.71 (95%CI: 0.60-0.83) and 0.77 (95%CI: 0.64-0.89). CONCLUSIONS Radiomic and clinical features resulted to be independent predictive factors, but external independent validation is mandatory to support these findings.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sara Lillo
- Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Luca Cozzi
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Maria Ausilia Teriaca
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Marco Badalamenti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luciana Di Cristina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Veronica Vernier
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sara Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Damiano Dei
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Pergolizzi
- Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giuseppe Mercante
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giuseppe Spriano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Pietro Mancosu
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Tomatis
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
17
|
Collinearity and Dimensionality Reduction in Radiomics: Effect of Preprocessing Parameters in Hypertrophic Cardiomyopathy Magnetic Resonance T1 and T2 Mapping. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010080. [PMID: 36671652 PMCID: PMC9854492 DOI: 10.3390/bioengineering10010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Radiomics and artificial intelligence have the potential to become a valuable tool in clinical applications. Frequently, radiomic analyses through machine learning methods present issues caused by high dimensionality and multicollinearity, and redundant radiomic features are usually removed based on correlation analysis. We assessed the effect of preprocessing-in terms of voxel size resampling, discretization, and filtering-on correlation-based dimensionality reduction in radiomic features from cardiac T1 and T2 maps of patients with hypertrophic cardiomyopathy. For different combinations of preprocessing parameters, we performed a dimensionality reduction of radiomic features based on either Pearson's or Spearman's correlation coefficient, followed by the computation of the stability index. With varying resampling voxel size and discretization bin width, for both T1 and T2 maps, Pearson's and Spearman's dimensionality reduction produced a slightly different percentage of remaining radiomic features, with a relatively high stability index. For different filters, the remaining features' stability was instead relatively low. Overall, the percentage of eliminated radiomic features through correlation-based dimensionality reduction was more dependent on resampling voxel size and discretization bin width for textural features than for shape or first-order features. Notably, correlation-based dimensionality reduction was less sensitive to preprocessing when considering radiomic features from T2 compared with T1 maps.
Collapse
|
18
|
Guo H, Tang HT, Hu WL, Wang JJ, Liu PZ, Yang JJ, Hou SL, Zuo YJ, Deng ZQ, Zheng XY, Yan HJ, Jiang KY, Huang H, Zhou HN, Tian D. The application of radiomics in esophageal cancer: Predicting the response after neoadjuvant therapy. Front Oncol 2023; 13:1082960. [PMID: 37091180 PMCID: PMC10117779 DOI: 10.3389/fonc.2023.1082960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Esophageal cancer (EC) is one of the fatal malignant neoplasms worldwide. Neoadjuvant therapy (NAT) combined with surgery has become the standard treatment for locally advanced EC. However, the treatment efficacy for patients with EC who received NAT varies from patient to patient. Currently, the evaluation of efficacy after NAT for EC lacks accurate and uniform criteria. Radiomics is a multi-parameter quantitative approach for developing medical imaging in the era of precision medicine and has provided a novel view of medical images. As a non-invasive image analysis method, radiomics is an inevitable trend in NAT efficacy prediction and prognosis classification of EC by analyzing the high-throughput imaging features of lesions extracted from medical images. In this literature review, we discuss the definition and workflow of radiomics, the advances in efficacy prediction after NAT, and the current application of radiomics for predicting efficacy after NAT.
Collapse
Affiliation(s)
- Hai Guo
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Thoracic Surgery, Sichuan Tianfu New Area People’s Hospital, Chengdu, China
| | - Hong-Tao Tang
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Wen-Long Hu
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jun-Jie Wang
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Pei-Zhi Liu
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jun-Jie Yang
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Sen-Lin Hou
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yu-Jie Zuo
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhi-Qiang Deng
- College of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiang-Yun Zheng
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Hao-Ji Yan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kai-Yuan Jiang
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Heng Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- *Correspondence: Dong Tian, ; Hai-Ning Zhou,
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Dong Tian, ; Hai-Ning Zhou,
| |
Collapse
|
19
|
Phantom Study on the Robustness of MR Radiomics Features: Comparing the Applicability of 3D Printed and Biological Phantoms. Diagnostics (Basel) 2022; 12:diagnostics12092196. [PMID: 36140598 PMCID: PMC9497898 DOI: 10.3390/diagnostics12092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The objectives of our study were to (a) evaluate the feasibility of using 3D printed phantoms in magnetic resonance imaging (MR) in assessing the robustness and repeatability of radiomic parameters and (b) to compare the results obtained from the 3D printed phantoms to metrics obtained in biological phantoms. To this end, three different 3D phantoms were printed: a Hilbert cube (5 × 5 × 5 cm3) and two cubic quick response (QR) code phantoms (a large phantom (large QR) (5 × 5 × 4 cm3) and a small phantom (small QR) (4 × 4 × 3 cm3)). All 3D printed and biological phantoms (kiwis, tomatoes, and onions) were scanned thrice on clinical 1.5 T and 3 T MR with 1 mm and 2 mm isotropic resolution. Subsequent analyses included analyses of several radiomics indices (RI), their repeatability and reliability were calculated using the coefficient of variation (CV), the relative percentage difference (RPD), and the interclass coefficient (ICC) parameters. Additionally, the readability of QR codes obtained from the MR images was examined with several mobile phones and algorithms. The best repeatability (CV ≤ 10%) is reported for the acquisition protocols with the highest spatial resolution. In general, the repeatability and reliability of RI were better in data obtained at 1.5 T (CV = 1.9) than at 3 T (CV = 2.11). Furthermore, we report good agreements between results obtained for the 3D phantoms and biological phantoms. Finally, analyses of the read-out rate of the QR code revealed better texture analyses for images with a spatial resolution of 1 mm than 2 mm. In conclusion, 3D printing techniques offer a unique solution to create textures for analyzing the reliability of radiomic data from MR scans.
Collapse
|
20
|
Predicting Mismatch-Repair Status in Rectal Cancer Using Multiparametric MRI-Based Radiomics Models: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6623574. [PMID: 36033579 PMCID: PMC9400426 DOI: 10.1155/2022/6623574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and validated machine learning radiomics models for predicting MMR status in patients directly on preoperative MRI scans. Pathologically confirmed RC cases administered surgical resection in two distinct hospitals were examined in this retrospective trial. Totally, 78 and 33 cases were included in the training and test sets, respectively. Then, 65 cases were enrolled as an external validation set. Radiomics features were obtained from preoperative rectal MR images comprising T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI), and combined multisequences. Four optimal features related to MMR status were selected by the least absolute shrinkage and selection operator (LASSO) method. Support vector machine (SVM) learning was adopted to establish four predictive models, i.e., ModelT2WI, ModelDWI, ModelCE-T1WI, and Modelcombination, whose diagnostic performances were determined and compared by receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Modelcombination had better diagnostic performance compared with the other models in all datasets (all p < 0.05). The usefulness of the proposed model was confirmed by DCA. Therefore, the present pilot study showed the radiomics model combining multiple sequences derived from preoperative MRI is effective in predicting MMR status in RC cases.
Collapse
|
21
|
Qin Y, Zhu LH, Zhao W, Wang JJ, Wang H. Review of Radiomics- and Dosiomics-based Predicting Models for Rectal Cancer. Front Oncol 2022; 12:913683. [PMID: 36016617 PMCID: PMC9395725 DOI: 10.3389/fonc.2022.913683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
By breaking the traditional medical image analysis framework, precision medicine-radiomics has attracted much attention in the past decade. The use of various mathematical algorithms offers radiomics the ability to extract vast amounts of detailed features from medical images for quantitative analysis and analyzes the confidential information related to the tumor in the image, which can establish valuable disease diagnosis and prognosis models to support personalized clinical decisions. This article summarizes the application of radiomics and dosiomics in radiation oncology. We focus on the application of radiomics in locally advanced rectal cancer and also summarize the latest research progress of dosiomics in radiation tumors to provide ideas for the treatment of future related diseases, especially 125I CT-guided radioactive seed implant brachytherapy.
Collapse
Affiliation(s)
- Yun Qin
- School of Physics, Beihang University, Beijing, China
| | - Li-Hua Zhu
- School of Physics, Beihang University, Beijing, China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China
| | - Jun-Jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Yuan Y, Lu H, Ma X, Chen F, Zhang S, Xia Y, Wang M, Shao C, Lu J, Shen F. Is rectal filling optimal for MRI-based radiomics in preoperative T staging of rectal cancer? Abdom Radiol (NY) 2022; 47:1741-1749. [PMID: 35267070 DOI: 10.1007/s00261-022-03477-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine whether rectal filling with ultrasound gel is clinically more beneficial in preoperative T staging of patients with rectal cancer (RC) using radiomics model based on magnetic resonance imaging (MRI). METHODS A total of 94 RC patients were assigned to cohort 1 (leave-one-out cross-validation [LOO-CV] set) and 230 RC patients were assigned to cohort 2 (test set). Patients were grouped according to different pathological T stages. The radiomics features were extracted through high-resolution T2-weighted imaging for all volume of interests in the two cohorts. Optimal features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. Model 1 (without rectal filling) and model 2 (with rectal filling) were constructed. LOO-CV was adopted for radiomics model building in cohort 1. Thereafter, the cohort 2 was used to test and verify the effectiveness of the two models. RESULTS Totally, 204 patients were enrolled, including 60 cases in cohort 1 and 144 cases in cohort 2. Finally, seven optimal features with LASSO were selected to build model 1 and nine optimal features were used for model 2. The ROC curves showed an AUC of 0.806 and 0.946 for model 1 and model 2 in cohort 1, respectively, and an AUC of 0.783 and 0.920 for model 1 and model 2 in cohort 2, respectively (p = 0.021). CONCLUSION The radiomics model with rectal filling showed an advantage for differentiating T1 + 2 from T3 and had less inaccurate categories in the test cohort, suggesting that this model may be useful for T-stage evaluation.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Haidi Lu
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Xiaolu Ma
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Fangying Chen
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Shaoting Zhang
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Yuwei Xia
- Huiying Medical Technology Co., Ltd, B2, Dongsheng Science and Technology Park, HaiDian District, Beijing, China
| | - Minjie Wang
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China
| | - Fu Shen
- Department of Radiology, Changhai Hospital, No.168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
23
|
Extermann M, Chetty IJ, Brown SL, Al-Jumayli M, Movsas B. Predictors of Toxicity Among Older Adults with Cancer. Semin Radiat Oncol 2022; 32:179-185. [DOI: 10.1016/j.semradonc.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
Artificial intelligence (AI) is a branch of computer science in which computer systems are designed to perform tasks that mimic human intelligence. Today, AI is reshaping day-to-day life and has numerous emerging medical applications poised to profoundly reshape the practice of veterinary medicine. In this Currents in One Health, we discuss the essential elements of AI for veterinary practitioners with the aim to help them make informed decisions in applying AI technologies into their practices. Veterinarians will play an integral role in ensuring the appropriate uses and good curation of data. The expertise of veterinary professionals will be vital to ensuring good data and, subsequently, AI that meets the needs of the profession. Readers interested in an in-depth description of AI and veterinary medicine are invited to explore a complementary manuscript of this Currents in One Health available in the May 2022 issue of the American Journal of Veterinary Research.
Collapse
Affiliation(s)
- Ryan B Appleby
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
25
|
Bone and Soft Tissue Tumors. Radiol Clin North Am 2022; 60:339-358. [DOI: 10.1016/j.rcl.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
27
|
Wang Y, Ma LY, Yin XP, Gao BL. Radiomics and Radiogenomics in Evaluation of Colorectal Cancer Liver Metastasis. Front Oncol 2022; 11:689509. [PMID: 35070948 PMCID: PMC8776634 DOI: 10.3389/fonc.2021.689509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one common digestive malignancy, and the most common approach of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early detection and treatment of liver metastasis is the key to improving the prognosis of the patients. Radiomics and radiogenomics use non-invasive methods to evaluate the biological properties of tumors by deeply mining the texture features of images and quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have been applied widely in the detection, treatment, and prognostic evaluation of colorectal cancer liver metastases. Based on the imaging features of the liver, this paper reviews the current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of disease progression, and prognosis of patients with colorectal cancer liver metastases.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Yin
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, China
| | | |
Collapse
|
28
|
Scarborough JA, Scott JG. Translation of Precision Medicine Research Into Biomarker-Informed Care in Radiation Oncology. Semin Radiat Oncol 2022; 32:42-53. [PMID: 34861995 PMCID: PMC8667861 DOI: 10.1016/j.semradonc.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reach of personalized medicine in radiation oncology has expanded greatly over the past few decades as technical precision has improved the delivery of radiation to each patient's unique anatomy. Yet, the consideration of biological heterogeneity between patients has largely not been translated to clinical care. There are innumerable promising advancements in the discovery and validation of biomarkers, which could be used to alter radiation therapy directly or indirectly. Directly, biomarker-informed care may alter treatment dose or identify patients who would benefit most from radiation therapy and who could safely avoid more aggressive care. Indirectly, a variety of biomarkers could assist with choosing the best radiosensitizing chemotherapies. The translation of these advancements into clinical practice will bring radiation oncology even further into the era of precision medicine, treating patients according to their unique anatomical and biological differences.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jacob G Scott
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Radiation Oncology Department, Taussig Cancer Institute, Cleveland Clinic Foundation, 10201 Carnegie Ave, Cleveland, OH.
| |
Collapse
|
29
|
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers (Basel) 2021; 13:cancers13225859. [PMID: 34831017 PMCID: PMC8616425 DOI: 10.3390/cancers13225859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The non-surgical treatment of cutaneous and/or subcutaneous melanoma lesions involves a multitude of local treatments, including radiotherapy. This is often used when other local methods fail, and there are currently no clear guidelines or evidence-based recommendations to support its use in this setting. This review, collecting the retrospective and prospective experiences on radiotherapy alone or in combination with other methods, aims to provide a scenario of the possible advantages and disadvantages related to its use in the treatment of skin/subcutaneous melanoma lesions. Abstract Malignant melanoma frequently develops cutaneous and/or subcutaneous metastases during the course of the disease. These may present as non-nodal locoregional metastases (microsatellite, satellite, or in-transit) included in stage III or as distant metastases in stage IV. Their presentation is heterogeneous and associated with significant morbidity resulting from both disease-related functional damage and treatment side effects. The standard treatment is surgical excision, whereas local therapies or systemic therapies have a role when surgery is not indicated. Radiotherapy can be used in the local management of ITM, subcutaneous relapses, or distant metastases to provide symptom relief and prolong regional disease control. To increase the local response without increasing toxicity, the addition of hyperthermia and intralesional therapies to radiotherapy appear to be very promising. Boron neutron capture therapy, based on nuclear neutron capture and boron isotope fission reaction, could be an alternative to standard treatments, but its use in clinical practice is still limited. The potential benefit of combining radiotherapy with targeted therapies and immunotherapy has yet to be explored in this lesion setting. This review explores the role of radiotherapy in the treatment of cutaneous and subcutaneous lesions, its impact on outcomes, and its association with other treatment modalities.
Collapse
|
30
|
Salvestrini V, Greco C, Guerini AE, Longo S, Nardone V, Boldrini L, Desideri I, De Felice F. The role of feature-based radiomics for predicting response and radiation injury after stereotactic radiation therapy for brain metastases: A critical review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). Transl Oncol 2021; 15:101275. [PMID: 34800918 PMCID: PMC8605350 DOI: 10.1016/j.tranon.2021.101275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction differential diagnosis of tumor recurrence and radiation injury after stereotactic radiotherapy (SRT) is challenging. The advances in imaging techniques and feature-based radiomics could aid to discriminate radionecrosis from progression. Methods we performed a systematic review of current literature, key references were obtained from a PubMed query. Data extraction was performed by 3 researchers and disagreements were resolved with a discussion among the authors. Results we identified 15 retrospective series, one prospective trial, one critical review and one editorial paper. Radiomics involves a wide range of imaging features referred to necrotic regions, rate of contrast-enhancing area or the measure of edema surrounding the metastases. Features were mainly defined through a multistep extraction/reduction/selection process and a final validation and comparison. Conclusions feature-based radiomics has an optimal potential to accurately predict response and radionecrosis after SRT of BM and facilitate differential diagnosis. Further validation studies are eagerly awaited to confirm radiomics reliability.
Collapse
Affiliation(s)
- Viola Salvestrini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Carlo Greco
- Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Andrea Emanuele Guerini
- Radiation Oncology Department, Università degli Studi di Brescia and ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia 25123, Italy.
| | - Silvia Longo
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy.
| | - Valerio Nardone
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples 80138, Italy.
| | - Luca Boldrini
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy.
| | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy.
| | - Francesca De Felice
- Radiation Oncology, Policlinico Umberto I "Sapienza" University of Rome, Viale Regina Elena 326, Rome 00161, Italy.
| |
Collapse
|
31
|
Bagher Ebadian H, Siddiqui F, Ghanem A, Zhu S, Lu M, Movsas B, Chetty IJ. Radiomics outperforms clinical factors in characterizing human papilloma virus (HPV) for patients with oropharyngeal squamous cell carcinomas. Biomed Phys Eng Express 2021; 8. [PMID: 34781281 DOI: 10.1088/2057-1976/ac39ab] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Purpose:To utilize radiomic features extracted from CT images to characterize Human Papilloma Virus (HPV) for patients with oropharyngeal cancer squamous cell carcinoma (OPSCC).Methods:One hundred twenty-eight OPSCC patients with known HPV-status (60-HPV+ and 68-HPV-, confirmed by immunohistochemistry-P16-protein testing) were retrospectively studied. Radiomic features (11 feature-categories) were extracted in 3D from contrast-enhanced (CE)-CT images of gross-tumor-volumes using 'in-house' software ('ROdiomiX') developed and validated following the image-biomarker-standardization-initiative (IBSI) guidelines. Six clinical factors were investigated: Age-at-Diagnosis, Gender, Total-Charlson, Alcohol-Use, Smoking-History, and T-Stage. A Least-Absolute-Shrinkage-and-Selection-Operation (Lasso) technique combined with a Generalized-Linear-Model (Lasso-GLM) were applied to perform regularization in the radiomic and clinical feature spaces to identify the ranking of optimal feature subsets with most representative information for prediction of HPV. Lasso-GLM models/classifiers based on clinical factors only, radiomics only, and combined clinical and radiomics (ensemble/integrated) were constructed using random-permutation-sampling. Tests of significance (One-way ANOVA), average Area-Under-Receiver-Operating-Characteristic (AUC), and Positive and Negative Predictive values (PPV and NPV) were computed to estimate the generalization-error and prediction performance of the classifiers.Results:Five clinical factors, including T-stage, smoking status, and age, and 14 radiomic features, including tumor morphology, and intensity contrast were found to be statistically significant discriminators between HPV positive and negative cohorts. Performances for prediction of HPV for the 3 classifiers were: Radiomics-Lasso-GLM: AUC/PPV/NPV=0.789/0.755/0.805; Clinical-Lasso-GLM: 0.676/0.747/0.672, and Integrated/Ensemble-Lasso-GLM: 0.895/0.874/0.844. Results imply that the radiomics-based classifier enabled better characterization and performance prediction of HPV relative to clinical factors, and that the combination of both radiomics and clinical factors yields even higher accuracy characterization and predictive performance.Conclusion:Albeit subject to confirmation in a larger cohort, this pilot study presents encouraging results in support of the role of radiomic features towards characterization of HPV in patients with OPSCC.
Collapse
Affiliation(s)
- Hassan Bagher Ebadian
- Department of Radiation Oncology , Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Detroit, Michigan, 48202, UNITED STATES
| | - Farzan Siddiqui
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Ahmed Ghanem
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Simeng Zhu
- Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Mei Lu
- Henry Ford Hospital, 2799 West Grand Blvd., Detroit, Michigan, 48202, UNITED STATES
| | - Benjamin Movsas
- Dept of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, 48202, UNITED STATES
| | - Indrin J Chetty
- Dept of Radiation Oncology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA, Detroit, Michigan, 48202, UNITED STATES
| |
Collapse
|
32
|
Chiloiro G, Cusumano D, de Franco P, Lenkowicz J, Boldrini L, Carano D, Barbaro B, Corvari B, Dinapoli N, Giraffa M, Meldolesi E, Manfredi R, Valentini V, Gambacorta MA. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. Radiol Med 2021; 127:11-20. [PMID: 34725772 DOI: 10.1007/s11547-021-01421-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Our study investigated the contribution that the application of radiomics analysis on post-treatment magnetic resonance imaging can add to the assessments performed by an experienced disease-specific multidisciplinary tumor board (MTB) for the prediction of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). MATERIALS AND METHODS This analysis included consecutively retrospective LARC patients who obtained a complete or near-complete response after nCRT and/or a pCR after surgery between January 2010 and September 2019. A three-step radiomics features selection was performed and three models were generated: a radiomics model (rRM), a multidisciplinary tumor board model (yMTB) and a combined model (CM). The predictive performance of models was quantified using the receiver operating characteristic (ROC) curve, evaluating the area under curve (AUC). RESULTS The analysis involved 144 LARC patients; a total of 232 radiomics features were extracted from the MR images acquired post-nCRT. The yMTB, rRM and CM predicted pCR with an AUC of 0.82, 0.73 and 0.84, respectively. ROC comparison was not significant (p = 0.6) between yMTB and CM. CONCLUSION Radiomics analysis showed good performance in identifying complete responders, which increased when combined with standard clinical evaluation; this increase was not statistically significant but did improve the prediction of clinical response.
Collapse
Affiliation(s)
- Giuditta Chiloiro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Paola de Franco
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy.
| | - Jacopo Lenkowicz
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Davide Carano
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Brunella Barbaro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Barbara Corvari
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Nicola Dinapoli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Martina Giraffa
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Elisa Meldolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
| | - Riccardo Manfredi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Maria Antonietta Gambacorta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Roma, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Roma, Italy
| |
Collapse
|
33
|
Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei LF, Boellaard R, Oprea-Lager DE, Obuchowski NA, Caroli A, Kunz WG, Oei EH, O'Connor JPB, Mayerhoefer ME, Franca M, Alberich-Bayarri A, Deroose CM, Loewe C, Manniesing R, Caramella C, Lopci E, Lassau N, Persson A, Achten R, Rosendahl K, Clement O, Kotter E, Golay X, Smits M, Dewey M, Sullivan DC, van der Lugt A, deSouza NM, European Society Of Radiology. Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 2021; 31:6001-6012. [PMID: 33492473 PMCID: PMC8270834 DOI: 10.1007/s00330-020-07598-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
Collapse
Affiliation(s)
- Laure Fournier
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
| | - Lena Costaridou
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- School of Medicine, University of Patras, University Campus, Rio, 26 500, Patras, Greece
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Nicolas Michoux
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Frederic E Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Ronald Boellaard
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
| | - Daniela E Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
| | - Nancy A Obuchowski
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Caroli
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Wolfgang G Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Edwin H Oei
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - James P B O'Connor
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marius E Mayerhoefer
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Manuela Franca
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Angel Alberich-Bayarri
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers in Medicine (QUIBIM), Valencia, Spain
| | - Christophe M Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christian Loewe
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cardiovascular and Interventional Radiology, Dept. for Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rashindra Manniesing
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Institut d'Oncologie Thoracique, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, MI, Italy
| | - Nathalie Lassau
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Imaging Department, Gustave Roussy Cancer Campus Grand, Paris, UMR 1281, INSERM, CNRS, CEA, Universite Paris-Saclay, Saint-Aubin, France
| | - Anders Persson
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, and Department of Health, Medicine and Caring Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Rik Achten
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Medical Imaging, Ghent University Hospital, Gent, Belgium
| | - Karen Rosendahl
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Olivier Clement
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Elmar Kotter
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Xavier Golay
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Queen Square Institute of Neurology, University College London, London, UK
| | - Marion Smits
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc Dewey
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel C Sullivan
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Dept. of Radiology, Duke University, 311 Research Dr, Durham, NC, 27710, USA
| | - Aad van der Lugt
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nandita M deSouza
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria.
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium.
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK.
| | | |
Collapse
|
34
|
Zhuang Z, Zhang Y, Wei M, Yang X, Wang Z. Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:709070. [PMID: 34327144 PMCID: PMC8315047 DOI: 10.3389/fonc.2021.709070] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background Magnetic resonance imaging (MRI)-based lymph node staging remains a significant challenge in the treatment of rectal cancer. Pretreatment evaluation of lymph node metastasis guides the formulation of treatment plans. This systematic review aimed to evaluate the diagnostic performance of MRI in lymph node staging using various morphological criteria. Methods A systematic search of the EMBASE, Medline, and Cochrane databases was performed. Original articles published between 2000 and January 2021 that used MRI for lymph node staging in rectal cancer were eligible. The included studies were assessed using the QUADAS-2 tool. A bivariate random-effects model was used to conduct a meta-analysis of diagnostic test accuracy. Results Thirty-seven studies were eligible for this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio of preoperative MRI for the lymph node stage were 0.73 (95% confidence interval [CI], 0.68–0.77), 0.74 (95% CI, 0.68–0.80), and 7.85 (95% CI, 5.78–10.66), respectively. Criteria for positive mesorectal lymph node metastasis included (A) a short-axis diameter of 5 mm, (B) morphological standard, including an irregular border and mixed-signal intensity within the lymph node, (C) a short-axis diameter of 5 mm with the morphological standard, (D) a short-axis diameter of 8 mm with the morphological standard, and (E) a short-axis diameter of 10 mm with the morphological standard. The pooled sensitivity/specificity for these criteria were 75%/64%, 81%/67%, 74%/79%, 72%/66%, and 62%/91%, respectively. There was no significant difference among the criteria in sensitivity/specificity. The area under the receiver operating characteristic (ROC) curve values of the fitted summary ROC indicated a diagnostic accuracy rate of 0.75–0.81. Conclusion MRI scans have minimal accuracy as a reference index for pretreatment staging of various lymph node staging criteria in rectal cancer. Multiple types of evidence should be used in clinical decision-making.
Collapse
Affiliation(s)
- Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Assessment of MRI-Based Radiomics in Preoperative T Staging of Rectal Cancer: Comparison between Minimum and Maximum Delineation Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5566885. [PMID: 34337027 PMCID: PMC8289571 DOI: 10.1155/2021/5566885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
The manual delineation of the lesion is mainly used as a conventional segmentation method, but it is subjective and has poor stability and repeatability. The purpose of this study is to validate the effect of a radiomics model based on MRI derived from two delineation methods in the preoperative T staging of patients with rectal cancer (RC). A total of 454 consecutive patients with pathologically confirmed RC who underwent preoperative MRI between January 2018 and December 2019 were retrospectively analyzed. RC patients were grouped according to whether the muscularis propria was penetrated. Two radiologists segmented lesions, respectively, by minimum delineation (Method 1) and maximum delineation (Method 2), after which radiomics features were extracted. Inter- and intraclass correlation coefficient (ICC) of all features was evaluated. After feature reduction, the support vector machine (SVM) was trained to build a prediction model. The diagnostic performances of models were determined by receiver operating characteristic (ROC) curves. Then, the areas under the curve (AUCs) were compared by the DeLong test. Decision curve analysis (DCA) was performed to evaluate clinical benefit. Finally, 317 patients were assessed, including 152 cases in the training set and 165 cases in the validation set. Moreover, 1288/1409 (91.4%) features of Method 1 and 1273/1409 (90.3%) features of Method 2 had good robustness (P < 0.05). The AUCs of Model 1 and Model 2 were 0.808 and 0.903 in the validation set, respectively (P = 0.035). DCA showed that the maximum delineation yielded more net benefit. MRI-based radiomics models derived from two segmentation methods demonstrated good performance in the preoperative T staging of RC. The minimum delineation had better stability in feature selection, while the maximum delineation method was more clinically beneficial.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Artificial intelligence has become popular in medical applications, specifically as a clinical support tool for computer-aided diagnosis. These tools are typically employed on medical data (i.e., image, molecular data, clinical variables, etc.) and used the statistical and machine-learning methods to measure the model performance. In this review, we summarized and discussed the most recent radiomic pipeline used for clinical analysis. RECENT FINDINGS Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs. Most artificial intelligence tools are based on imaging features, known as radiomic analysis that can be refined into predictive models in noninvasively acquired imaging data. This review explores the progress of artificial intelligence-based radiomic tools for clinical applications with a brief description of necessary technical steps. Explaining new radiomic approaches based on deep-learning techniques will explain how the new radiomic models (deep radiomic analysis) can benefit from deep convolutional neural networks and be applied on limited data sets. SUMMARY To consider the radiomic algorithms, further investigations are recommended to involve deep learning in radiomic models with additional validation steps on various cancer types.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
| | - Yousef Katib
- Department of Radiology, Taibah University, Al-Madinah, Saudi Arabia
| | - Lama Hassan
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
37
|
Corradini S, Alongi F, Andratschke N, Azria D, Bohoudi O, Boldrini L, Bruynzeel A, Hörner-Rieber J, Jürgenliemk-Schulz I, Lagerwaard F, McNair H, Raaymakers B, Schytte T, Tree A, Valentini V, Wilke L, Zips D, Belka C. ESTRO-ACROP recommendations on the clinical implementation of hybrid MR-linac systems in radiation oncology. Radiother Oncol 2021; 159:146-154. [PMID: 33775715 DOI: 10.1016/j.radonc.2021.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Online magnetic resonance-guided radiotherapy (oMRgRT) represents one of the most innovative applications of current image-guided radiation therapy (IGRT). The revolutionary concept of oMRgRT systems is the ability to acquire MR images for adaptive treatment planning and also online imaging during treatment delivery. The daily adaptive planning strategies allow to improve targeting accuracy while avoiding critical structures. This ESTRO-ACROP recommendation aims to provide an overview of available systems and guidance for best practice in the implementation phase of hybrid MR-linac systems. Unlike the implementation of other radiotherapy techniques, oMRgRT adds the MR environment to the daily practice of radiotherapy, which might be a new experience for many centers. New issues and challenges that need to be thoroughly explored before starting clinical treatments will be highlighted.
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy, University of Brescia, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology Montpellier-Nîmes, ICM, Montpellier Cancer Institute, University of Montpellier, INSERM U1194, France
| | - Omar Bohoudi
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Anna Bruynzeel
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Bas Raaymakers
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alison Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Vincenzo Valentini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| |
Collapse
|
38
|
Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:443-455. [PMID: 33974887 DOI: 10.1016/j.ijrobp.2021.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Our purpose was to construct a computed tomography (CT)-based delta-radiomics nomogram and corresponding risk classification system for individualized and accurate estimation of severe acute radiation pneumonitis (SARP) in patients with esophageal cancer (EC) after radiation therapy. METHODS AND MATERIALS Four hundred patients with EC were enrolled from 2 independent institutions and were divided into the training (n = 200) and validation (n = 200) cohorts. Eight hundred fifty radiomics features of lung were extracted from treatment planning images, including the positioning CT before radiation therapy (CT1) and the resetting CT after receiving 40 to 45 Gy (CT2). The longitudinal net changes in radiomics features from CT1 to CT2 were calculated and defined as delta-radiomics features. Least absolute shrinkage and selection operator algorithm was performed to features selection and delta-radiomics signature building. Integrating the signature with multidimensional clinicopathologic, dosimetric, and hematological predictors of SARP, a novel CT-based delta-radiomics nomogram was established according to multivariate analysis. The clinical application values of nomogram were both evaluated in the training and validation cohorts by concordance index, calibration curves, and decision curve analysis. Recursive partitioning analysis was used to generate a risk classification system. RESULTS The delta-radiomics signature consisting of 24 features was significantly associated with SARP status (P < .001). Incorporating it with other high-risk factors, Subjective Global Assessment score, pulmonary fibrosis score, mean lung dose, and systemic immune inflammation index, the developed delta-radiomics nomogram showed increased improvement in SARP discrimination accuracy with concordance index of 0.975 and 0.921 in the training and validation cohorts, respectively. Calibration curves and decision curve analysis confirmed the satisfactory clinical feasibility and utility of nomogram. The risk classification system displayed excellent performance on identifying SARP occurrence (P < .001). CONCLUSIONS The delta-radiomics nomogram and risk classification system as low-cost and noninvasive means exhibited superior predictive accuracy and provided individualized probability of SARP stratification for patients with EC.
Collapse
Affiliation(s)
- Lu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
39
|
Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol 2021; 94:20210032. [PMID: 33882246 DOI: 10.1259/bjr.20210032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiomics is the extraction of a significant number of quantitative imaging features with the aim of detecting information in correlation with useful clinical outcomes. Features are extracted, after delineation of an area of interest, from a single or a combined set of imaging modalities (including X-ray, US, CT, PET/CT and MRI). Given the high dimensionality, the analytical process requires the use of artificial intelligence algorithms. Firstly developed for diagnostic performance in radiology, it has now been translated to radiation oncology mainly to predict tumor response and patient outcome but other applications have been developed such as dose painting, prediction of side-effects, and quality assurance. In gynecological cancers, most studies have focused on outcomes of cervical cancers after chemoradiation. This review highlights the role of this new tool for the radiation oncologists with particular focus on female GU oncology.
Collapse
Affiliation(s)
- Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | | | | | | |
Collapse
|
40
|
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021; 11:603595. [PMID: 34026602 PMCID: PMC8131863 DOI: 10.3389/fonc.2021.603595] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung cancer represents the first cause of cancer-related death in the world. Radiomics studies arise rapidly in this late decade. The aim of this review is to identify important recent publications to be synthesized into a comprehensive review of the current status of radiomics in lung cancer at each step of the patients' care. METHODS A literature review was conducted using PubMed/Medline for search of relevant peer-reviewed publications from January 2012 to June 2020. RESULTS We identified several studies at each point of patient's care: detection and classification of lung nodules (n=16), determination of histology and genomic (n=10) and finally treatment outcomes predictions (=23). We reported the methodology of those studies and their results and discuss the limitations and the progress to be made for clinical routine applications. CONCLUSION Promising perspectives arise from machine learning applications and radiomics based models in lung cancers, yet further data are necessary for their implementation in daily care. Multicentric collaboration and attention to quality and reproductivity of radiomics studies should be further consider.
Collapse
Affiliation(s)
- Radouane El Ayachy
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Nicolas Giraud
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
- Radiation Oncology Department, Haut-Lévêque Hospital, CHU de Bordeaux, Pessac, France
| | - Paul Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Philippe Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anita Burgun
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Jean Emmanuel Bibault
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| |
Collapse
|
41
|
Xu P, Xue Y, Schoepf UJ, Varga-Szemes A, Griffith J, Yacoub B, Zhou F, Zhou C, Yang Y, Xing W, Zhang L. Radiomics: The Next Frontier of Cardiac Computed Tomography. Circ Cardiovasc Imaging 2021; 14:e011747. [PMID: 33722057 DOI: 10.1161/circimaging.120.011747] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiomics uses advanced image analysis to extract massive amounts of quantitative information from digital images, which is not otherwise distinguishable to the human eye. The mined data can be used to explore and establish new and undiscovered correlations between these imaging features and clinical end points. Cardiac computed tomography (CT) is a first-line imaging modality for evaluating coronary artery disease and has a primary role in the assessment of cardiac structures. Conventional interpretation of cardiac CT images relies mostly on subjective and qualitative analysis, as well as basic geometric quantification. To date, some proof-of-concept studies have demonstrated the feasibility and diagnostic performance of cardiac CT radiomics analysis. This review describes the current literature on radiomics in cardiac CT and discusses its advantages, challenges, and future directions. Although much evidences are needed in this field, cardiac CT radiomics has a lot to offer to patients and physicians with potential to define cardiac disease phenotypes on imaging with higher precision.
Collapse
Affiliation(s)
- Pengpeng Xu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Yi Xue
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Basel Yacoub
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (U.J.S., A.V.-S., J.G., B.Y.)
| | - Fan Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Changsheng Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China (P.X., F.Z., C.Z., L.Z.)
| | - Yuting Yang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University and Changzhou First People's Hospital, Jiangsu, China (W.X.)
| | - Longjiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China (Y.X., Y.Y., L.Z.)
| |
Collapse
|
42
|
On the performance of lung nodule detection, segmentation and classification. Comput Med Imaging Graph 2021; 89:101886. [PMID: 33706112 DOI: 10.1016/j.compmedimag.2021.101886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/10/2023]
Abstract
Computed tomography (CT) screening is an effective way for early detection of lung cancer in order to improve the survival rate of such a deadly disease. For more than two decades, image processing techniques such as nodule detection, segmentation, and classification have been extensively studied to assist physicians in identifying nodules from hundreds of CT slices to measure shapes and HU distributions of nodules automatically and to distinguish their malignancy. Thanks to new parallel computation, multi-layer convolution, nonlinear pooling operation, and the big data learning strategy, recent development of deep-learning algorithms has shown great progress in lung nodule screening and computer-assisted diagnosis (CADx) applications due to their high sensitivity and low false positive rates. This paper presents a survey of state-of-the-art deep-learning-based lung nodule screening and analysis techniques focusing on their performance and clinical applications, aiming to help better understand the current performance, the limitation, and the future trends of lung nodule analysis.
Collapse
|
43
|
Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol 2021; 10:570465. [PMID: 33575207 PMCID: PMC7870863 DOI: 10.3389/fonc.2020.570465] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ren
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ziwei Chen
- Department of Nephrology, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
MRI-Based Radiomics Input for Prediction of 2-Year Disease Recurrence in Anal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13020193. [PMID: 33430396 PMCID: PMC7827348 DOI: 10.3390/cancers13020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Exclusive chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas. Identifying novel prognostic factors could help to improve CRT outcomes, notably for locally advanced diseases where relapses still occur in around 35% of patients. In this study, we aim to assess the potential value of a pre-therapeutic MRI radiomic analysis added to standard clinical variables in order to build a logistic regression model predicting 2-year recurrence after CRT. In a population of 82 patients randomly divided in training (n = 54) and testing (n = 28) sets, after selection of optimal variables, a model using two radiomic (FirstOrder_Entropy and GLCM_JointEnergy) and two clinical (tumor size and CRT length) features was able to predict the 2-year recurrence with good performances in the testing set. Radiomic biomarkers provided valuable additional and independent information added to clinical data, and could help contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine. Abstract Purpose: Chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas (ASCC). Despite excellent results for T1-2 stages, relapses still occur in around 35% of locally advanced tumors. Recent strategies focus on treatment intensification, but could benefit from a better patient selection. Our goal was to assess the prognostic value of pre-therapeutic MRI radiomics on 2-year disease control (DC). Methods: We retrospectively selected patients with non-metastatic ASCC treated at the CHU Bordeaux and in the French FFCD0904 multicentric trial. Radiomic features were extracted from T2-weighted pre-therapeutic MRI delineated sequences. After random division between training and testing sets on a 2:1 ratio, univariate and multivariate analysis were performed on the training cohort to select optimal features. The correlation with 2-year DC was assessed using logistic regression models, with AUC and accuracy as performance gauges, and the prediction of disease-free survival using Cox regression and Kaplan-Meier analysis. Results: A total of 82 patients were randomized in the training (n = 54) and testing sets (n = 28). At 2 years, 24 patients (29%) presented relapse. In the training set, two clinical (tumor size and CRT length) and two radiomic features (FirstOrder_Entropy and GLCM_JointEnergy) were associated with disease control in univariate analysis and included in the model. The clinical model was outperformed by the mixed (clinical and radiomic) model in both the training (AUC 0.758 versus 0.825, accuracy of 75.9% versus 87%) and testing (AUC 0.714 versus 0.898, accuracy of 78.6% versus 85.7%) sets, which led to distinctive high and low risk of disease relapse groups (HR 8.60, p = 0.005). Conclusion: A mixed model with two clinical and two radiomic features was predictive of 2-year disease control after CRT and could contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine.
Collapse
|
45
|
Alongi F, Arcangeli S, Cuccia F, D'Angelillo RM, Di Muzio NG, Filippi AR, Jereczek-Fossa BA, Livi L, Pergolizzi S, Scorsetti M, Corvò R, Magrini SM. In reply to Fiorino et al.: The central role of the radiation oncologist in the multidisciplinary & multiprofessional model of modern radiation therapy. Radiother Oncol 2020; 155:e20-e21. [PMID: 33387582 DOI: 10.1016/j.radonc.2020.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Filippo Alongi
- Advanced Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy; University of Brescia, Italy.
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan "Bicocca", Milano, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Rolando Maria D'Angelillo
- Radiotherapy Unit, Department of Oncology and Hematology, Policlinico Tor Vergata University, Rome, Italy
| | - Nadia Gisella Di Muzio
- Radiation Oncology Centre, IRCCS Ospedale S. Raffaele and University Vita Salute, Milano, Italy
| | - Andrea Riccardo Filippi
- Division of Radiotherapy, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Renzo Corvò
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, and Department of Health Science, University of Genoa, Italy; Radiation Oncology Centre, Brescia University Radiation Oncology Department, O. Alberti Radium Institute, Spedali Civili Hospital, Brescia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, and Department of Health Science, University of Genoa, Italy; University of Brescia, Italy
| |
Collapse
|
46
|
Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1:71-85. [DOI: 10.35712/aig.v1.i4.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting increasing attention because of its more accurate image recognition ability and prediction performance than human-aid analyses. The application of AI models to gastrointestinal (GI) clinical oncology has been investigated for the past decade. AI has the capacity to automatically detect and diagnose GI tumors with similar diagnostic accuracy to expert clinicians. AI may also predict malignant potential, such as tumor histology, metastasis, patient survival, resistance to cancer treatments and the molecular biology of tumors, through image analyses of radiological or pathological imaging data using complex deep learning models beyond human cognition. The introduction of AI-assisted diagnostic systems into clinical settings is expected in the near future. However, limitations associated with the evaluation of GI tumors by AI models have yet to be resolved. Recent studies on AI-assisted diagnostic models of gastric and colorectal cancers in the endoscopic, pathological, and radiological fields were herein reviewed. The limitations and future perspectives for the application of AI systems in clinical settings have also been discussed. With the establishment of a multidisciplinary team containing AI experts in each medical institution and prospective studies, AI-assisted medical systems will become a promising tool for GI cancer.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Kyoto Okamoto Memorial Hospital, Kyoto 613-0034, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Saiseikai Shiga Hospital, Ritto 520-3046, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
47
|
Shu ZY, Cui SJ, Wu X, Xu Y, Huang P, Pang PP, Zhang M. Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Magn Reson Med 2020; 85:1611-1624. [PMID: 33017475 DOI: 10.1002/mrm.28522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE This study aimed to develop and validate a radiomics model based on whole-brain white matter and clinical features to predict the progression of Parkinson disease (PD). METHODS PD patient data from the Parkinson's Progress Markers Initiative (PPMI) database was evaluated. Seventy-two PD patients with disease progression, as measured by the Hoehn-Yahr Scale (HYS) (stage 1-5), and 72 PD patients with stable PD were matched by sex, age, and category of HYS and included in the current study. Each individual's T1 -weighted MRI scans at the baseline timepoint were segmented to isolate whole-brain white matter for radiomics feature extraction. The total dataset was divided into a training and test set according to subject serial number. The size of the training dataset was reduced using the maximum relevance minimum redundancy (mRMR) algorithm to construct a radiomics signature using machine learning. Finally, a joint model was constructed by incorporating the radiomics signature and clinical progression scores. The test data were then used to validate the prediction models, which were evaluated based on discrimination, calibration, and clinical utility. RESULTS Based on the overall data, the areas under curve (AUCs) of the joint model, signature and Unified Parkinson Disease Rating Scale III PD rating score were 0.836, 0.795, and 0.550, respectively. Furthermore, the sensitivities were 0.805, 0.875, and 0.292, respectively, and the specificities were 0.722, 0.697, and 0.861, respectively. In addition, the predictive accuracy of the model was 0.827, the sensitivity was 0.829 and the specificity was 0.702 for stage-1 PD. For stage-2 PD, the predictive accuracy of the model was 0.854, the sensitivity was 0.960, and the specificity was 0.600. CONCLUSION Our results provide evidence that conventional structural MRI can predict the progression of PD. This work also supports the use of a simple radiomics signature built from whole-brain white matter features as a useful tool for the assessment and monitoring of PD progression.
Collapse
Affiliation(s)
- Zhen-Yu Shu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Si-Jia Cui
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
48
|
Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer Radiother 2020; 24:755-761. [DOI: 10.1016/j.canrad.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
|