1
|
Liu Z, Xing S, Li Y, Sun J, Li H, Gu X, Zhang S. Surface modification of zinc oxide and its application in polypropylene with excellent fire performance and ultra-violet resistance. J Colloid Interface Sci 2024; 661:307-316. [PMID: 38301468 DOI: 10.1016/j.jcis.2024.01.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Despite the advantages of easy moulding and excellent mechanical properties, there are still some shortcomings with polypropylene (PP) such as high flammability and poor ultra-violet (UV) resistance. In this work, modified zinc oxide (mZnO) was prepared by reacting zinc oxide nanoparticles (ZnO) with polysiloxanes, and the effect of mZnO on the effectiveness of intumescent flame-retardant and on the UV aging resistance of polypropylene were investigated. By introducing 16 wt% (intumescent flame-retardant /mZnO) and 0.3 wt% maleic anhydride-grafted PP (MAH-g-PP), the limiting oxygen index increased to 32.7 %, and passed UL-94V-0 rating. In comparison to the controls, the peak heat release rate and the peak smoke release rate were 88.5 % and 80 % lower, respectively. In addition, PP samples showed improved mechanical properties, with a 5 % increase in tensile properties compared to the pure PP sample. After 100 h of UV irradiation, the surface of the samples was relatively flat and smooth, and the carbonyl index decreased from 81.1 of neat PP to 26.7. PP composites with 100 h aging treatment still had excellent flame retardancy and mechanical properties. The results showed that mZnO was effective in improving the flame retardancy, mechanical properties and light aging tolerance of PP. This study provides a novel approach to fabricate long-life flame-retardant PP composites with low additive content.
Collapse
Affiliation(s)
- Zhishuo Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Xing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchun Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
3
|
Moaref R, Shajari S, Sundararaj U. From Waste to Value Added Products: Manufacturing High Electromagnetic Interference Shielding Composite from End-of-Life Vehicle (ELV) Waste. Polymers (Basel) 2023; 16:120. [PMID: 38201785 PMCID: PMC10780672 DOI: 10.3390/polym16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The use of plastics in automobiles is increasing dramatically due to their advantages of low weight and cost-effectiveness. Various products can be manufactured by recycling end-of-life vehicle (ELV) plastic waste, enhancing sustainability within this sector. This study presents the development of an electromagnetic interference (EMI) shield that can be used for protecting electronic devices in vehicles by recycling waste bumpers of ethylene propylene diene monomer (EPDM) rubber from ELVs. EPDM waste was added to a unique combination of 40/60: PP/CaCO3 master batch and conductive nanofiller of carbon nanotubes using an internal melt mixing process. This nanocomposite was highly conductive, with an electrical conductivity of 5.2×10-1S·cm-1 for 5 vol% CNT in a 30 wt% EPDM/70 wt% PP/CaCO3 master batch and showed a high EMI shielding effectiveness of 30.4 dB. An ultra-low percolation threshold was achieved for the nanocomposite at 0.25 vol% CNT. Waste material in the composite improved the yield strain by about 46% and strain at break by 54% in comparison with the same composition without waste. Low cost and light-weight fabricated composite from ELV waste shows high EMI SE for application in electronic vehicles and opens a new path to convert waste to wealth.
Collapse
Affiliation(s)
- Roxana Moaref
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
| | - Shaghayegh Shajari
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60611, USA
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada; (R.M.); (S.S.)
| |
Collapse
|
4
|
Lee H, Kim S, Sin A, Kim G, Khan S, Nadagouda MN, Sahle-Demessie E, Han C. Pretreatment methods for monitoring microplastics in soil and freshwater sediment samples: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161718. [PMID: 36709896 PMCID: PMC10245186 DOI: 10.1016/j.scitotenv.2023.161718] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/09/2023]
Abstract
This paper reviews the currently used pretreatment methods for microplastics (MPs) analysis in soil and freshwater sediments, primarily sample processing, pretreatment, and characterization methods for MPs analysis. In addition, analytical tools (e.g., lab instruments), MPs characteristics, and MPs quantity, are included in this review. Prior to pretreatment, soil and sediment samples are typically processed using sieving and drying methods, and a sample quantity of <50 g was mostly used for the pretreatment. Density separation was commonly performed before organic matter removal. Sodium chloride (NaCl) and zinc chloride (ZnCl2) were most often used for density separation, and hydrogen peroxide (H2O2) oxidation was most frequently used to remove organic matter. Although advantages of each pretreatment method have been investigated, it is still challenging to determine a universal pretreatment method due to sample variability (e.g., sample characteristics). Furthermore, it is highly required to establish standard pretreatment methods that can be used for various environmental matrices, including air, water, and wastes as well as soil and sediment.
Collapse
Affiliation(s)
- Haesung Lee
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Sanghyeon Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Aebin Sin
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Gwangmin Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Sanaullah Khan
- Department of Chemistry, Women University Swabi, Swabi 23430, Pakistan; Department of Biochemistry, Women University Swabi, Swabi 23430, Pakistan.
| | - Mallikarjuna N Nadagouda
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
5
|
Sahle-Demessie E, Han C, Varughese E, Acrey B, Zepp R. Fragmentation and release of pristine and functionalized carbon nanotubes from epoxy-nanocomposites during accelerated weathering. ENVIRONMENTAL SCIENCE. NANO 2023; 10:1812-1827. [PMID: 37849916 PMCID: PMC10581393 DOI: 10.1039/d2en01014c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
There is an increasing volume of nano-enabled materials in the market. Once composites containing nano-additives are disposed of, weathering could deteriorate their structures, releasing nanoparticles and risking exposure of humans and aquatic organisms. Composite degradation due to environmental aging continues, including structural deterioration resulting in cracking, fragmentation, and release of microplastics and nano-additives to the environment. This research aims to study the degradation and release of initially embedded nanomaterials (NMs) from composites and their toxicity. The molecular interaction of carbon nanotube (CNT)/polymer composites is critical for modifying the polymer properties. This study investigated the interactions of functional multiwalled carbon nanotube (MWCNT) composites which affect their release during accelerated weathering processes. Different epoxy-MWCNT composites were prepared by filling a polymer with pure MWCNTs and MWCNTs functionalized with acid (- COOH ) and amine (- NH 2 ) groups. The physical and chemical changes of aged composites were characterized by gravimetric analysis, contact angle measurements, FTIR, SEM, and laser confocal microscopy. A loss of hydrophobicity was observed for composite surfaces long before surface cracks materialized. Released polymer fragments and nanoparticles were analyzed in wash water using TEM, FTIR and Raman spectroscopy. The environmental risks for long-term use of CNT-polymer composites and the influence of fillers on the extent of chemical photodegradation depended on the combination of polymer and fillers. If nanoparticles are released from the matrix, the high surface-to-volume ratio and reactivity of NMs make them highly dynamic in environmental systems. Exposure to these released NMs could negatively affect human health and the environment. This study provides fragmentation and CNT particle release data that could describe how molecular-level interactions between functionalized CNTs and epoxy polymers affect the aging and release of CNTs. A toxicity assessment based on a reactive oxygen species (ROS) formation assay and MTS assay for cell viability and activity of the released polymer and CNT fragments and leachate showed moderate levels of cytotoxicity of released materials as compared to pristine epoxy plates.
Collapse
Affiliation(s)
- Endalkachew Sahle-Demessie
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solution and Emergency Response, Cincinnati, OH, 45268, USA
| | - Changseok Han
- Department of Environmental Engineering, INHA University, Incheon 22212, Korea
- Program in Environmental & Polymer Engineering, Graduate School of INHA University, Incheon 22212, Korea
| | - Eunice Varughese
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solution and Emergency Response, Cincinnati, OH, 45268, USA
| | - Brad Acrey
- U.S. Environmental Protection Agency, Region 4, Science and Ecosystem Support Division Laboratory, Athens, GA 30605, USA
| | - Richard Zepp
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| |
Collapse
|
6
|
Hingant M, Mallarino S, Conforto E, Dubillot E, Barbier P, Bringer A, Thomas H. Artificial weathering of plastics used in oyster farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161638. [PMID: 36649774 DOI: 10.1016/j.scitotenv.2023.161638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With the omnipresence of plastic litter from oyster farming in marine coastal areas, the objective of this work was to better understand the weathering of plastics used in this field, focusing on oyster spat collectors. During their use, around fifteen years, collectors made of polypropylene (PP) undergo numerous degradations, alternatively submerged, emerged in seawater, and stored outdoor until the next cycle. They weaken, crack, break, end up fragmenting and disseminated in the environment as microplastics associated to persistent organic pollutants. In this work, a comparison of 55 months of in situ weathering with five months of artificial weathering in air or in artificial seawater in a homemade UV chamber was conducted to better understand the mechanisms involved. Chemical, thermal and surface characterizations of virgin and weathered samples were conducted using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Environmental Scanning Electron Microscopy (ESEM). After 55 months of in situ weathering, collectors were notably damaged with large fissures and loss of microplastics (MPs) associated with an increase of carbonyl index values and a decrease of melting temperatures and crystallinity rates. Considering only UV irradiation, five months of artificial weathering at 30 °C under continuous irradiation of 6.9 W/m2 under UV lamps (295-400 nm) reproduced approximately 4.4 months of natural sunlight. Artificial weathering confirmed that photooxidation by combined effects of UV rays and oxygen was the main weathering mechanism and was reduced in seawater. These results help to understand the mechanisms involved in the weathering of these collectors in the marine environment and provide valuable information for industrials and professionals. Our study suggests a better storage away from UV rays and a reduction of the duration of use compared to current practices.
Collapse
Affiliation(s)
- Marion Hingant
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Stéphanie Mallarino
- Laboratoire des Sciences de l'Ingénieur pour l'Environnemen (LaSIE), UMR 7356 CNRS - La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Egle Conforto
- Laboratoire des Sciences de l'Ingénieur pour l'Environnemen (LaSIE), UMR 7356 CNRS - La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Pierrick Barbier
- Centre pour l'Aquaculture, la Pêche et l'Environnement de Nouvelle-Aquitaine (CAPENA), Prise de Terdoux, 17480 Le Château d'Oléron, France
| | - Arno Bringer
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France; Qualyse, 5 Allée de l'Océan, 17000 La Rochelle, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| |
Collapse
|
7
|
Kye H, Kim J, Ju S, Lee J, Lim C, Yoon Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon 2023; 9:e14359. [PMID: 36950574 PMCID: PMC10025042 DOI: 10.1016/j.heliyon.2023.e14359] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Microplastics, the microscopic plastics, are fragments of any type of plastic that are being produced today as plastic waste originating from anthropogenic activities. Such microplastics are discharged into the environment, and they enter back into the human body through different means. The microplastics spread in the environment due to environmental factors and the inherent properties of microplastics, such as density, hydrophobicity, and recalcitrance, and then eventually enter the water environment. In this study, to better understand the behavior of microplastics in the water environment, an extensive literature review was conducted on the occurrence of microplastics in aquatic environments categorized by seawater, wastewater, and freshwater. We summarized the abundance and distribution of microplastics in the water environment and studied the environmental factors affecting them in detail. In addition, focusing on the sampling and pretreatment processes that can limit the analysis results of microplastics, we discussed in depth the sampling methods, density separation, and organic matter digestion methods for each water environment. Finally, the potential hazards posed by the behavior of aging microplastics, such as adsorption of pollutants or ingestion by aquatic organisms, due to exposure to the environment were also investigated.
Collapse
Affiliation(s)
- Homin Kye
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Jiyoon Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Seonghyeon Ju
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Junho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Chaehwi Lim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| |
Collapse
|
8
|
Chen X, Zhu M, Tang Y, Xie H, Fan X. Methine initiated polypropylene-based disposable face masks aging validated by micromechanical properties loss of atomic force microscopy. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129831. [PMID: 36084457 PMCID: PMC9398948 DOI: 10.1016/j.jhazmat.2022.129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The contagious coronavirus disease-2019 pandemic has led to an increasing number of disposable face masks (DFMs) abandoned in the environment, when they are exposed to the air condition, the broken of chemical bond induced aging is inevitably occurred which meantime would cause a drastic decrease of the mechanical flexibility. However, the understanding of between chemical bond change related to aging and its micromechanical loss is limited due to the lack of refined techniques. Herein, the atomic force microscopy (AFM) technique was firstly used to observe the aging process induced by methine of the polypropylene-based DFMs. By comparing the micromechanical properties loss, the influences of humidity and light density on the DFM aging were systematically studied in the early 72 h, and it revealed that the increasing scissions number of the easiest attacked methine (Ct-H) can gradually decrease the micromechanical properties of the polypropylene (PP)-based DFM. Furthermore, the results are also validated by the in- situ FTIR and XPS analysis. This work discloses that an aging process can be initially estimated with the micromechanical changes observed by AFM, which offers fundamental data to manage this important emerging plastic pollution during COVID-19 pandemic.
Collapse
Affiliation(s)
- Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huiyuan Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Wang Z, Xu Y, Liu R, Zhu X. The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator). Polymers (Basel) 2022; 14:1681. [PMID: 35566850 PMCID: PMC9103532 DOI: 10.3390/polym14091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
The unpredictable coronavirus pandemic (COVID-19) has led to a sudden and massive demand for face masks, leading to severe plastic pollution. Here, we propose a method for manufacturing biodegradable masks using high-precision 3D printing technology, called "TRespirator", mainly made of banana leaves and dental floss silk fibers. By adding plastic recycling waste appropriately, TRespirator can achieve similar protection and mechanical properties as N95 masks. In addition, microorganisms attracted during the degradation of plant fibers will accelerate the degradation of microplastics. This respirator provides a new idea for solving the global problem of plastic pollution of masks.
Collapse
Affiliation(s)
| | | | | | - Xi Zhu
- School of Science and Engineering (SSE), Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China; (Z.W.); (Y.X.); (R.L.)
| |
Collapse
|
10
|
The Accelerated Aging Impact on Mechanical and Thermal Properties of Polypropylene Composites with Sedimentary Rock Opoka-Hybrid Natural Filler. MATERIALS 2022; 15:ma15010338. [PMID: 35009483 PMCID: PMC8745994 DOI: 10.3390/ma15010338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022]
Abstract
This paper presents the impact of accelerated aging on selected mechanical and thermal properties of isotactic polypropylene (iPP) composites filled with sedimentary hybrid natural filler-Opoka rock. The filler was used in two forms: an industrial raw material originating as a subsieve fraction natural material, and a rock calcinated at 1000 °C for production of phosphorous sorbents. Fillers were incorporated with constant amount of 5 wt % of the resulting composite, and the material was subjected to accelerated weathering tests with different exposition times. The neat polypropylene and composites with calcium carbonate as a reference filler material were used for comparison. The aim of the research was to determine the possibility of using the Opoka rock as a new hybrid filler for polypropylene, which could be an alternative to the widely used calcium carbonate and silica. The thermal, mechanical, and structural properties were evaluated by means of differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR/ATR) prior to and after accelerated aging. As a result, it was found that the composites of polypropylene with Opoka were characterized by similar or higher functional properties and higher resistance to photodegradation compared to composites with conventional calcium carbonate. The results of measurements of mechanical properties, structural and surface changes, and the carbonyl index as a function of accelerated aging proved that Opoka was an effective ultraviolet (UV) stabilizer, significantly exceeding the reference calcium carbonate in this respect. The new hybrid filler of natural origin in the form of Opoka can therefore be used not only as a typical powder filler, but above all as a UV blocker/stabilizer, thus extending the life of polypropylene composites, especially for outdoor applications.
Collapse
|
11
|
Lin WH, Kuo J, Lo SL. Effect of light irradiation on heavy metal adsorption onto microplastics. CHEMOSPHERE 2021; 285:131457. [PMID: 34329123 DOI: 10.1016/j.chemosphere.2021.131457] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are frequently found in many environmental media. Polypropylene (PP) is one of the plastics commonly used, resulting in more and more PP fragments in natural waters. Contaminants, such as lead (Pb), could get adsorbed onto microplastics after the exposure to sunlight, and pose a larger threat to aquatic species. In this study, the oxidative indices of PP pellets after different exposure times to a Xenon lamp were evaluated by Fourier transform infrared (FTIR) and energy-dispersive X-ray spectrometry. The results show that the percentage of oxygen content increased from 2.80 to 20.95 wt% and changes of characteristic peaks of the FTIR pattern, implying that the exposure to the Xenon lamp could initiate oxidation. Due to the changes of functional groups after the exposure to the Xenon lamp for 28 days, the adsorption capacities of the PP pellets were up to 274.4 mg⋅kg-1, 1.7 to 2.5 times higher than that of the raw PP pellets depending on the solution pHs. The adsorption behavior can be described by a pseudo-second-order model with rate constants of adsorption of 0.00212-0.01404 kg⋅mg-1⋅h-1. The increase of adsorption capacity due to changes of the PP pellets after the Xenon lamp exposure increased the potential risk to the aquatic species.
Collapse
Affiliation(s)
- Wei-Hong Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Jeff Kuo
- Civil and Environmental Engineering Dept, California State University, Fullerton, 800 N. State College Blvd., CA, 92831, United States
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC.
| |
Collapse
|
12
|
|
13
|
Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica. Polymers (Basel) 2020; 12:polym12102298. [PMID: 33049946 PMCID: PMC7600192 DOI: 10.3390/polym12102298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
Polyamide coatings are thermoplastics with great advantages such as a good corrosion protection of the base metal and wear resistance. Their application as powder coatings is an environmentally friendly option that is currently attracting growing interest. However, during their life service, they can sometimes be exposed to conditions that they are unable to stand. In this work, a polyamide 11 (PA11) powder was reinforced with different percentages of silica nanoparticles (1–3 wt. %). Powder mixtures were prepared through extrusion followed by compression molding processes to manufacture coatings. For the coatings under study, the effect of 500 h xenon exposure was studied in order to know their ultraviolet (UV) resistance. Attenuated total reflection-Fourier transform infrared spectroscopy (FTIR-ATR) and differential scanning calorimetry (DSC) tests were performed to study changes in polymer structure and if they are affected by nanoparticles. The effect of nanoadditions and xenon exposure on hardness and stiffness were also evaluated. Furthermore, reciprocal wear tests were performed before and after irradiation, and the wear tracks were analyzed using optoelectronic microscopy and scanning electron microscopy (SEM). Finally, the aesthetic properties were measured. The results reveal improvements in mechanical and wear properties when 1% nanosilica is added to the PA11, which then become more relevant after xenon radiation exposure.
Collapse
|
14
|
Lankone RS, Ruggiero E, Goodwin DG, Vilsmeier K, Mueller P, Pulbere S, Challis K, Bi Y, Westerhoff P, Ranville J, Fairbrother DH, Sung LP, Wohlleben W. Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NANOIMPACT 2020. [PMID: 33029568 DOI: 10.1016/j.impact.2019.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.
Collapse
Affiliation(s)
- Ronald S Lankone
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Philipp Mueller
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Sorin Pulbere
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Katie Challis
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | - Yuqiang Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | | | - Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| |
Collapse
|
15
|
Zepp R, Ruggiero E, Acrey B, Davis MJB, Han C, Hsieh HS, Vilsmeier K, Wohlleben W, Sahle-Demessie E. Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1742-1758. [PMID: 33564464 PMCID: PMC7869489 DOI: 10.1039/c9en01360a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.
Collapse
Affiliation(s)
- Richard Zepp
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Brad Acrey
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Mary J B Davis
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Changseok Han
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
- EPA, ORD, Center for Environmental Solutions and Emergency Response (CESER), Cincinnati, OH, USA
- Department of Environmental Engineering, INHA University, Incheon, Korea
| | - Hsin-Se Hsieh
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
16
|
Lankone RS, Ruggiero E, Goodwin DG, Vilsmeier K, Mueller P, Pulbere S, Challis K, Bi Y, Westerhoff P, Ranville J, Fairbrother DH, Sung LP, Wohlleben W. Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NANOIMPACT 2020; 17:https://doi.org/10.1016/j.impact.2019.100199. [PMID: 33029568 PMCID: PMC7537477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/30/2024]
Abstract
Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.
Collapse
Affiliation(s)
- Ronald S. Lankone
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Philipp Mueller
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Sorin Pulbere
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Katie Challis
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | - Yuqiang Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | | | - Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| |
Collapse
|
17
|
Han C, Sahle-Demessie E, Varughese E, Shi H. Polypropylene-MWCNT composite degradation, release, detection, and toxicity of MWCNT during accelerated aging. ENVIRONMENTAL SCIENCE. NANO 2019; 6:1876-1894. [PMID: 32704375 PMCID: PMC7377243 DOI: 10.1039/c9en00153k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NM) are incorporated into polymers to enhance their properties. However, there are a limited number of studies on the aging of these nanocomposites and the resulting potential release of NM. To characterize NM at critical points in their life cycles, polypropylene (PP) and multiwall carbon nanotube filled PP (PP-MWCNT) plates with different thicknesses (from 0.25 mm to 2 mm) underwent accelerated weathering in a chamber that simulates solar irradiation and rainfall. The physicochemical changes of the plates depended on the radiation exposure, the plate thickness, and the presence of CNT fillers. Photodegradation increased with aging time, making the exposed surface more hydrophilic, decreasing the surface hardness and creating surface stress-cracks. Aged surface and cross-section showed crazing due to the polymer bond scission and the formation of carbonyls. The degradation was higher near the UV-exposed surface as the intensity of the radiation and oxygen diffusion decreased with increasing depth of the plates, resulting in an oxidation layer directly proportional to oxygen diffusion. Thus, sample thickness determines the kinetics of the degradation reaction and the transport of reactive species. Plastic fragments, which are less than 1 mm, and free CNTs were released from weathered MWCNT-PP. The concentrations of released NM that were estimated using ICP-MS, increased with prolonged aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability, were performed on the released CNTs. The toxicity of the released fragments and CNTs to A594 adenocarcinomic human alveolar basal epithelial cells was observed. The released polymer fragments and CNTs did not show significant toxicity under the experimental conditions in this study. This study will help manufacturers, users of consumer products with nanocomposites and policymakers in the development of testing guidelines, predictive models, and risk assessments and risk based-formulations of NM exposure.
Collapse
Affiliation(s)
- Changseok Han
- Department of Environmental Engineering, INHA University, Incheon 22212, Korea
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - E. Sahle-Demessie
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - Eunice Varughese
- Oak Ridge Institute for Science and Education, Oak Ridge TN, 37831, USA
| | - Honglan Shi
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH 45268, USA; Missouri University of Science and Technology, Department of Chemistry, Rolla, MO 65409, USA
| |
Collapse
|
18
|
Andrady AL, Pandey KK, Heikkilä AM. Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 2019; 18:804-825. [DOI: 10.1039/c8pp90065e] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solar UV radiation adversely affects the properties of organic materials used in construction, such as plastics and wood.
Collapse
Affiliation(s)
- A. L. Andrady
- Department of Chemical and Biomolecular Engineering
- North Carolina State Univ
- Raleigh
- USA
| | - K. K. Pandey
- Institute of Wood Science and Technology
- Bengaluru
- India
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research
- Helsinki
- Finland
| |
Collapse
|
19
|
Zuo P, Fitoussi J, Shirinbayan M, Bakir F, Tcharkhtchi A. Thermal aging effects on overall mechanical behavior of short glass fiber‐reinforced polyphenylene sulfide composites. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peiyuan Zuo
- Arts et Métiers ParisTechPIMM – UMR CNRS 8006, 151 Boulevard de l'Hôpital 75013 Paris France
| | - Joseph Fitoussi
- Arts et Métiers ParisTechPIMM – UMR CNRS 8006, 151 Boulevard de l'Hôpital 75013 Paris France
| | - Mohammadali Shirinbayan
- Arts et Métiers ParisTechPIMM – UMR CNRS 8006, 151 Boulevard de l'Hôpital 75013 Paris France
| | - Farid Bakir
- Arts et Métiers ParisTechDynfluid, 151 Boulevard de l'Hôpital 75013 Paris France
| | - Abbas Tcharkhtchi
- Arts et Métiers ParisTechPIMM – UMR CNRS 8006, 151 Boulevard de l'Hôpital 75013 Paris France
| |
Collapse
|
20
|
Effects of weathering aging on mechanical and thermal properties of injection molded glass fiber reinforced polypropylene composites. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|