1
|
Seah R, Siripongvutikorn S, Wichienchot S, Usawakesmanee W. Functionality and Health-Promoting Properties of Polysaccharide and Plant-Derived Substances from Mesona chinensis. Foods 2024; 13:1134. [PMID: 38611438 PMCID: PMC11011351 DOI: 10.3390/foods13071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Mesona chinensis, in Thai called Chao Kuay and in Chinese Hsian-tsao, belongs to the Lamiaceae family. This herbal plant grows widely in Southern China, Taiwan (China), Malaysia, the Philippines, Indonesia, Vietnam, and Thailand. The Mesona plant is used to make functional products such as drinks and soft textured sweet treats, and also traditional medicine, to treat heat stroke, high blood pressure, heart attack, high blood sugar, hepatic diseases, colon diseases, inflammatory conditions, and to alleviate myalgia. The proximate composition of M. chinensis is a mixture of protein, fat, fiber, ash, and minerals. The main biological compounds in M. chinensis extracts are polysaccharides, terpenoids, flavonoids, and polyphenols, with wide-ranging pharmacological properties including antioxidant, antidiabetic, antilipidemic, carcinoma-inhibitory, renal-protective, antihypertensive, DNA damage-protective, and anti-inflammatory effects. This review investigated the proximate composition, polysaccharide type, and pharmacological properties of M. chinensis extracts. Phytochemical properties enhance the actions of the gut microbiota and improve health benefits. This review assessed the functional and medicinal activities of M. chinensis extracts. Future studies should further elucidate the in vitro/in vivo mechanisms of this plant extract and its impact on gut health.
Collapse
Affiliation(s)
- Romson Seah
- Department of Chemistry, Faculty of Education, Fatoni University, Yarang, Pattani 94160, Thailand;
| | - Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.W.); (W.U.)
| | - Santad Wichienchot
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.W.); (W.U.)
| | - Worapong Usawakesmanee
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.W.); (W.U.)
| |
Collapse
|
2
|
Zhou X, Liu L, Zhao J, Zhang J, Cai Z, Huang X. High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. THE NEW PHYTOLOGIST 2023; 237:1333-1346. [PMID: 36305241 DOI: 10.1111/nph.18582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The host-associated microbiome highly determines plant health. Available organic resources, such as food for microbes, are important in shaping microbial community structure and multifunctionality. However, how using organic resources precisely manipulates the soil microbiome and makes it supportive of plant health remains unclear. Here, we experimentally tested the influence of carbon resource diversity on the microbial trophic network and pathogen invasion success in a microcosm study. We further explored how resource diversity affects microbial evenness, community functions, and plant disease outcomes in systems involving tomato plants and the in vivo soil microbiome. Increasing available resource diversity altered trophic network architecture, increased microbial evenness, and thus increased the certainty of successful pathogen control. By contrast, the invasion resistance effects of low resource diversity were less effective and highly varied. Accordingly, increases in the evenness and connection of dominant species induced by high resource diversity significantly contributed to plant disease suppression. Furthermore, high carbohydrate diversity upregulated plant immune system regulation-related microbial functions. Our results deepen the biodiversity-invasion resistance theory and provide practical guidance for the control of plant pathogens and diseases by using organic resource-mediated approaches, such as crop rotation, intercropping, and organic amendments.
Collapse
Affiliation(s)
- Xing Zhou
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| |
Collapse
|
3
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
4
|
Sun Y, Zhang H, Li Q, Vardhanabhuti B, Wan C. High lignin-containing nanocelluloses prepared via TEMPO-mediated oxidation and polyethylenimine functionalization for antioxidant and antibacterial applications. RSC Adv 2022; 12:30030-30040. [PMID: 36329928 PMCID: PMC9585889 DOI: 10.1039/d2ra04152a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Lignin-containing nanocelluloses (LNCs) have attracted tremendous research interest in recent years due to less complex extraction processes and more abundant functionality compared to lignin-free nanocelluloses. On the other hand, traditional defibrillation primarily based on bleached pulp would not be readily applied to lignin-containing pulps due to their complex compositions. This study was focused on LNC extraction from lignin-containing pulp via 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Three types of switchgrass pulp with varying composition were prepared using different acid-catalyzed pretreatments. The pulps contained as high as 45.76% lignin but minor/no hemicellulose, corresponding to up to 23.72% lignin removal and 63.75-100% hemicellulose removal. TEMPO-mediated oxidation yielded 52.9-81.9% LNCs from respective pulps. The as-produced LNCs possessed aspect ratios as high as 416.5, and carboxyl contents of 0.442-0.743 mmol g-1 along with ζ-potential of -50.4 to -38.3 mV. The TEMPO-oxidized LNCs were further modified by polyethylenimine (PEI), which endowed the LNCs with positive charges plus antioxidant and antibacterial activities. Specifically, the PEI-modified LNCs almost fully scavenged 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radicals at 50 mg L-1 and suppressed the growth of Gram-positive Staphylococcus aureus at 250 μg mL-1.
Collapse
Affiliation(s)
- Yisheng Sun
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Hanwen Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Qianwei Li
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Bongkosh Vardhanabhuti
- Division of Food, Nutrition & Exercise Sciences, University of Missouri Columbia Missouri 65211 USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| |
Collapse
|
5
|
Anionic exopolysaccharide from Cryptococcus laurentii 70766 as an alternative for alginate for biomedical hydrogels. Int J Biol Macromol 2022; 212:370-380. [PMID: 35613678 DOI: 10.1016/j.ijbiomac.2022.05.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
Alginates are widely used polysaccharides for biomaterials engineering, which functional properties depend on guluronic and mannuronic acid as the building blocks. In this study, enzymatically crosslinked hydrogels based on sodium alginate (Na-Alg) and the exopolysaccharide (EPS) derived from Cryptococcus laurentii 70766 with glucuronic acid residues were synthesized and characterized as a new potential source of polysaccharide for biomaterials engineering. The EPS was extracted (1.05 ± 0.57 g/L) through ethanol precipitation. Then the EPS and Na-Alg were functionalized with tyramine hydrochloride to produce enzymatically crosslinked hydrogels in the presence of horseradish peroxidase (HRP) and H2O2. Major characteristics of the hydrogels such as gelling time, swelling ratio, rheology, cell viability, and biodegradability were studied. The swelling ratio and degradation profile of both hydrogels showed negative values, indicating an increased crosslinking degree and a lower water uptake percentage. The EPS hydrogel showed similar gelation kinetics compared to the Alg hydrogel. The EPS and its hydrogel were found cytocompatible. The results indicate the potential of EPS from C. laurentii 70766 for biomedical engineering due to its biocompatibility and degradability. Further studies are needed to confirm this EPS as an alternative for Alg in tissue engineering applications, particularly in the development of wound dressing products.
Collapse
|
6
|
Lisov AV, Kiselev SS, Trubitsina LI, Belova OV, Andreeva-Kovalevskaya ZI, Trubitsin IV, Shushkova TV, Leontievsky AA. Multifunctional Enzyme with Endoglucanase and Alginase/Glucuronan Lyase Activities from Bacterium Cellulophaga lytica. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:617-627. [PMID: 36154882 DOI: 10.1134/s0006297922070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of β-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas β-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-β-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.
Collapse
Affiliation(s)
- Alexander V Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei S Kiselev
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liubov I Trubitsina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Belova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan V Trubitsin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Shushkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
7
|
Dibazar ZE, Mohammadpour M, Samadian H, Zare S, Azizi M, Hamidi M, Elboutachfaiti R, Petit E, Delattre C. Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering. MATERIALS 2022; 15:ma15072494. [PMID: 35407826 PMCID: PMC8999617 DOI: 10.3390/ma15072494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
3D nanocomposite scaffolds have attracted significant attention in bone tissue engineering applications. In the current study, we fabricated a 3D nanocomposite scaffold based on a bacterial polyglucuronic acid (PGU) and sodium alginate (Alg) composite with carbon nanofibers (CNFs) as the bone tissue engineering scaffold. The CNFs were obtained from electrospun polyacrylonitrile nanofibers through heat treatment. The fabricated CNFs were incorporated into a PGU/Alg polymeric solution, which was physically cross-linked using CaCl2 solution. The fabricated nanocomposites were characterized to evaluate the internal structure, porosity, swelling kinetics, hemocompatibility, and cytocompatibility. The characterizations indicated that the nanocomposites have a porous structure with interconnected pores architecture, proper water absorption, and retention characteristics. The in vitro studies revealed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability assessment showed that the nanocomposites were biocompatible and supported bone cell growth. These results indicated that the fabricated bacterial PGU/Alg/CNFs hydrogel nanocomposite exhibited appropriate properties and can be considered a new biomaterial for bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Asad University of Medical Sciences, Tabriz 5166616471, Iran;
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (H.S.); (R.E.); (C.D.)
| | - Soheila Zare
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan 7797845157, Iran;
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Masoud Hamidi
- BioMatter-Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4188794755, Iran
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, Université de Picardie Jules Verne, IUT d’Amiens, 80025 Amiens, France;
- Correspondence: (H.S.); (R.E.); (C.D.)
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, Université de Picardie Jules Verne, IUT d’Amiens, 80025 Amiens, France;
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
- Correspondence: (H.S.); (R.E.); (C.D.)
| |
Collapse
|
8
|
Sakai S, Kotani T, Harada R, Goto R, Morita T, Bouissil S, Dubessay P, Pierre G, Michaud P, El Boutachfaiti R, Nakahata M, Kojima M, Petit E, Delattre C. Development of phenol-grafted polyglucuronic acid and its application to extrusion-based bioprinting inks. Carbohydr Polym 2022; 277:118820. [PMID: 34893237 DOI: 10.1016/j.carbpol.2021.118820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023]
Abstract
In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.
Collapse
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Takashi Kotani
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Ryohei Harada
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Ryota Goto
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Takahiro Morita
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Soukaina Bouissil
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - Redouan El Boutachfaiti
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France.
| | - Masaki Nakahata
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Masaru Kojima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005, Paris, France.
| |
Collapse
|
9
|
Pilgaard B, Vuillemin M, Munk L, Holck J, Meier S, Wilkens C, Meyer AS. Discovery of a Novel Glucuronan Lyase System in Trichoderma parareesei. Appl Environ Microbiol 2022; 88:e0181921. [PMID: 34705548 PMCID: PMC8752158 DOI: 10.1128/aem.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022] Open
Abstract
Glucuronan lyases (EC 4.2.2.14) catalyze depolymerization of linear β-(1,4)-polyglucuronic acid (glucuronan). Only a few glucuronan lyases have been characterized until now, most of them originating from bacteria. Here we report the discovery, recombinant production, and functional characterization of the full complement of six glucuronan specific polysaccharide lyases in the necrotic mycoparasite Trichoderma parareesei. The enzymes belong to four different polysaccharide lyase families and have different reaction optima and glucuronan degradation profiles. Four of them showed endo-lytic action and two, TpPL8A and TpPL38A, displayed exo-lytic action. Nuclear magnetic resonance revealed that the monomeric end product from TpPL8A and TpPL38A underwent spontaneous rearrangements to tautomeric forms. Proteomic analysis of the secretomes from T. parareesei growing on pure glucuronan and lyophilized A. bisporus fruiting bodies, respectively, showed secretion of five of the glucuronan lyases and high-performance anion-exchange chromatography with pulsed amperometric detection analysis confirmed the presence of glucuronic acid in the A. bisporus fruiting bodies. By systematic genome annotation of more than 100 fungal genomes and subsequent phylogenetic analysis of the putative glucuronan lyases, we show that glucuronan lyases occur in several ecological and taxonomic groups in the fungal kingdom. Our findings suggest that a diverse repertoire of glucuronan lyases is a common trait among Hypocreales species with mycoparasitic and entomopathogenic lifestyles. IMPORTANCE This paper reports the discovery of a set of six complementary glucuronan lyase enzymes in the mycoparasite Trichoderma parareseei. Apart from the novelty of the discovery of these enzymes in T. parareesei, the key importance of the study is the finding that the majority of these lyases are induced when T. parareesei is inoculated on Basidiomycete cell walls that contain glucuronan. The study also reveals putative glucuronan lyase encoding genes in a wealth of other fungi that furthermore points at fungal cell wall glucuronan being a target C-source for many types of fungi. In a technical context, the findings may lead to controlled production of glucuronan oligomers for advanced pharmaceutical applications and pave the way for development of new fungal biocontrol agents.
Collapse
Affiliation(s)
- Bo Pilgaard
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Line Munk
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sebastian Meier
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper Wilkens
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
|
11
|
Abka Khajouei R, Keramat J, Hamdami N, Ursu AV, Delattre C, Gardarin C, Lecerf D, Desbrières J, Djelveh G, Michaud P. Effect of high voltage electrode discharge on the physicochemical characteristics of alginate extracted from an Iranian brown seaweed (Nizimuddinia zanardini). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li A, Luo H, Hu T, Huang J, Alam NU, Meng Y, Meng F, Korkor NL, Hu X, Li O. Screening and enzymatic activity of high-efficiency gellan lyase producing bacteria Pseudoalteromonas hodoensis PE1. Bioengineered 2019; 10:240-249. [PMID: 31181994 PMCID: PMC6592359 DOI: 10.1080/21655979.2019.1628882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022] Open
Abstract
Gellan is a widely used microbial polysaccharide and one of the more effective ways to expand its application value would be to investigate the mechanism of gellan lyase and to produce gellan oligosaccharide. In this study, efficient gellan degrading bacteria were screened. One of the strains with high efficient gellan degradation capacity was labeled PE1. Through physiological and biochemical analysis of 16S rDNA, the species was identified as Pseudoalteromonas hodoensis. The optimum conditions for enzymatic activity and how it was affected by metal ions were determined, and the results showed that the lyase activities were much higher than those of previously reported (about 20 times). The gellan degradation products were determined by thin-layer chromatography and the oligosaccharides were determined by high-efficiency liquid chromatography to analyze the action site of lyase. This study laid a solid foundation which elucidates the production and application of gellan oligosaccharides. Research highlights ● High efficiency gellan lyase producing bacteria ● Optimization of reaction conditions for gellan degradation ● Oligosaccharides were detected by TLC and HPLC to speculate the lyase action sites.
Collapse
Affiliation(s)
- Ang Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hangqi Luo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jingyu Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nafee-Ul Alam
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Meng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fenbin Meng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nartey Linda Korkor
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiufang Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ou Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Gaignard C, Laroche C, Pierre G, Dubessay P, Delattre C, Gardarin C, Gourvil P, Probert I, Dubuffet A, Michaud P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101711] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Kikuchi M, Konno N, Suzuki T, Fujii Y, Kodama Y, Isogai A, Habu N. A bacterial endo-β-1,4-glucuronan lyase, CUL-I from Brevundimonas sp. SH203, belonging to a novel polysaccharide lyase family. Protein Expr Purif 2019; 166:105502. [PMID: 31546007 DOI: 10.1016/j.pep.2019.105502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/13/2022]
Abstract
Cellouronate is a (1,4)-β-D-glucuronan prepared by TEMPO-mediated oxidation from regenerated cellulose. We have previously isolated a cellouronate-degrading bacterial strain, Brevundimonas sp. SH203, that produces a cellouronate lyase (β-1,4-glucuronan lyase, CUL-I). In this study, the gene encoding CUL-I was cloned, and the recombinant enzyme was heterologously expressed in Escherichia coli. The predicted CUL-I protein is composed of 426 amino acid residues and includes a putative 21-amino acid signal peptide. The recombinant CUL-I specifically depolymerized β-1,4-glycoside linkages of cellouronate, and its mode of action was endo-type, like the native CUL-I. Sequence analysis showed CUL-I has no similarity to previously known polysaccharide lyases (PLs), indicating that CUL-I should be classified into a novel PL family.
Collapse
Affiliation(s)
- Masako Kikuchi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Akira Isogai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
15
|
Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.
Collapse
|
16
|
Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. Int J Biol Macromol 2019; 126:30-36. [DOI: 10.1016/j.ijbiomac.2018.12.211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022]
|
17
|
Chen J, Guo X, Zhu M, Chen C, Li D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:42. [PMID: 30858879 PMCID: PMC6391835 DOI: 10.1186/s13068-019-1384-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polysaccharide monooxygenases (PMOs) play an important role in the enzymatic degradation of cellulose. They have been demonstrated to able to C6-oxidize cellulose to produce C6-hexodialdoses. However, the biological function of C6 oxidation of PMOs remains unknown. In particular, it is unclear whether C6-hexodialdoses can be further oxidized to uronic acid (glucuronic acid-containing oligosaccharides). RESULTS A PMO gene, Hipmo1, was isolated from Humicola insolens and expressed in Pichia pastoris. This PMO (HiPMO1), belonging to the auxiliary activity 9 (AA9) family, was shown to able to cleave cellulose to yield non-oxidized and oxidized cello-oligosaccharides. The enzyme oxidizes C6 positions in cellulose to form glucuronic acid-containing cello-oligosaccharides, followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid. This indicates that HiPMO1 can catalyze C6 oxidation of hydroxyl groups of cellulose to carboxylic groups. CONCLUSIONS HiPMO1 oxidizes C6 of cellulose to form glucuronic acid-containing cello-oligosaccharides followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid, and even possibly by beta-eliminative cleavage to produce unsaturated cello-oligosaccharides. This study provides a new mechanism for cellulose cleavage by C6 oxidation of HiPMO1.
Collapse
Affiliation(s)
- Jinyin Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xiuna Guo
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Min Zhu
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Chen Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
18
|
A new sight on the catalytic oxidation kinetic behaviors of bamboo cellulose fibers under TEMPO-oxidized system: The fate of carboxyl groups in treated pulps. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Khajouei RA, Keramat J, Hamdami N, Ursu AV, Delattre C, Laroche C, Gardarin C, Lecerf D, Desbrières J, Djelveh G, Michaud P. Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. Int J Biol Macromol 2018; 118:1073-1081. [PMID: 29964113 DOI: 10.1016/j.ijbiomac.2018.06.154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
Abstract
Sodium alginate from Nizimuddinia zanardini (an Iranian brown algae) was extracted with acid and alkaline solutions, partially and totally hydrolyzed and analyzed for its biochemical composition. 1H NMR spectroscopy, SEC-MALLS, HPAEC and FT-IR were performed to determine its structure and its physico-chemical properties. This alginate has a M/G ratio of 1.1, a molecular weight of 103 kDa, a polydispersity index of 1.22, and an intrinsic viscosity of 342 mL/g. Its antioxidant activity was tested by DPPH radical scavenging showing its potential for food preservation. Rheological properties of solutions of this alginate with concentrations between 1 and 5% (w/v) in water and 0.5 M NaCl were investigated indicating a Newtonian fluid type behaviour in water and a shear thinning fluid type behaviour in NaCl solutions.
Collapse
Affiliation(s)
- Roya Abka Khajouei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nasser Hamdami
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alina-Violeta Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Céline Laroche
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Christine Gardarin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Didier Lecerf
- Laboratoire Polymères Biopolymères Surface, CNRS FRE 3101, Université de Rouen, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France
| | - Jacques Desbrières
- Université de Pau et des Pays de l'Adour, IPREM, Helioparc Pau Pyrénées, 2 Avenue P. Angot, 64053 Pau Cedex 9, France
| | - Gholamreza Djelveh
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Ji X, Liu F, Ullah N, Wang M. Isolation, purification, and antioxidant activities of polysaccharides from Ziziphus Jujuba cv. Muzao. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1425702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaolong Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Niamat Ullah
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Department of Human Nutrition, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Chen C, Chen J, Geng Z, Wang M, Liu N, Li D. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:155. [PMID: 29991963 PMCID: PMC5987470 DOI: 10.1186/s13068-018-1156-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Polysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose. However, currently no direct evidence exists that PMOs oxidize C6 positions in cellulose, and molecular mechanism of C1, C4 and C6 oxidation is unclear. RESULTS In this study, a PMO gene (Ctpmo1) belonging to AA9 was isolated from Chaetomium thermophilum and successfully expressed and correctly processed in Pichia pastoris. A simple and effective chemical method of using Br2 to oxidize CtPMO1 reaction products was developed to directly identify C4- and C6-oxidized products by matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF-MS). The PMO (CtPMO1) cleaves phosphoric acid-swollen cellulose (PASC) and celloheptaose, resulting in the formation of oxidized and nonoxidized oligosaccharides. Product identification shows that the enzyme can oxidize C1, C4, and C6 in PASC and cello-oligosaccharides. Mutagenesis of the aromatic residues Tyr27, His64, His157 and residue Tyr206 on the flat surface of CtPMO1 was carried out using site-directed mutagenesis to form the mutated enzymes Y27A, H64A, H157A, and Y206A. It was demonstrated that Y27A retained complete activity of C1, C4, and C6 oxidation on cellulose; Y206A retained partial activity of C1 and C4 oxidation but completely lost activity of C6 oxidation on cellulose; H64A almost completely lost activity of C1, C4, and C6 oxidation on cellulose; and H157A completely lost activity of C1, C4, and C6 oxidation on cellulose. CONCLUSIONS This finding provides direct and molecular evidence for C1, C4, especially C6 oxidation by lytic polysaccharide monooxygenase. CtPMO1 oxidizes not only C1 and C4 but also C6 positions in cellulose. The aromatic acid residues His64, His157 and residue Tyr206 on CtPMO1 flat surface are involved in activity of C1, C4, C6 oxidation.
Collapse
Affiliation(s)
- Chen Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jinyin Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Zhigang Geng
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Meixia Wang
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Ning Liu
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
22
|
Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, Pastori N, Galante YM, Michaud P. TEMPO-mediated oxidation of polysaccharides: An ongoing story. Carbohydr Polym 2017; 165:71-85. [PMID: 28363578 DOI: 10.1016/j.carbpol.2017.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 01/30/2023]
Abstract
The oxidation of natural polysaccharides by TEMPO has become by now an "old chemical reaction" which led to numerous studies mainly conducted on cellulose. This regioselective oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of polyuronides not identified before in nature, even if the discovery of enzymes promoting an analogous oxidation has been more recently reported. Around the same time, the scientific community discovered the surprising biological and techno-functional properties of these anionic macromolecules with a high potential of application in numerous industrial fields. The objective of this review is to establish the state of the art of TEMPO chemistry applied to polysaccharide oxidation, its history, the resulting products, their applications and the associated modifying enzymes.
Collapse
Affiliation(s)
- Guillaume Pierre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France.
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Cédric Delattre
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy; Università degli Studi e-Campus, Via Isimbardi 10, 22060, Novedrate, Como, Italy
| | - Pascal Dubessay
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Nadia Pastori
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and Local Unit INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Yves M Galante
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| | - Philippe Michaud
- Université Clermont Auvergne, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6602, IP, F-63178, Aubière, France
| |
Collapse
|
23
|
Wang ZB, Chen BB, Luo L, Yan JK. Fractionation, physicochemical characteristics and biological activities of polysaccharides from Pueraria lobata roots. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Le Thanh-Blicharz J, Błaszczak W, Szwengiel A, Paukszta D, Lewandowicz G. Molecular and Supermolecular Structure of Commercial Pyrodextrins. J Food Sci 2016; 81:C2135-42. [PMID: 27447364 DOI: 10.1111/1750-3841.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/08/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
Abstract
Size exclusion chromatography with triple detection as well as infrared spectroscopy studies of commercially available pyrodextrins proved that these molecules are characterized not only by significantly lower molecular mass, in comparison to that of native starch, but also by increased branching. Therefore, pyrodextrins adopt a very compact structure in solution and show Newtonian behavior under shear in spite of their molecular masses of tens of thousands Daltons. The results also indicate that 50% reduction of digestibility of pyrodextrins is, to a minor extent, caused by formation of low-molecular color compounds containing carbonyl functional groups. The main reason is, as postulated in the literature, transglycosidation that leads to decreased occurrence of α-1,4-glycoside bonds in the molecular structure. In the process of dextrinization starch also undergoes changes in supermolecular structure, which, however, have no influence on digestibility. Likewise, the effect of formation of low-molecular colorful compounds containing carbonyl groups is not crucial.
Collapse
Affiliation(s)
- Joanna Le Thanh-Blicharz
- Dept. of Food Concentrates and Starch Products, Prof Wacław Dąbrowski Inst. of Agricultural and Food Biotechnology, Poznań, Poland.
| | - Wioletta Błaszczak
- Inst. of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Artur Szwengiel
- Inst. of Food Technology of Plant Origin, Poznań Univ. of Life Sciences, Poznań, Poland
| | - Dominik Paukszta
- Inst. of Chemical Technology and Engineering, Poznań Univ. of Technology, Poznań, Poland
| | - Grażyna Lewandowicz
- with Dept. of Biotechnology and Food Microbiology, Poznań Univ. of Life Sciences, Poznań, Poland
| |
Collapse
|
25
|
Rossi B, Campia P, Merlini L, Brasca M, Pastori N, Farris S, Melone L, Punta C, Galante YM. An aerogel obtained from chemo-enzymatically oxidized fenugreek galactomannans as a versatile delivery system. Carbohydr Polym 2016; 144:353-61. [DOI: 10.1016/j.carbpol.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
26
|
Salunke BK, Sawant SS, Lee SI, Kim BS. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 2016; 32:88. [PMID: 27038958 DOI: 10.1007/s11274-016-2044-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
Nanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties. Nanoparticle synthesis can be achieved through a wide range of materials utilizing a number of methods including physical, chemical, and biological processes with various precursors from liquids and solids. There is a growing need to prepare environmentally friendly nanoparticles that do not produce toxic wastes in their process synthesis protocol. This kind of synthesis can be achieved by green environment benign processes, which happen to be mostly of a biological nature. Microorganisms are one of the most attractive and simple sources for the synthesis of different types of nanoparticles. This review is an attempt to provide the up-to-date information on current status of nanoparticle synthesis by different types of microorganisms such as fungi, yeast, bacteria, cyanobacteria, actinomycete, and algae. The probable biosynthesis mechanism and conditions for size/shape control are described. Various applications of microbially synthesized nanoparticles are summarized. They include antibacterial, antifungal, anticancer, larvicidal, medical imaging, biosensor, and catalytic applications. Finally, limitations and future prospects for specific research are discussed.
Collapse
Affiliation(s)
- Bipinchandra K Salunke
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Shailesh S Sawant
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Ill Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
27
|
Delattre C, Pierre G, Gardarin C, Traikia M, Elboutachfaiti R, Isogai A, Michaud P. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydr Polym 2015; 116:34-41. [DOI: 10.1016/j.carbpol.2014.04.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/13/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
|
28
|
Kothari D, Patel S, Goyal A. Therapeutic Spectrum of Nondigestible Oligosaccharides: Overview of Current State and Prospect. J Food Sci 2014; 79:R1491-8. [DOI: 10.1111/1750-3841.12536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Damini Kothari
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center; San Diego State Univ; San Diego 92182 CA U.S.A
| | - Arun Goyal
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| |
Collapse
|
29
|
Stidham S, Chin SL, Dane EL, Grinstaff MW. Carboxylated glucuronic poly-amido-saccharides as protein stabilizing agents. J Am Chem Soc 2014; 136:9544-7. [PMID: 24949521 PMCID: PMC4105061 DOI: 10.1021/ja5036804] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 12/23/2022]
Abstract
The synthesis of novel carbohydrate-based polymers allows the structure to be tailored at the monomer level for a specific property and expands the range of available structures beyond those found in nature. Using a controlled anionic polymerization, a new type of carbohydrate polymer is synthesized in which glucose-derived monomers are joined by an α-1,2 amide linkage to give enantiopure poly-amido-saccharides (PASs). To investigate the effect of adding ionizable carboxylic acid groups, such as those found in natural polysaccharides containing glucuronic acid, the oxidation of the primary alcohol at the C6-position of the repeat unit to a carboxylic acid is reported. TEMPO-mediated oxidation provides control over the degree of oxidation in excellent yield. Based on circular dichroism, the oxidized polymers possess an ordered helical secondary structure in aqueous solution. Finally, oxidized PASs stabilize lysozyme toward dehydration and freezing stresses better than a current, widely used protein stabilizing agent, trehalose.
Collapse
Affiliation(s)
- Sarah
E. Stidham
- Departments of Chemistry
and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Stacy L. Chin
- Departments of Chemistry
and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Eric L. Dane
- Departments of Chemistry
and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Departments of Chemistry
and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
MacDonald LC, Berger BW. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473. J Biol Chem 2014; 289:18022-32. [PMID: 24808176 DOI: 10.1074/jbc.m114.571299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases.
Collapse
Affiliation(s)
| | - Bryan W Berger
- From the Program in Bioengineering and Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
31
|
Zhou F, Wu Z, Chen C, Han J, Ai L, Guo B. Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Conjugates of Polyguluronic and Polymannuronic Acids with 4-Aminoantipyrine. Determination Using 1H–13C HSQC Spectra of Triad Units and Their Distribution in the Polysaccharide Chain. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-0917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Structural characteristics and antioxidant activities of different families of 4-acetamido-TEMPO-oxidised curdlan. Food Chem 2014; 143:530-5. [DOI: 10.1016/j.foodchem.2013.07.129] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/26/2013] [Accepted: 07/25/2013] [Indexed: 11/16/2022]
|
34
|
Ponedel'kina IY, Araslanova DI, Tyumkina TV, Lukina ES, Odinokov VN. Partially oxidized potato starches from bromide-free TEMPO-mediated reaction: characterization of monosaccharide composition. STARCH-STARKE 2013. [DOI: 10.1002/star.201300130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Irina Yu. Ponedel'kina
- Institute of Petrochemistry and Catalysis; Russian Academy of Sciences; Ufa Russian Federation
| | - Dilyara I. Araslanova
- Institute of Petrochemistry and Catalysis; Russian Academy of Sciences; Ufa Russian Federation
| | - Tatyana V. Tyumkina
- Institute of Petrochemistry and Catalysis; Russian Academy of Sciences; Ufa Russian Federation
| | - Elena S. Lukina
- Institute of Petrochemistry and Catalysis; Russian Academy of Sciences; Ufa Russian Federation
| | - Viktor N. Odinokov
- Institute of Petrochemistry and Catalysis; Russian Academy of Sciences; Ufa Russian Federation
| |
Collapse
|
35
|
Water soluble exo-polysaccharide from Syncephalastrum racemosum, a strong inducer of plant defence reactions. Carbohydr Polym 2013; 101:941-6. [PMID: 24299859 DOI: 10.1016/j.carbpol.2013.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022]
Abstract
This study examines the production, characterization and bioactivity on plant cell cultured in vitro of exopolysaccharides (EPS) from Syncephalastrum racemosum CBS 443.59. Firstly, the influence of the fungus culture condition in shake flasks (pH, temperature and different carbon and nitrogen sources) on EPS and biomass production was evaluated. In order to enhance EPS production, a new protocol based on two-stage pH fermentation in a 3 L stirred fermentor was developed. Under this condition, EPS production increased by 3.55 times, compared to a constant pH process, reaching a maximal EPS concentration of 2.62 g/L. Structurally, the EPS contains a polyglucuronic acid backbone, linked essentially with mannose and fucose units and some galactose and glucose units. The bioactivity of EPS as inducer of defence reactions in plant suspension-cultured cells was also studied. Our results show, for first time, that EPS from S. racemosum CBS 443.59 induces, depending on the concentration, PAL activation and H2O2 synthesis in Arabidopsis thaliana cell suspensions.
Collapse
|
36
|
Pierre G, Salah R, Gardarin C, Traikia M, Petit E, Delort AM, Mameri N, Moulti-Mati F, Michaud P. Enzymatic degradation and bioactivity evaluation of C-6 oxidized chitosan. Int J Biol Macromol 2013; 60:383-92. [PMID: 23817103 DOI: 10.1016/j.ijbiomac.2013.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 11/30/2022]
Abstract
C-6 oxidized chitosan was produced from chitosan by performing selective oxidation with NaOCl and NaBr using 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) as catalyst. Endocellulase, Celluclast 1.5 L, Glucanex(®), Macerozyme R-10, hyaluronidase, hyaluronate lyase, red scorpionfish chitinase, glucuronan lyase and a protein mix from Trichoderma reesei were used to degrade the C-6 oxidized chitosan. Glucanex(®), the crude extract from T. reesei IHEM 4122 and Macerozyme R-10 validated the enzymatic degradation through final hydrolysis yields of the derivative respectively close to 36.4, 20.3 and 12.9% (w/w). The best initial reaction velocity (2.41 U/mL) was observed for Glucanex(®). The antileishmanial activity of the derivative was evaluated against Leishmania infantum LIPA 137. The antibacterial activities against Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were also tested. Results showed an antileishmanial activity (IC50: 125 μg/mL) of the obtained derivatives against L. infantum LIPA 137.
Collapse
Affiliation(s)
- Guillaume Pierre
- Clermont Université, Université Blaise Pascal, Institut Pascal, UMR 6602 CNRS Polytech' Clermont-Ferrand, 24 avenue des Landais, BP 206, Aubière Cedex F-63174, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stetco IA, Merschrod S EF. Supramolecular structure and anomer-selective formation of polyglucuronic acid. POLYM INT 2013. [DOI: 10.1002/pi.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- I. Alina Stetco
- Department of Chemistry; Memorial University of Newfoundland; St John's; NL; A1B3X7; Canada
| | - Erika F Merschrod S
- Department of Chemistry; Memorial University of Newfoundland; St John's; NL; A1B3X7; Canada
| |
Collapse
|
38
|
Šedová P, Buffa R, Kettou S, Huerta-Angeles G, Hermannová M, Leierová V, Šmejkalová D, Moravcová M, Velebný V. Preparation of hyaluronan polyaldehyde—a precursor of biopolymer conjugates. Carbohydr Res 2013; 371:8-15. [DOI: 10.1016/j.carres.2013.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
39
|
Synthesis of new glycosaminoglycans-like families by regioselective oxidation followed by sulphation of glucoglucuronan from Rhizobium sp. T1. Carbohydr Polym 2012; 89:1261-7. [DOI: 10.1016/j.carbpol.2012.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
|
40
|
Native and sulfated oligoglucuronans as elicitors of defence-related responses inducing protection against Botrytis cinerea of Vitis vinifera. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Delattre C, Chaisemartin L, Favre-Mercuret M, Berthon J, Rios L. Biological effect of β-(1,3)-polyglucuronic acid sodium salt on lipid storage and adipocytes differentiation. Carbohydr Polym 2012; 87:775-783. [DOI: 10.1016/j.carbpol.2011.08.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/13/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|