1
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Wang W, Qin X, Wang X, Ma K, Wu Z, Si H, Zhang J. Sulfur vacancy-rich (α/β-CdS)/SiO 2 photocatalysts for enhanced visible-light-driven photocatalytic degradation of rhodamine B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123428. [PMID: 38286260 DOI: 10.1016/j.envpol.2024.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
The development of highly efficient photocatalysts for visible-light-driven degradation of organic pollution is of great interest for wastewater purification. In this work, a sulfur vacancy-rich (α/β-CdS)/SiO2 (α: hexagonal & β: cubic) photocatalyst with a high catalytic activity was novelly synthesized on a nano-SiO2 carrier by the reaction of Cd2+ with a CS2 storage material (CS2SM) as sulfur source and crystalline modifiers. The dispersion of α/β-CdS on the nano-SiO2 carrier significantly enhanced the visible-light-driven catalytic activity of (α/β-CdS)/SiO2 photocatalyst, and 93.37 % rhodamine B (RhB) conversion was determined over 50 mg (α/β-CdS)/SiO2 photocatalyst for 30 mL 400 mg/L RhB solution at light intensity of 150 mW/cm2 and 298.15 K. After five cycle tests, the (α/β-CdS)/SiO2 photocatalyst still owned excellent visible-light-driven catalytic degradation stability (>90 %). The characterizations of morphology, functional groups, and photo-electrochemistry of (α/β-CdS)/SiO2 photocatalyst demonstrated that nano-SiO2 as a carrier played meaningful role in dispersing α/β-CdS and reducing agglomeration, thus increasing the active site of photocatalytic degradation reaction, and the presence of α/β hetero-phase junctions and sulfur vacancies allows the rapid separation of photo-generated carriers and inhibits photo-generated electron-holes recombination. Meanwhile, the electron paramagnetic resonance (EPR) and free radical masking test have also proved that the main active species is ·O2- for the oxidation of RhB. Therefore, the work is providing a new reference to the visible-light-driven degradation of wastewater with high RhB concentration at room temperature.
Collapse
Affiliation(s)
- Wenxue Wang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xing Qin
- Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xiaoyu Wang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Kai Ma
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhaojun Wu
- Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Huayan Si
- Hebei Provincial Key Laboratory of Traffic Engineering Materials, School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
| | - Jianbin Zhang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China.
| |
Collapse
|
3
|
Hong H, Kim M, Lee W, Jeon M, Lee C, Kim H, Im HJ, Piao Y. Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a safe and effective photothermal cancer therapy. J Nanobiotechnology 2023; 21:365. [PMID: 37798714 PMCID: PMC10552393 DOI: 10.1186/s12951-023-02108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
Photothermal therapy (PTT) is a novel cancer treatment using a photoabsorber to cause hyperthermia to kill tumors by laser irradiation. Prussian blue nanoparticles (PB NPs) are considered as next-generation photothermal agents due to the facile synthesis and excellent absorption of near-infrared light. Although PB NPs demonstrate remarkable PTT capabilities, their clinical application is limited due to their systemic toxicity. Bacterial cellulose (BC) has been applied to various bio-applications based on its unique properties and biocompatibility. Herein, we design composites with PB NPs and BC as an injectable, highly biocompatible PTT agent (IBC-PB composites). Injectable bacterial cellulose (IBC) is produced through the trituration of BC, with PB NPs synthesized on the IBC surface to prepare IBC-PB composites. IBC-PB composites show in vitro and in vivo photothermal therapeutic effects similar to those of PB NPs but with significantly greater biocompatibility. Specifically, in vitro therapeutic index of IBC-PB composites is 26.5-fold higher than that of PB NPs. Furthermore, unlike PB NPs, IBC-PB composites exhibit no overt toxicity in mice as assessed by blood biochemical analysis and histological images. Hence, it is worth pursuing further research and development of IBC-PB composites as they hold promise as safe and efficacious PTT agents for clinical application.
Collapse
Affiliation(s)
- Hwichan Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaedong Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoonsub Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea.
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Bakhsh EM, Khan MI. Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
6
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
7
|
Mahle R, Kumbhakar P, Nayar D, Narayanan TN, Kumar Sadasivuni K, Tiwary CS, Banerjee R. Current advances in bio-fabricated quantum dots emphasising the study of mechanisms to diversify their catalytic and biomedical applications. Dalton Trans 2021; 50:14062-14080. [PMID: 34549221 DOI: 10.1039/d1dt01529j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots (QDs), owing to their single atom-like electronic structure due to quantum confinement, are often referred to as artificial atoms. This unique physical property results in the diverse functions exhibited by QDs. A wide array of applications have been achieved by the surface functionalization of QDs, resulting in exceptional optical, antimicrobial, catalytic, cytotoxic and enzyme inhibition properties. Ordinarily, traditionally prepared QDs are subjected to post synthesis functionalization via a variety of methods, such as ligand exchange or covalent and non-covalent conjugation. Nevertheless, solvent toxicity, combined with the high temperature and pressure conditions during the preparation of QDs and the low product yield due to multiple steps in the functionalization, limit their overall use. This has driven scientists to investigate the development of greener, environmental friendly and cost-effective methods that can circumvent the complexity and strenuousness associated with traditional processes of bio-functionalization. In this review, a detailed analysis of the methods to bio-prepare pre-functionalized QDs, with elucidated mechanisms, and their application in the areas of catalysis and biomedical applications has been conducted. The environmental and health and safety aspects of the bio-derived QDs have been briefly discussed to unveil the future of nano-commercialization.
Collapse
Affiliation(s)
- Reddhy Mahle
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Rintu Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
8
|
Huston M, DeBella M, DiBella M, Gupta A. Green Synthesis of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2130. [PMID: 34443960 PMCID: PMC8400177 DOI: 10.3390/nano11082130] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022]
Abstract
Nanotechnology is considered one of the paramount forefronts in science over the last decade. Its versatile implementations and fast-growing demand have paved the way for innovative measures for the synthesis of higher quality nanomaterials. In the early stages, traditional synthesis methods were utilized, and they relied on both carcinogenic chemicals and high energy input for production of nano-sized material. The pollution produced as a result of traditional synthesis methods induces a need for environmentally safer synthesis methods. As the downfalls of climate change become more abundant, the scientific community is persistently seeking solutions to combat the devastation caused by toxic production methods. Green methods for nanomaterial synthesis apply natural biological systems to nanomaterial production. The present review highlights the history of nanoparticle synthesis, starting with traditional methods and progressing towards green methods. Green synthesis is a method just as effective, if not more so, than traditional synthesis; it provides a sustainable approach to nanomaterial manufacturing by using naturally sourced starting materials and relying on low energy processes. The recent use of active molecules in natural biological systems such as bacteria, yeast, algae and fungi report successful results in the synthesis of various nanoparticle systems. Thus, the integration of green synthesis in scientific research and mass production provides a potential solution to the limitations of traditional synthesis methods.
Collapse
Affiliation(s)
- Matthew Huston
- Internal Medicine-Infectious Disease, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Melissa DeBella
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| | - Maria DiBella
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06117, USA; (M.D.); (M.D.)
| |
Collapse
|
9
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Santos MV, Maturi FE, Pecoraro É, Barud HS, Lima LR, Ferreira RAS, Carlos LD, Ribeiro SJL. Cellulose Based Photonic Materials Displaying Direction Modulated Photoluminescence. Front Bioeng Biotechnol 2021; 9:617328. [PMID: 33859978 PMCID: PMC8042215 DOI: 10.3389/fbioe.2021.617328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Photonic materials featuring simultaneous iridescence and light emission are an attractive alternative for designing novel optical devices. The luminescence study of a new optical material that integrates light emission and iridescence through liquid crystal self-assembly of cellulose nanocrystal-template silica approach is herein presented. These materials containing Rhodamine 6G were obtained as freestanding composite films with a chiral nematic organization. The scanning electron microscopy confirms that the cellulose nanocrystal film structure comprises multi-domain Bragg reflectors and the optical properties of these films can be tuned through changes in the relative content of silica/cellulose nanocrystals. Moreover, the incorporation of the light-emitting compound allows a complementary control of the optical properties. Overall, such findings demonstrated that the photonic structure plays the role of direction-dependent inner-filter, causing selective suppression of the light emitted with angle-dependent detection.
Collapse
Affiliation(s)
- Molíria V Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Fernando E Maturi
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Édison Pecoraro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hernane S Barud
- Biopolymers and Biomaterials Laboratory, University of Araraquara, Araraquara, Brazil
| | - Laís R Lima
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rute A S Ferreira
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Luís D Carlos
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
11
|
Lamm ME, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner DJ, Li T, Hu L, Ragauskas AJ, Tekinalp H, Kunc V, Ozcan S. Recent Advances in Functional Materials through Cellulose Nanofiber Templating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005538. [PMID: 33565173 DOI: 10.1002/adma.202005538] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced templating techniques have enabled delicate control of both nano- and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials.
Collapse
Affiliation(s)
- Meghan E Lamm
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Ji Qian
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Lu Wang
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Reagan Newman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Douglas J Gardner
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Arthur J Ragauskas
- Center for BioEnergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Estabrook Road, Knoxville, TN, 37916, USA
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Vlastimil Kunc
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| |
Collapse
|
12
|
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front Microbiol 2021; 12:636588. [PMID: 33717030 PMCID: PMC7947885 DOI: 10.3389/fmicb.2021.636588] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Hassan I. Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, Ganjam, Odisha, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
13
|
Jiang S, Hu Q, Xu M, Hu S, Shi XC, Ding R, Tremblay PL, Zhang T. Crystalline CdS/MoS2 shape-controlled by a bacterial cellulose scaffold for enhanced photocatalytic hydrogen evolution. Carbohydr Polym 2020; 250:116909. [DOI: 10.1016/j.carbpol.2020.116909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
|
14
|
Oprea M, Panaitescu DM. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4045. [PMID: 32899710 PMCID: PMC7570792 DOI: 10.3390/molecules25184045] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
15
|
Anticancer and Antibacterial Activity of Cadmium Sulfide Nanoparticles byAspergillus niger. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/4909054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadmium-tolerant (6 mM)Aspergillus niger(RCMB 002002) biomass was challenged with aqueous cadmium chloride (1 mM) followed by sodium sulfide (9 mM) at 37°C for 96 h under shaking conditions (200 rpm), resulting in the formation of highly stable polydispersed cadmium sulfide nanoparticles (CdSNPs). Scanning electron microscopy revealed the presence of spherical particles measuring approximately 5 nm. A light scattering detector (LSD) showed that 100% of the CSNPs measure from 2.7 to 7.5 nm. Structural analyses by both powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of cubic CdS nanoparticles (CdSNPs) capped with fungal proteins. These CdSNPs showed emission spectra with a broad fluorescence peak at 420 nm and UV absorption onset at 430 nm that shifted to 445 nm after three months of incubation. The CdSNPs showed antimicrobial activity againstE. coli,Pseudomonas vulgaris,Staphylococcus aureus, andBacillus subtilis, and no antimicrobial activity was detected againstCandida albicans. The biosynthesized CdSNPs have cytotoxic activity, with 50% inhibitory concentrations (IC50) of 190 μg mL-1against MCF7, 246 μg mL-1against PC3, and 149 μg mL-1against A549 cell lines.
Collapse
|
16
|
Mohanta YK, Hashem A, Abd_Allah EF, Jena SK, Mohanta TK. Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: An up and coming approach. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Abeer Hashem
- Botany and Microbiology DepartmentKing Saud University Riyadh 11451 Saudi Arabia
| | | | - Santosh Kumar Jena
- Department of BiotechnologyNorth Orissa University Baripada 757003 India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research CenterUniversity of Nizwa Nizwa 616 Oman
| |
Collapse
|
17
|
Wang H, Qian H, Luo Z, Zhang K, Shen X, Zhang Y, Zhang M, Liebner F. ZCIS/ZnS QDs fluorescent aerogels with tunable emission prepared from porous 3D nanofibrillar bacterial cellulose. Carbohydr Polym 2019; 224:115173. [PMID: 31472861 DOI: 10.1016/j.carbpol.2019.115173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
Abstract
Bacterial cellulose (BC) features a nanofibrillar network structure that can provide a good template for quantum dots (QDs), to overcome the fluorescence quenching-effect of QDs in polymer composites. Here, we fabricated novel fluorescent aerogels with tunable emission by covalently binding environmentally-friendly ZnS(CuInS2)/ZnS core-shell quantum dots along the nanofibrillar BC. A new ligand of 3-(mercaptopropyl)trimethoxysilane allows QDs to transfer from toluene to alcohol solvent and stably bind to the BC. After supercritical CO2 drying, the resulting BC-QDs aerogels maintain the porous nanofibrillar morphology of BC with ultra-light-weight, the QDs are well-distributed along the BC fiber surfaces without aggregation. The emission wavelength can be tuned in a wide range from 470 to 750 nm by simply adjusting the QDs core component or shell layers. This work provides a new approach for fabricating QDs-polymer hydrogels and aerogels with well distributed QDs via chemical binding that potential as smart sensor, catalysis, and 3D display applications.
Collapse
Affiliation(s)
- Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China.
| | - Hao Qian
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Zhixin Luo
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Kaiyuan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Xiaofei Shen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Yan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Mingtao Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Falk Liebner
- Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences, Tulln3430, Austria
| |
Collapse
|
18
|
Sur VP, Kominkova M, Buchtova Z, Dolezelikova K, Zitka O, Moulick A. CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1463. [PMID: 31623115 PMCID: PMC6835635 DOI: 10.3390/nano9101463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel "green" route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.
Collapse
Affiliation(s)
- Vishma Pratap Sur
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
| | - Zaneta Buchtova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
19
|
Zhang Q, Zhang L, Wu W, Xiao H. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr Polym 2019; 229:115454. [PMID: 31826470 DOI: 10.1016/j.carbpol.2019.115454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023]
Abstract
Nanocellulose obtained from natural renewable resources has attracted enormous interests owing to its unique morphological characteristics, excellent mechanical strength, biocompatibility and biodegradability for a variety of applications in many fields. The template structure, high specific surface area, and active surface groups make it feasible to conduct surface modification and accommodate various nano-structured materials via physical or chemical deposition. The review presented herein focuses on the methodologies of loading different nano-structured materials on nanocellulose, including metals, nanocarbons, oxides, mineral salt, quantum dots and nonmetallic elements; and further describes the applications of nanocellulose composites in the fields of catalysis, optical electronic devices, biomedicine, sensors, composite reinforcement, photoswitching, flame retardancy, and oil/water separation.
Collapse
Affiliation(s)
- Qing Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
20
|
Innovative natural polymer metal nanocomposites and their antimicrobial activity. Int J Biol Macromol 2019; 136:586-596. [DOI: 10.1016/j.ijbiomac.2019.06.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023]
|
21
|
Gomez-Hermoso-de-Mendoza J, Barud HS, Gutierrez J, Tercjak A. Flexible photochromic cellulose triacetate based bionanocomposites modified with sol-gel synthesized V2O5 nanoparticles. Carbohydr Polym 2019; 208:50-58. [DOI: 10.1016/j.carbpol.2018.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023]
|
22
|
Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol. Int J Biol Macromol 2019; 121:415-423. [DOI: 10.1016/j.ijbiomac.2018.09.199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
|
23
|
Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Green and facile approaches aiming at the manufacture of biocompatible paper-based optical sensors reporting the presence of photoluminescence (PL) modulating compounds is an emerging field of research. This study investigates the preparation of bacterial cellulose nanopaper containing covalently immobilized carbon dots for potential biosensing applications. Preliminary work of this feasibility study included TEMPO-mediated ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl-mediated) oxidation and nanofibrillation of bacterial cellulose (TOBC) on the one hand as well as synthesis and comparative analysis of different types of carbon dots (CDs) on the other hand. The two source materials of the targeted functional nanopaper were finally linked to each other by two different N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride/ N-hydroxysuccinimide (EDC/NHS) coupling approaches to clarify whether grafting of CDs prior to or after TOBC paper formation would be the method of choice. Synthesis of the carbon nanodots was accomplished by microwave-assisted co-hydrothermolysis of appropriate precursor compounds. After isolation and purification by dialysis particles in the single-digit nanometer-range were obtained and characterized with regard to their photoluminescence properties in terms of emission wavelength, pH stability, and quantum yield. All types of synthesized CDs reached their PL maxima (450–480 nm; light blue) in a narrow excitation wavelength range of 340–360 nm. Variation of molar (C/N) ratio of the CD precursors and substitution of the nitrogen donor EDEA by urea increased PL and quantum yield (QY), respectively. The highest relative QY of nearly 32% was obtained for CDs synthesized from citric acid and urea. PL of all CDs was virtually insensitive to pH changes in the range of 4–10. Tensile testing of hybrid nanopaper prepared after EDC/NHS-mediated grafting of GEA-type CDs onto TOBC (0.52 mmol·g−1 COOH) in dispersion state revealed that both stiffness and strength are not compromised by incorporation of carbon dots, while plastic deformation and elongation at break increased slightly compared to nanopaper formed prior to decoration with CDs. Water contact angle of the nanopaper is unaffected by introduction of carbon dots which is supposedly due to the presence of surface amino- and amide groups compensating for the loss of carboxyl groups by grafting.
Collapse
|
24
|
Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf B Biointerfaces 2018; 170:20-35. [DOI: 10.1016/j.colsurfb.2018.05.045] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/18/2023]
|
25
|
Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7045852] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.
Collapse
|
26
|
Islam MS, Chen L, Sisler J, Tam KC. Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. J Mater Chem B 2018; 6:864-883. [DOI: 10.1039/c7tb03016a] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystal (CNC), a class of sustainable nanomaterial derived from forest and agro-biomass can serve as nature's storage for carbon dioxide.
Collapse
Affiliation(s)
- M. S. Islam
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - L. Chen
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - J. Sisler
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - K. C. Tam
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
27
|
Akiyama M, Shinkai Y, Unoki T, Shim I, Ishii I, Kumagai Y. The Capture of Cadmium by Reactive Polysulfides Attenuates Cadmium-Induced Adaptive Responses and Hepatotoxicity. Chem Res Toxicol 2017; 30:2209-2217. [DOI: 10.1021/acs.chemrestox.7b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masahiro Akiyama
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ilseob Shim
- Department
of Environmental Health Research, National Institute of Environmental Research (NIER), Environmental Complex, Gyungseodong, Seogu, Incheon 22689, Korea
| | - Isao Ishii
- Laboratory
of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshito Kumagai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
28
|
de Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, Ribeiro SJL, Barud HS. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 2017; 179:126-134. [PMID: 29111035 DOI: 10.1016/j.carbpol.2017.09.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Bacterial cellulose/carboxymethylcelullose (BC/CMC) biocomposites with different DS-CMC (DS from 0.7 to 1.2) were developed in order to evaluate their impact as a drug delivery system. Biocomposites were loaded with methotrexate (MTX) as an alternative for the topical treatment of psoriasis. Scanning electron microscopy and atomic force microscopy showed that the CMC coated the cellulose nanofibers, leading to the decrease of the elastic modulus as the DS of CMC increased. BC/CMC0.9 exhibited the lower liquid uptake (up to 11 times lower), suggesting that the more linear structure of the intermediate substitute CMC grade (0.9) was able to interact more strongly with BC, resulting in a denser structure. All samples showed a typical burst release effect in the first 15min of test, however the BC/CMC0.9 biocomposite promoted a slight lowering of MTX release rates, suggesting that the DS of CMC can be considered the key factor to modulate the BC properties.
Collapse
Affiliation(s)
| | - Andréia Bagliotti Meneguin
- University of Araraquara - UNIARA, 14801-320, Araraquara, SP, Brazil; Interdisciplinary Laboratory of Advanced Materials, Centro de Ciências da Natureza- CNN, Federal University of Piaui - UFPI, 64049-550, Teresina, PI, Brazil
| | - Agnieszka Tercjak
- Group 'Materials + Technologies' (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Junkal Gutierrez
- Group 'Materials + Technologies' (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Beatriz Stringhetti Ferreira Cury
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, SãoPaulo State University - UNESP, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, SãoPaulo State University - UNESP, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University - UNESP, 14801-970, Araraquara, SP, Brazil
| | - Hernane S Barud
- University of Araraquara - UNIARA, 14801-320, Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University - UNESP, 14801-970, Araraquara, SP, Brazil.
| |
Collapse
|
29
|
Production and Status of Bacterial Cellulose in Biomedical Engineering. NANOMATERIALS 2017; 7:nano7090257. [PMID: 32962322 PMCID: PMC5618368 DOI: 10.3390/nano7090257] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023]
Abstract
Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
Collapse
|
30
|
Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals. NANOMATERIALS 2017; 7:nano7030051. [PMID: 28336885 PMCID: PMC5387371 DOI: 10.3390/nano7030051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022]
Abstract
This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HRMMW and HRSPW) were collected from two different bio-ethanol producing processes—hydrolyzing medium-milled wood (MMW) and hydrolyzing acid sulfite pretreated wood (SPW), respectively. The results showed that both residuals contained over 20 wt % glucan with a crystallinity of about 30%, confirming the existence of cellulose in a well-organized structure in two bio-residuals. The cellulose nanocrystals (CNCs) were successfully extracted by first bleaching the hydrolyzed residuals to remove lignin and then hydrolyzing them with sulfuric acid. The resulting CNCs displayed the flow birefringence under two crossed polarizers. Compared with CNCs from microfibrillated cellulose (CNCMCC), HRMMW and its resulted CNC present the smallest particle size and aspect ratio. CNCMCC had the larger particle size, aspect ratio, and higher z-potential value, CNCSPW presented a similar morphology to CNCMCC, and had the largest aspect ratio. The CNCMCC enhanced its high crystallinity to 85.5%. However, CNCMMW and CNCSPW had a better thermal stability and higher activation energy as well as onset temperature and maximum decomposition temperature. As a result, the CNCs from bio-ethanol residuals are valued and promising cellulose nanoparticle resources.
Collapse
|
31
|
Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 2017; 157:344-352. [DOI: 10.1016/j.carbpol.2016.10.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
32
|
Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances. Carbohydr Polym 2017; 157:447-467. [DOI: 10.1016/j.carbpol.2016.09.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/26/2022]
|
33
|
Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohydr Polym 2017; 156:380-389. [DOI: 10.1016/j.carbpol.2016.09.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/03/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023]
|
34
|
"Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH". Enzyme Microb Technol 2016; 95:217-224. [PMID: 27866618 DOI: 10.1016/j.enzmictec.2016.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022]
Abstract
The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd2+ concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.
Collapse
|
35
|
Wang Q, Tang A, Liu Y, Fang Z, Fu S. A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots. NANOMATERIALS 2016; 6:nano6090164. [PMID: 28335292 PMCID: PMC5224644 DOI: 10.3390/nano6090164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
The preparation of fluorescent nanocomposite materials with tunable emission wavelengths by combining cellulose nanofibrils (CNFs) with inorganic nanoparticles is important for promoting CNFs applications. A CNF/CdS nanocomposite was prepared via in situ compositing at room temperature on oxidized CNFs with CdS quantum dots. By controlling the -COOH/Cd2+ ratio on the CNF, the feeding time of Na₂S and the ultrasonic maturing time, the size of the CdS quantum dots on the CNF surface could be adjusted so that to obtain the CNF/CdS nanocomposite material with different fluorescent colors. The results indicated that the CdS particles quantized were evenly distributed on the CNF. The maximum average size of the CdS nanoparticles glowed red under the excitation of UV light was 5.34 nm, which could be obtained with a -COOH/Cd2+ ratio of 1.0, a Na₂S feeding time of 20 min, and an ultrasonic maturing time of 60 min. A series of CNF/CdS nanocomposite materials were obtained with CdS nanoparticle sizes varying from 3.44 nm to 5.34 nm, the emission wavelength of which varied from 546 nm to 655 nm, and their fluorescence color changed from green to yellow to red. This is the first time the fluorescence-tunable effect of the CNF/CdS nanocomposite has been realized.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Aimin Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuan Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
36
|
A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydr Polym 2016; 148:29-35. [DOI: 10.1016/j.carbpol.2016.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
37
|
Tercjak A, Gutierrez J, Barud HS, Ribeiro SJ. Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response. Carbohydr Polym 2016; 143:188-97. [DOI: 10.1016/j.carbpol.2016.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/25/2022]
|
38
|
Janpetch N, Saito N, Rujiravanit R. Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 2016; 148:335-44. [PMID: 27185147 DOI: 10.1016/j.carbpol.2016.04.066] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/19/2023]
Abstract
Zinc oxide (ZnO) was successfully synthesized by applying a solution plasma, a plasma discharge in a liquid phase, without the addition of a reducing agent and simultaneously deposited into a bacterial cellulose pellicle that functioned as a template. By the reasons of its nano-sized structure as well as favorable porous configuration, the BC pellicle has been proved to be a splendid upholding template for the coordination of ZnO. In addition, the ZnO-deposited BC composites demonstrated strong antibacterial activity without a photocatalytic reaction against both Staphylococcus aureus and Escherichia coli. Hence, the ZnO-deposited BC composites can be used as an antibacterial material in wound dressing and water disinfection applications.
Collapse
Affiliation(s)
- Nattakammala Janpetch
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nagahiro Saito
- Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ratana Rujiravanit
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; NU-PPC Plasma Chemical Technology Laboratory, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
39
|
Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 2015; 74:353-9. [DOI: 10.1016/j.bios.2015.06.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
|
40
|
Raj R, Dalei K, Chakraborty J, Das S. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 2015; 462:166-75. [PMID: 26454375 DOI: 10.1016/j.jcis.2015.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Microbial extracellular polymeric substances (EPS) are natural metal adsorbent and effective bio-reductant. In the biosynthesis of CdS NPs, functional groups of EPS act as capping and stabilizing agents. The NPs enriched EPS have enhanced adsorption capacity of cadmium ions, which may be due to increased adsorptive sites. EXPERIMENT The current study demonstrates, an efficient biosynthesis method to prepare CdS NPs using EPS extracted from a marine bacterium Pseudomonas aeruginosa JP-11 and its comparison with chemical method using D-glucose. The synthesized NPs were characterised by Ultraviolet-visible spectroscopy, ATR-FTIR spectrometry, X-ray diffraction, Field emission scanning electron microscopy and Transmission electron microscopy. Atomic absorption spectroscope (AAS) was used to study adsorption capacity of pristine EPS, functionalized EPS and NPs incorporated functionalized EPS. FINDINGS Spherical CdS NPs of 20-40nm diameter were synthesized with high crystallinity confirmed by XRD, FESEM and TEM analysis. The ATR-FTIR peaks within 2300-2600cm(-1) range showed a prominent shift in sulphydryl group (SH). The cadmium removal efficiency by CdS NPs incorporated functionalized EPS (88.66%) was higher than functionalized EPS (80.81%) and pristine EPS (61.88%) after 48h of incubation. The experimental data of adsorption thermodynamics and kinetics of Cd by NPs incorporated functionalized EPS was fitted in Langmuir isotherm model.
Collapse
Affiliation(s)
- Ritu Raj
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Kalpana Dalei
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
41
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
42
|
Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A. Nanopaper as an Optical Sensing Platform. ACS NANO 2015; 9:7296-305. [PMID: 26135050 DOI: 10.1021/acsnano.5b03097] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.
Collapse
Affiliation(s)
| | - Hamed Golmohammadi
- ‡Department of Chemistry, College of Science, Shahid Chamran University, Ahvaz 6135743337, Iran
| | - Tina Naghdi
- ‡Department of Chemistry, College of Science, Shahid Chamran University, Ahvaz 6135743337, Iran
| | - Hossein Yousefi
- §Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Uliana Kostiv
- ⊥Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Sq. 2, Prague 6 162 06, Czech Republic
| | - Daniel Horák
- ⊥Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Sq. 2, Prague 6 162 06, Czech Republic
| | - Nahid Pourreza
- ‡Department of Chemistry, College of Science, Shahid Chamran University, Ahvaz 6135743337, Iran
| | - Arben Merkoçi
- ∥ICREA - Institucio Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| |
Collapse
|
43
|
Tercjak A, Gutierrez J, Barud HS, Domeneguetti RR, Ribeiro SJL. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4142-4150. [PMID: 25633223 DOI: 10.1021/am508273x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer. Structural properties of EPE/BC biocomposites showed a strong effect of EPE block copolymer on the morphology of the BC mats. Thus, the increase of the EPE block copolymer content lead to the generation of spherulites of PEO block, clearly visualized using AFM and MO technique, changing crystallinity of the final EPE/BC biocomposites investigated by XRD. Generally, EPE/BC biocomposites maintain thermal stability and mechanical properties of the BC mat being 1 wt % EPE/BC biocomposite material with the best properties. Biosynthesis of EPE/BC composites open new strategy to the utilization of water-soluble block copolymers in the preparation of BC mat based biocomposites with tunable properties.
Collapse
Affiliation(s)
- Agnieszka Tercjak
- Group 'Materials + Technologies' (GMT), Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU) , Plaza Europa 1, 20018 Donostia-SanSebastián, Spain
| | | | | | | | | |
Collapse
|
44
|
Ge Y, Chen S, Yang J, Wang B, Wang H. Color-tunable luminescent CdTe quantum dot membranes based on bacterial cellulose (BC) and application in ion detection. RSC Adv 2015. [DOI: 10.1039/c5ra08361c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Color-tunable luminescent membranes of CdTe QDs on bacterial cellulose (BC) nanofibers were successfully fabricated by in situ synthesis in aqueous solution.
Collapse
Affiliation(s)
- Yan Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Key Laboratory of High Performance Fibers and Products (Ministry of Education)
- College of Materials Science and Engineering
- Donghua University
- Shanghai
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Key Laboratory of High Performance Fibers and Products (Ministry of Education)
- College of Materials Science and Engineering
- Donghua University
- Shanghai
| | - Jingxuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Key Laboratory of High Performance Fibers and Products (Ministry of Education)
- College of Materials Science and Engineering
- Donghua University
- Shanghai
| | - Biao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Key Laboratory of High Performance Fibers and Products (Ministry of Education)
- College of Materials Science and Engineering
- Donghua University
- Shanghai
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Key Laboratory of High Performance Fibers and Products (Ministry of Education)
- College of Materials Science and Engineering
- Donghua University
- Shanghai
| |
Collapse
|
45
|
UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles. Carbohydr Polym 2014; 114:246-252. [DOI: 10.1016/j.carbpol.2014.07.076] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 11/23/2022]
|
46
|
Biosynthesis of Quantum Dots (CdTe) and its Effect on Eisenia fetida and Escherichia coli. Chromatographia 2014. [DOI: 10.1007/s10337-014-2775-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Mussa Farkhani S, Valizadeh A. Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots. IET Nanobiotechnol 2014; 8:59-76. [DOI: 10.1049/iet-nbt.2012.0028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Samad Mussa Farkhani
- Department of Medical NanotechnologyFaculty of Advanced Medical ScienceTabriz University of Medical SciencesTabriz 51664Iran
| | - Alireza Valizadeh
- Department of Medical NanotechnologyFaculty of Advanced Medical ScienceTabriz University of Medical SciencesTabriz 51664Iran
| |
Collapse
|
48
|
Zheng W, Chen S, Zhao S, Zheng Y, Wang H. Zinc sulfide nanoparticles template by bacterial cellulose and their optical properties. J Appl Polym Sci 2014. [DOI: 10.1002/app.40874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weili Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science & Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University; Shanghai 201620 People's Republic of China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science & Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University; Shanghai 201620 People's Republic of China
| | - Siyu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science & Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University; Shanghai 201620 People's Republic of China
| | - Yi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science & Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University; Shanghai 201620 People's Republic of China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science & Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University; Shanghai 201620 People's Republic of China
| |
Collapse
|
49
|
Xu M, Wei G, Liu N, Zhou L, Fu C, Chubik M, Gromov A, Han W. Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater. NANOSCALE 2014; 6:722-725. [PMID: 24287628 DOI: 10.1039/c3nr03467d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Reclaimable adsorbents have a critical application in the adsorption of radioactive materials. In this study, the novel bio-nanocomposites comprising fungi and titanate nanotubes are successfully synthesized by a simple and low-cost method. Morphological characterizations and composite mechanism analysis confirm that the composites are sufficiently stable to avoid dust pollution resulting from the titanate nanomaterials. Adsorption experiments demonstrate that the bio-nanocomposites are efficient adsorbents with a saturated sorption capacity as high as 120 mg g(-1) (1.75 meq. g(-1)) for Ba(2+) ions. The results suggest that the bio-nanocomposites can be used as promising radioactive adsorbents for removing radioactive ions from water caused by nuclear leakage.
Collapse
Affiliation(s)
- Mingze Xu
- College of Physics, Jilin University, Changchun 130012, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zheng WL, Hu WL, Chen SY, Zheng Y, Zhou BH, Wang HP. High photocatalytic properties of zinc oxide nanoparticles with amidoximated bacterial cellulose nanofibers as templates. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1386-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|