1
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
2
|
da Costa TB, da Silva TL, da Silva MGC, Vieira MGA. Biosorption of europium and erbium from aqueous solutions using crosslinked sericin-alginate beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53655-53670. [PMID: 38091219 DOI: 10.1007/s11356-023-31427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 09/07/2024]
Abstract
Critical metals such as rare earths are essential for important industrial applications and for producing high-tech materials. Currently, the development of alternative and non-conventional biomaterials has gained significant interest. This work investigated the use of crosslinked sericin-alginate-based natural polymeric particles for the removal of rare earths from water. Affinity tests showed that sericin-alginate/polyethylene glycol diglycidyl ether had the highest potential for capturing europium (0.258 mmol/g and 94.33%) and erbium (0.259 mmol/g and 94.55%). Next, erbium was selected based on the affinity with sericin-alginate/polyethylene glycol diglycidyl to investigate the effect of dose/pH, biosorption kinetics, isothermal equilibrium, desorption/reuse, and selectivity. The effect of dose and pH showed that 8.0 g/L (95.91%) and pH 5.0 (97.53%) were more efficient in capturing erbium. The biosorption kinetics showed that the equilibration time was reached within 210 min. The PSO and EMTR models effectively represented the kinetics data. The isothermal equilibrium revealed that the maximum uptake capacity for erbium was 0.641 mmol/g. The isothermal curves better fit the Dubinin-Radushkevich (55 °C) and Langmuir (25 and 40 °C) models. Thermodynamic quantitates indicated that erbium uptake was spontaneous, governed by entropic changes, and endothermic. The recovery of Er3+ was greater than 98% and the reuse of the eluent in the cycles enriched the Er3+ load 10-times (1.0 to 9.91 mmol/L). The beads also showed better performance for capturing Er3+ and Eu3+ with other coexisting ions. Characterization analyzes revealed the ion exchange mechanism between Ca2+/Er3+ prevailed in the Er3+ removal. Thus, the results pointed out that crosslinked sericin-alginate can be used as an alternative and promising biosorbent to remove and recover rare earths.
Collapse
Affiliation(s)
- Talles Barcelos da Costa
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, São Paulo, Campinas, 500, Brazil
| | - Thiago Lopes da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, São Paulo, Campinas, 500, Brazil
| | | | | |
Collapse
|
3
|
Lokhande KD, Bhakare MA, Bondarde MP, Dhumal PS, Some S. Quick self-grown ternary supramolecules embedded in sodium alginate to fabricate ultralight sponge exhibiting superior flame retardancy. Int J Biol Macromol 2024; 275:133766. [PMID: 38992526 DOI: 10.1016/j.ijbiomac.2024.133766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
To mitigate environmental and health risks associated with the use of halogenated flame retardants, effective halogen-free solutions have been extensively explored. In this study, melamine/boric acid/phosphoric acid (MBP)‑sodium alginate (SA) sponge was synthesized by treating MBP ternary supramolecules with microwave irradiation via one-pot, facile, and speedy synthesis, obtaining an MBP-SA sponge, a polysaccharide biopolymer. Crosslinking of SA with Ca2+ ion formed an intact network, and this was confirmed using scanning electron microscopy (SEM). Thereafter, the flame retardancy of the as-synthesized SA/MBP sponge was investigated by exposing it to a spirit lamp and a Bunsen burner; the sponge remained intact for up to 540 s and 370 s, respectively, demonstrating the enhanced flame retardancy of MBP supramolecules in the SA/MBP sponge. The limiting oxygen index of the SA/MBP sponge was up to 62 %, demonstrating the self-extinguishing and thermal insulation properties of the as-synthesized sponge. The findings of this study provide insights for developing a new strategy to use SA/MBP sponges for fire protection.
Collapse
Affiliation(s)
- Kshama D Lokhande
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Madhuri A Bhakare
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Mahesh P Bondarde
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Pratik S Dhumal
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Surajit Some
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
4
|
Effraimopoulou E, Jaxel J, Budtova T, Rigacci A. Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition. Polymers (Basel) 2024; 16:1628. [PMID: 38931978 PMCID: PMC11207865 DOI: 10.3390/polym16121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pectin aerogels, with very low density (around 0.1 g cm-3) and high specific surface area (up to 600 m2 g-1), are excellent thermal insulation materials since their thermal conductivity is below that of air at ambient conditions (0.025 W m-1 K-1). However, due to their intrinsic hydrophilicity, pectin aerogels collapse when in contact with water vapor, losing superinsulating properties. In this work, first, pectin aerogels were made, and the influence of the different process parameters on the materials' structure and properties were studied. All neat pectin aerogels had a low density (0.04-0.11 g cm-1), high specific surface area (308-567 m2 g-1), and very low thermal conductivity (0.015-0.023 W m-1 K-1). Then, pectin aerogels were hydrophobized via the chemical vapor deposition of methyltrimethoxysilane using different reaction durations (2 to 24 h). The influence of hydrophobization on material properties, especially on thermal conductivity, was recorded by conditioning in a climate chamber (25 °C, 80% relative humidity). Hydrophobization resulted in the increase in thermal conductivity compared to that of neat pectin aerogels. MTMS deposition for 16 h was efficient for hydrophobizing pectin aerogels in moist environment (contact angle 115°) and stabilizing material properties with no fluctuation in thermal conductivity (0.030 W m-1 K-1) and density for the testing period of 8 months.
Collapse
Affiliation(s)
- Eleni Effraimopoulou
- Mines Paris, PSL University, Centre for Processes, Renewable Energy and Energy Systems (PERSEE), 06904 Sophia Antipolis, France; (E.E.); (J.J.)
- Mines Paris, PSL University, Centre for Materials Forming (CEMEF), UMR CNRS 7635, 06904 Sophia Antipolis, France
| | - Julien Jaxel
- Mines Paris, PSL University, Centre for Processes, Renewable Energy and Energy Systems (PERSEE), 06904 Sophia Antipolis, France; (E.E.); (J.J.)
| | - Tatiana Budtova
- Mines Paris, PSL University, Centre for Materials Forming (CEMEF), UMR CNRS 7635, 06904 Sophia Antipolis, France
| | - Arnaud Rigacci
- Mines Paris, PSL University, Centre for Processes, Renewable Energy and Energy Systems (PERSEE), 06904 Sophia Antipolis, France; (E.E.); (J.J.)
| |
Collapse
|
5
|
Yu S, Budtova T. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr Polym 2024; 332:121925. [PMID: 38431419 DOI: 10.1016/j.carbpol.2024.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Carboxymethyl cellulose (CMC) is a well-known cellulose derivative used in biomedical applications due to its biocompatibility and biodegradability. In this work, novel porous CMC materials, aerogels, were prepared and tested as a drug delivery device. CMC aerogels were made from CMC solutions, followed by non-solvent induced phase separation and drying with supercritical CO2. The influence of CMC characteristics and of processing conditions on aerogels' density, specific surface area, morphology and drug release properties were investigated. Freeze-drying of CMC solutions was also used as an alternative process to compare the properties of the as-obtained "cryogels" with those of aerogels. Aerogels were nanostructured materials with bulk density below 0.25 g/cm3 and high specific surface area up to 143 m2/g. Freeze drying yields highly macroporous materials with low specific surface areas (around 5-18 m2/g) and very low density, 0.01 - 0.07g/cm3. Swelling and dissolution of aerogels and cryogels in water and in a simulated wound exudate (SWE) were evaluated. The drug was loaded in aerogels and cryogels, and release kinetics in SWE was investigated. Drug diffusion coefficients were correlated with material solubility, morphology, density, degree of substitution and drying methods, demonstrating tuneability of new materials' properties in view of their use as delivery matrices.
Collapse
Affiliation(s)
- Sujie Yu
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France.
| |
Collapse
|
6
|
Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications. Adv Colloid Interface Sci 2024; 325:103098. [PMID: 38335660 DOI: 10.1016/j.cis.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The electrospray (ES) technique has proven to be an effective and a versatile approach for crafting drug delivery carriers with diverse dimensions, multiple layers, and varying morphologies. Achieving the desired particle properties necessitates careful optimization of various experimental parameters. This review delves into the most prevalent ES system configurations employed for this purpose, such as monoaxial, coaxial, triaxial, and multi-needle setups with solid or liquid collector. In addition, this work underscores the significance of ES in drug delivery carriers and its remarkable ability to encapsulate a wide spectrum of therapeutic agents, including drugs, nucleic acids, proteins, genes and cells. Depth examination of the critical parameters governing the ES process, including the choice of polymer, surface tension, voltage settings, needle size, flow rate, collector types, and the collector distance was conducted with highlighting on their implications on particle characteristics, encompassing morphology, size distribution, and drug encapsulation efficiency. These insights illuminate ES's adaptability in customizing drug delivery systems. To conclude, this review discusses ES process optimization strategies, advantages, limitations and future directions, providing valuable guidance for researchers and practitioners navigating the dynamic landscape of modern drug delivery systems.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| | - Yasser Shahzad
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
7
|
Galaburda M, Szewczuk-Karpisz K, Goncharuk O, Siryk O, Charmas B, Deryło-Marczewska A. The influence of sodium alginate on the structural and adsorption properties of resorcinol-formaldehyde resins and their porous carbon derivatives. Chemphyschem 2024; 25:e202300796. [PMID: 38100512 DOI: 10.1002/cphc.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
A series of carbon composites were synthesised by carbonisation of resorcinol-formaldehyde resin mixtures with the addition of different amounts of sodium alginate (SA) and compared with a composite prepared using Na2 CO3 as a catalyst for the polymerisation reaction. The effect of operating parameters such as SA concentration and polycondensation time on the structural and morphological properties of resorcinol-formaldehyde resins (RFR) and carbon-derived composites was investigated for further use as adsorbents. The synthesised composites were characterised by FTIR, SEM, Raman spectroscopy and N2 adsorption/desorption techniques. It was found that the morphology, specific surface area (SBET ~347-559 m2 /g), volume and particle size distribution (~0.5-4 μm) and porosity (Vpor =0.178-0.348 cm3 /g) of the composites were influenced by the concentration of SA and the synthesis technique and determined the adsorption properties of the materials. It was found that the surface of the filled chars was found to have an affinity for heavy metals and has the ability to form chemical bonds with cadmium ions. The maximum sorption capacities for Cd(II), i. e. 13.28 mg/g, were observed for the sample synthesised with the highest SA content. This confirms the statement that as-synthesised materials are promising adsorbents for environmental applications.
Collapse
Affiliation(s)
- Mariia Galaburda
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
- Laboratory of Oxide Nanocomposites, Chuiko Institute of Surface Chemistry, NASU 17 General Naumov Str., 03164, Kyiv, Ukraine
| | - Katarzyna Szewczuk-Karpisz
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
| | - Olena Goncharuk
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
- Department of Chemical Technology of Ceramics and Glass, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Peremohy av., 03056, Kyiv, Ukraine
| | - Olena Siryk
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
| | - Barbara Charmas
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Anna Deryło-Marczewska
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
8
|
Verma S, Sharma PK, Malviya R, Das S. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Curr Pharm Biotechnol 2024; 25:1939-1951. [PMID: 38251702 DOI: 10.2174/0113892010275613231120031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024]
Abstract
Aerogels are the 3D network of organic, inorganic, composite, layered, or hybrid-type materials that are used to increase the solubility of Class 1 (low solubility and high permeability) and Class 4 (poor solubility and low permeability) molecules. This approach improves systemic drug absorption due to the alveoli's broad surface area, thin epithelial layer, and high vascularization. Local therapies are more effective and have fewer side effects than systemic distribution because inhalation treatment targets the specific location and raises drug concentration in the lungs. The present manuscript aims to explore various aspects of aerogel formulations for pulmonary targeted delivery of active pharmaceutical agents. The manuscript also discusses the safety, efficacy, and regulatory aspects of aerogel formulations. According to projections, the global respiratory drug market is growing 4-6% annually, with short-term development potential. The proliferation of literature on pulmonary medicine delivery, especially in recent years, shows increased interest. Aerogels come in various technologies and compositions, but any aerogel used in a biological system must be constructed of a material that is biocompatible and, ideally, biodegradable. Aerogels are made via "supercritical processing". After many liquid phase iterations using organic solvents, supercritical extraction, and drying are performed. Moreover, the sol-gel polymerization process makes inorganic aerogels from TMOS or TEOS, the less hazardous silane. The resulting aerogels were shown to be mostly loaded with pharmaceutically active chemicals, such as furosemide-sodium, penbutolol-hemisulfate, and methylprednisolone. For biotechnology, pharmaceutical sciences, biosensors, and diagnostics, these aerogels have mostly been researched. Although aerogels are made of many different materials and methods, any aerogel utilized in a biological system needs to be made of a substance that is both biocompatible and, preferably, biodegradable. In conclusion, aerogel-based pulmonary drug delivery systems can be used in biomedicine and non-biomedicine applications for improved sustainability, mechanical properties, biodegradability, and biocompatibility. This covers scaffolds, aerogels, and nanoparticles. Furthermore, biopolymers have been described, including cellulose nanocrystals (CNC) and MXenes. A safety regulatory database is necessary to offer direction on the commercialization potential of aerogelbased formulations. After that, enormous efforts are discovered to be performed to synthesize an effective aerogel, particularly to shorten the drying period, which ultimately modifies the efficacy. As a result, there is an urgent need to enhance the performance going forward.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sanjita Das
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Illanes-Bordomás C, Landin M, García-González CA. Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery. Pharmaceutics 2023; 15:2639. [PMID: 38004617 PMCID: PMC10674668 DOI: 10.3390/pharmaceutics15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.
Collapse
Affiliation(s)
| | - Mariana Landin
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| |
Collapse
|
11
|
Paiboon N, Surassmo S, Rungsardthong Ruktanonchai U, Kappl M, Soottitantawat A. Internal gelation of alginate microparticle prepared by emulsification and microfluidic method: Effect of Ca-EDTA as a calcium source. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
13
|
Ahmad A, Kamaruddin MA, H.P.S. AK, Yahya EB, Muhammad S, Rizal S, Ahmad MI, Surya I, Abdullah CK. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023; 9:416. [PMID: 37233007 PMCID: PMC10218182 DOI: 10.3390/gels9050416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Water pollution is a significant environmental issue that has emerged because of industrial and economic growth. Human activities such as industrial, agricultural, and technological practices have increased the levels of pollutants in the environment, causing harm to both the environment and public health. Dyes and heavy metals are major contributors to water pollution. Organic dyes are a major concern because of their stability in water and their potential to absorb sunlight, increasing the temperature and disrupting the ecological balance. The presence of heavy metals in the production of textile dyes adds to the toxicity of the wastewater. Heavy metals are a global issue that can harm both human health and the environment and are mainly caused by urbanization and industrialization. To address this issue, researchers have focused on developing effective water treatment procedures, including adsorption, precipitation, and filtration. Among these methods, adsorption is a simple, efficient, and cheap method for removing organic dyes from water. Aerogels have shown potential as a promising adsorbent material because of their low density, high porosity, high surface area, low thermal and electrical conductivity, and ability to respond to external stimuli. Biomaterials such as cellulose, starch, chitosan, chitin, carrageenan, and graphene have been extensively studied for the production of sustainable aerogels for water treatment. Cellulose, which is abundant in nature, has received significant attention in recent years. This review highlights the potential of cellulose-based aerogels as a sustainable and efficient material for removing dyes and heavy metals from water during the treatment process.
Collapse
Affiliation(s)
- Azfaralariff Ahmad
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Anuar Kamaruddin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Syaifullah Muhammad
- Chemical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- ARC-PUIPT Nilam Aceh, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Samsul Rizal
- Mechanical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Indra Surya
- Department of Chemical Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - C. K. Abdullah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
14
|
Sheng Z, Liu Z, Hou Y, Jiang H, Li Y, Li G, Zhang X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205762. [PMID: 36658735 PMCID: PMC10037991 DOI: 10.1002/advs.202205762] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high-tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire-retardant properties are elaborated on. Next, the nano-confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid-liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field.
Collapse
Affiliation(s)
- Zhizhi Sheng
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Zengwei Liu
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yinglai Hou
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Haotian Jiang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yuzhen Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangyong Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Xuetong Zhang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
15
|
Dayarian S, Majedi Far H, Yang L. Macroporous Polyimide Aerogels: A Comparison between Powder Microparticles Synthesized via Wet Gel Grinding and Emulsion Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1804-1814. [PMID: 36706272 PMCID: PMC9910053 DOI: 10.1021/acs.langmuir.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Indexed: 06/18/2023]
Abstract
It is noteworthy to mention that synthesizing the polyimide aerogel powder, which is carried out in this study, benefits from two advantages: (i) the powder particles can be used for some specific applications where the monolith is not suitable and (ii) there is a possibility to investigate how a polyimide aerogel monolith can be made through the polyimide powder to reduce its cost and cycle time. In this study, two straightforward methods, wet gel grinding and emulsion, are introduced to prepare polyimide aerogel powders using ambient pressure drying. The microscopic properties of interest, including skeletal and porous structures, microparticle size and assembly, combined with macroscopic properties such as thermal stabilities and conductivities (0.039 W/m·K), confirm that the fabricated microparticles with a size in the range of 7-20 μm and porosity in the range of 65-85% are thermally stable up to 500 °C.
Collapse
Affiliation(s)
- Shima Dayarian
- Department
of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, United
Kingdom
| | - Hojat Majedi Far
- Blueshift
Materials Inc., Spencer, Massachusetts01562, United States
| | - Liu Yang
- Department
of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, United
Kingdom
| |
Collapse
|
16
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Xu Y, Sun Y, Yao Z, Zheng C, Zhang F. Gradient assembly of alginic acid/quaternary chitosan into biomimetic hidden nanoporous textiles for thermal management. Carbohydr Polym 2023; 300:120236. [DOI: 10.1016/j.carbpol.2022.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
18
|
Selvasekaran P, Chidambaram R. Bioaerogels as food materials: A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
20
|
Role of supercritical CO2 impregnation variables on β-carotene loading into corn starch aerogel particles. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Wan S, Zhao W, Xiong D, Li S, Ye Y, Du L. Novel alginate immobilized TiO 2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
TiO2 semiconductor photocatalysis is an effective technology for the treatment of wastewater containing organic dye pollutants, which has been received extensive focus. However, the problems in the recovery and reutilization process impede the large-scale applications of particulate photocatalytic materials. Herein, a macro sized hydrogel bead loaded with nano TiO2 powder was successfully prepared by taking advantage of the cross-linking and gel property of alginate salt, which could form egg-box structure naturally when Na+ ions in sodium alginate (SA) were replaced by divalent ions such as Cu2+, Co2+, and Sr2+ ions. The photocatalytic degradation rate of methyl orange (MO) solution in the presence of the hydrogel beads reaches 99% within 60 min under the ultraviolet light irradiation, which is competitive with that of TiO2 nano powder. Furthermore, the hydrogel beads prepared by this strategy maintain over 95% photocatalytic degradation rate after 10 cycles of degradation process. The results indicate that the network structure of alginate could immobilize and disperse TiO2 particle effectively, and it is readily for the spherical beads to contact and harvest the light, making the alginate beads have excellent photocatalytic functions. Also, the alginate based beads integrate good performance with high stability and excellent recyclability perfectly.
Collapse
Affiliation(s)
- Shiqi Wan
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| | - Wei Zhao
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| | - Dezhi Xiong
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| | - Shibo Li
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| | - Yao Ye
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| | - Lisheng Du
- School of Materials Science and Engineering, Tianjin Chengjian University , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory of Building Green Functional Materials , Tianjin 300384 , P. R. China
| |
Collapse
|
23
|
Horvat G, Pantić M, Knez Ž, Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels 2022; 8:gels8070438. [PMID: 35877523 PMCID: PMC9316429 DOI: 10.3390/gels8070438] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
This review discusses the most commonly employed methods for determining pore size and pore size distribution in bioaerogels. Aerogels are materials with high porosity and large surface areas. Most of their pores are in the range of mesopores, between 2 and 50 nm. They often have smaller or larger pores, which presents a significant challenge in determining the exact mean pore size and pore size distribution in such materials. The precision and actual value of the pore size are of considerable importance since pore size and pore size distribution are among the main properties of aerogels and are often directly connected with the final application of those materials. However, many recently published papers discuss or present pore size as one of the essential achievements despite the misinterpretation or the wrong assignments of pore size determination. This review will help future research and publications evaluate the pore size of aerogels more precisely and discuss it correctly. The study covers methods such as gas adsorption, from which BJH and DFT models are often used, SEM, mercury porosimetry, and thermoporometry. The methods are described, and the results obtained are discussed. The following paper shows that there is still no precise method for determining pore size distribution or mean pore size in aerogels until now. Knowing that, it is expected that this field will evolve in the future.
Collapse
Affiliation(s)
- Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Milica Pantić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Correspondence:
| |
Collapse
|
24
|
Peng H, Xiong W, Yang Z, Xu Z, Cao J, Jia M, Xiang Y. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128684. [PMID: 35303663 DOI: 10.1016/j.jhazmat.2022.128684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability. Aerogels distinguished by the unique three-dimensional (3D) interconnected pore structures with high porosity and accessible surface area are promising carriers for MOFs. Given these, combining MOFs with aerogels at molecule level to obtain advanced composites is excepted to further enhance their performance with higher practicability. Herein, we focus on the latest studies on the MOFs@aerogel composites. The construction of MOFs@aerogel with different synthetic routes and drying methods are discussed. To explore the connection between structure and performance, pore structure engineering and quantitation of MOFs content are outlined. Furthermore, various types of MOFs@aerogel composites and their carbonized derivatives are reviewed, as well as the applications of MOFs@aerogel for environmental remediation referring to water purification and air clearing. More importantly, outlooks towards these emerging advanced composites have been presented from the perspective of practical application and future development.
Collapse
Affiliation(s)
- Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhengyong Xu
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Jiao Cao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Aerogel: Functional Emerging Material for Potential Application in Food: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
|
27
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
28
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
29
|
Hegedűs C, Czibulya Z, Tóth F, Dezső B, Hegedűs V, Boda R, Horváth D, Csík A, Fábián I, Tóth-Győri E, Sajtos Z, Lázár I. The Effect of Heat Treatment of β-Tricalcium Phosphate-Containing Silica-Based Bioactive Aerogels on the Cellular Metabolism and Proliferation of MG63 Cells. Biomedicines 2022; 10:662. [PMID: 35327463 PMCID: PMC8945762 DOI: 10.3390/biomedicines10030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
β-Tricalcium phosphate was combined with silica aerogel in composites prepared using the sol-gel technique and supercritical drying. The materials were used in this study to check their biological activity and bone regeneration potential with MG63 cell experiments. The composites were sintered in 100 °C steps in the range of 500-1000 °C. Their mechanical properties, porosities, and solubility were determined as a function of sintering temperature. Dissolution studies revealed that the released Ca-/P molar ratios appeared to be in the optimal range to support bone tissue induction. Cell viability, ALP activity, and type I collagen gene expression results all suggested that the sintering of the compound at approximately 700-800 °C as a scaffold could be more powerful in vivo to facilitate bone formation within a bone defect, compared to that documented previously by our research team. We did not observe any detrimental effect on cell viability. Both the alkaline phosphatase enzyme activity and the type I collagen gene expression were significantly higher compared with the control and the other aerogels heat-treated at different temperatures. The mesoporous silica-based aerogel composites containing β-tricalcium phosphate particles treated at temperatures lower than 1000 °C produced a positive effect on the osteoblastic activity of MG63 cells. An in vivo 6 month-long follow-up study of the mechanically strongest 1000 °C sample in rat calvaria experiments provided proof of a complete remodeling of the bone.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Zsuzsanna Czibulya
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Ferenc Tóth
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (Z.C.); (F.T.)
| | - Balázs Dezső
- Department of Oral Pathology and Microbiology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktória Hegedűs
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Róbert Boda
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (R.B.); (D.H.)
| | - Dóra Horváth
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary; (R.B.); (D.H.)
| | - Attila Csík
- Laboratory of Materials Science, Institute for Nuclear Research, Eötvös Loránd Research Network, 4026 Debrecen, Hungary;
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - Enikő Tóth-Győri
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| | - István Lázár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (I.F.); (E.T.-G.); (Z.S.)
| |
Collapse
|
30
|
Lan LM, Liu BN, Li WX, Bu H, Hu T, Hu HJ, Li Y, Jiang GB. Facilely recoverable Pb(II) adsorbent based on greigite (Fe 3S 4) loaded alginate aerogel with high adsorption efficiency. CHEMOSPHERE 2022; 290:133264. [PMID: 34902389 DOI: 10.1016/j.chemosphere.2021.133264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Ling-Min Lan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Bu-Ning Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373, Oslo, Norway
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Highly efficient and reusable BiOCl photocatalyst modulating by hydrogel immobilization and oxygen vacancies engineering. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119628] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Guzel Kaya G, Aznar E, Deveci H, Martínez-Máñez R. Aerogels as promising materials for antibacterial applications: a mini-review. Biomater Sci 2021; 9:7034-7048. [PMID: 34636816 DOI: 10.1039/d1bm01147b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing cases of bacterial infections originating from resistant bacteria are a serious problem globally and many approaches have been developed for different purposes to treat bacterial infections. Aerogels are a novel class of smart porous materials composed of three-dimensional networks. Recently, aerogels with the advantages of ultra-low density, high porosity, tunable particle and pore sizes, and biocompatibility have been regarded as promising carriers for the design of delivery systems. Recently, aerogels have also been provided with antibacterial activity through loading of antibacterial agents, incorporation of metal/metal oxides and via surface functionalization and coating with various functional groups. In this mini-review, the synthesis of aerogels from both conventional and low-cost precursors is reported and examples of aerogels displaying antibacterial properties are summarized. As a result, it is clear that the encouraging antibacterial performance of aerogels promotes their use in many antibacterial applications, especially in the food industry, pharmaceutics and medicine.
Collapse
Affiliation(s)
- Gulcihan Guzel Kaya
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Huseyin Deveci
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
33
|
Menshutina N, Abramov A, Tsygankov P, Lovskaya D. Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production. Gels 2021; 7:gels7030092. [PMID: 34287289 PMCID: PMC8293155 DOI: 10.3390/gels7030092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for “ink”. In this paper, we propose the use of gel-like materials based on sodium alginate as “ink” for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).
Collapse
|
34
|
Al-Najjar MAA, Athamneh T, AbuTayeh R, Basheti I, Leopold C, Gurikov P, Smirnova I. Evaluation of the orally administered calcium alginate aerogel on the changes of gut microbiota and hepatic and renal function of Wistar rats. PLoS One 2021; 16:e0247633. [PMID: 33909615 PMCID: PMC8081240 DOI: 10.1371/journal.pone.0247633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
The present study evaluates the effect of calcium alginate aerogel as a potential drug carrier, on the liver and kidney functions, and on the gut microbiota of Wistar rats. The studied alginate aerogel was prepared in the form of nanoparticles using the jet cutting technique, and they were characterized in terms of specific surface areas, outer morphology and particle size distribution. For the in vivo study, calcium alginate aerogel was administered orally, and liver and kidney functions were tested for one week and for four weeks in two distinct studies. During the short-term in vivo study, feces samples were collected for bacterial DNA extraction followed by 16S rRNA gene sequencing analyses to detect changes in gut microbiota. Results showed that the prepared alginate aerogel has an average BET-specific surface area of around 540 m2/g, with a pore volume of 7.4 cc/g, and pore width of 30–50 nm. The in vivo study revealed that the levels of the studied kidney and liver enzymes didn’t exceed the highest level of the normal range. The study of gut microbiota showed different patterns; certain groups of bacteria, such as Clostridia and Bacteriodia, increased during the aerogels regime and continued to increase after the aerogel was stopped. While other groups such as Erysipelotrichia, and Candidatus saccharibacteria increased during aerogels treatment, and then decreased again after one month. Members of the Bacilli class showed a unique trend, that is, after being the most abundant group (63%) at time 0, their relative abundance decreased dramatically until it reached < 5%; which was the case even after stopping the aerogel treatment.
Collapse
Affiliation(s)
- Mohammad A. A. Al-Najjar
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman, Jordan
- * E-mail: (MAAA); (TA)
| | - Tamara Athamneh
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
- * E-mail: (MAAA); (TA)
| | - Reem AbuTayeh
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman, Jordan
| | - Iman Basheti
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman, Jordan
| | - Claudia Leopold
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
35
|
Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100188] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Athamneh T, Amin A, Benke E, Ambrus R, Gurikov P, Smirnova I, Leopold CS. Pulmonary drug delivery with aerogels: engineering of alginate and alginate-hyaluronic acid microspheres. Pharm Dev Technol 2021; 26:509-521. [PMID: 33593203 DOI: 10.1080/10837450.2021.1888979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, the aerogel technology was used to prepare pulmonary drug carriers consisting of alginate and alginate-hyaluronic acid by an emulsion gelation technique and supercritical CO2 drying. During the preparation process, the emulsification rate and inner phase viscosity were varied to control the diameter of aerogel microspheres. Results showed that the aerogel microspheres were highly porous (porosity > 98%) with low densities in the range between 0.0087 and 0.0634 g/cm3 as well as high surface areas between 354 and 759 m2/g. The obtained microspheres showed aerodynamic diameter below 5 µm making them suitable for pulmonary drug delivery. An in vitro drug release study with the model drug sodium naproxen was conducted and a non-Fickian drug release mechanism was observed, with no significant difference between the release profiles of alginate and alginate-hyaluronic acid microspheres. During the emulsion gelation step, the feasibility of using the capillary number to estimate the largest stable droplet size in the emulsions was also studied and it was found that using this number, the droplet size in the emulsions may well be predicted.
Collapse
Affiliation(s)
- Tamara Athamneh
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany.,Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| | - Adil Amin
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Claudia S Leopold
- Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
37
|
Equilibrium, Thermodynamic, Reuse, and Selectivity Studies for the Bioadsorption of Lanthanum onto Sericin/Alginate/Poly(vinyl alcohol) Particles. Polymers (Basel) 2021; 13:polym13040623. [PMID: 33669541 PMCID: PMC7922337 DOI: 10.3390/polym13040623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
In a scenario of high demand, low availability, and high economic value, the recovery of rare-earth metals from wastewater is economically and environmentally attractive. Bioadsorption is a promising method as it offers simple design and operation. The aim of this study was to investigate lanthanum bioadsorption using a polymeric bioadsorbent of sericin/alginate/poly(vinyl alcohol)-based biocomposite. Batch system assays were performed to evaluate the equilibrium, thermodynamics, regeneration, and selectivity of bioadsorption. The maximum capture amount of lanthanum at equilibrium was 0.644 mmol/g at 328 K. The experimental equilibrium data were better fitted by Langmuir and Dubinin-Radushkevich isotherms. Ion exchange mechanism between calcium and lanthanum (2:3 ratio) was confirmed by bioadsorption isotherms. Thermodynamic quantities showed that the process of lanthanum bioadsorption was spontaneous (-17.586, -19.244, and -20.902 kJ/mol), endothermic (+15.372 kJ/mol), and governed by entropic changes (+110.543 J/mol·K). The reusability of particles was achieved using 0.1 mol/L HNO3/Ca(NO3)2 solution for up to five regeneration cycles. The bioadsorbent selectivity followed the order of lanthanum > cadmium > zinc > nickel. Additionally, characterization of the biocomposite prior to and post lanthanum bioadsorption showed low porosity (9.95 and 12.35%), low specific surface area (0.054 and 0.019 m2/g), amorphous character, and thermal stability at temperatures up to 473 K. This study shows that sericin/ alginate/poly(vinyl alcohol)-based biocomposites are effective in the removal and recovery of lanthanum from water.
Collapse
|
38
|
Zhao Y, Zhang H, Ye Y, Shi J, Yan M, Liu L, Zhu H, Guo J. Structure and performance preparation on alginate-based fibrous aerogel with double network. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1875290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yunhe Zhao
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Hong Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Yongming Ye
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Junfeng Shi
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Ming Yan
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Lingwei Liu
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Haotong Zhu
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
39
|
Fneich F, Ville J, Seantier B, Aubry T. Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology. Carbohydr Polym 2021; 253:117233. [PMID: 33278990 DOI: 10.1016/j.carbpol.2020.117233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Foams were prepared from nanocellulose-based hydrogel precursors using a freeze-drying process. The work mainly aims at investigating the relationships between the mechanical and thermal properties of foams and the rheological properties of their hydrogel precursors, which were characterized in a previous paper. The structure of foams was characterized by SEM and confocal microscopy, their elasticity by compression tests, and their thermal conductivity by hot strip as well as transient pulsed techniques. A strong correlation was shown between the elastic properties of foams and those of their hydrogel precursors, and a minimum thermal conductivity was shown to appear at a cellulose volume fraction corresponding to a transition in viscoelastic properties of hydrogels. Results suggest that foams and hydrogels share common microstructural features, which makes it possible to tune the mechanical and thermal properties of foams by tuning the rheological properties of their hydrogel precursors.
Collapse
Affiliation(s)
- Fatima Fneich
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Julien Ville
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Bastien Seantier
- IRDL UMR CNRS 6027, Université de Bretagne Sud, Centre de Recherche C. Huygens, rue de Saint-Maudé, BP 92116, 56321 Lorient Cedex, France
| | - Thierry Aubry
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France.
| |
Collapse
|
40
|
Shi W, Ching YC, Chuah CH. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. Int J Biol Macromol 2021; 170:751-767. [PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
Collapse
Affiliation(s)
- Wei Shi
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
41
|
A Constitutive Model for Alginate-Based Double Network Hydrogels Cross-Linked by Mono-, Di-, and Trivalent Cations. Gels 2020; 7:gels7010003. [PMID: 33396891 PMCID: PMC7838819 DOI: 10.3390/gels7010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022] Open
Abstract
In this contribution, a micro-mechanically based constitutive model is proposed to describe the nonlinear inelastic rubber-like features of alginate-based double network hydrogel cross-linked via various counterions. To this end, the lengthening of the polysaccharide polymer chain after a fully stretched state is characterized. A polymer chain is firstly considered behaving entropically up to the fully stretched state. Then, enthalpic behavior is accounted for concerning the following lengthening. To calculate enthalpic behavior, the macroscopic material properties, such as elastic modulus, are integrated into the proposed model. Thus, a new energy concept for a polymer chain is proposed. The model is constituted by the proposed energy concept, the network decomposition model, the Arruda–Boyce eight chain model and the network alteration theory. The model is compared against the cyclic tensile test data of alginate-based double network hydrogels cross-linked via mono-, di-, and trivalent cations. Good agreement between the model and experiments is obtained.
Collapse
|
42
|
Bakhtiiari A, Khorshidi R, Yazdian F, Rashedi H, Omidi M. A bioprinted composite hydrogel with controlled shear stress on cells. Proc Inst Mech Eng H 2020; 235:314-322. [PMID: 33334243 DOI: 10.1177/0954411920976682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter - with the help of simulation software - to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.
Collapse
Affiliation(s)
- Amirhossein Bakhtiiari
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Rezvan Khorshidi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
43
|
Soleimanpour M, Tamaddon AM, Kadivar M, Abolmaali SS, Shekarchizadeh H. Fabrication of nanostructured mesoporous starch encapsulating soy-derived phytoestrogen (genistein) by well-tuned solvent exchange method. Int J Biol Macromol 2020; 159:1031-1047. [PMID: 32439450 DOI: 10.1016/j.ijbiomac.2020.05.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022]
Abstract
The present research was concerned with preparation of mesoporous starch (MPS) as a carrier for genistein, a model of poorly water-soluble phytoestrogen isoflavone; and exploration of the impact of different fabrication parameters on structural and loading properties. MPS is considered as a highly porous biomaterial which typically possesses nanometer-sized porous microstructure and low density, providing a large effective specific surface area (SSA) and hydrophilic surface to improve solubility, stability and bioavailability of poorly water-soluble active agents. To fabricate MPS, various concentrations (8-14% w/v) of starch from different sources (corn, potato and tapioca) was used for gel formation and the successive solvent exchange process was performed with use of various ethanol concentrations (40-70% v/v), which were then dried by different techniques (rotary vacuum evaporation, microwave and freeze drying). MPS quality attributes such as SSA, total porous volume, BJH pore diameter and swelling ratio were determined and effects of the fabrication parameters were investigated using L9-Taguchi orthogonal array design. The results indicate that second order polynomial regression models were well fitted for all response variables. Interestingly, the starch components greatly influenced physical properties of MPS. Also, the drying type and ethanol concentration altered significantly the model equations. The overall best fabrication condition (14% corn starch, 100% ethanol concentration in aging step and rotary vacuum drying) resulted in favorable MPS preparation with mean size of 105.4 nm and unimodal distribution. In the next step, genistein was encapsulated in MPS microstructure at different ratios, resulting in high loading capacity and efficiency (44.71% and 79.9%, respectively) at 1:1 weight ratio. Equilibrium adsorption isotherm of genistein was evaluated also by four different kinetics models including Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms. The experimental data were found to be fitted well to the Langmuir model (R2 = 0.989). According to the electron microscopy and XRD analysis, the degree of genistein crystallinity lowered remarkably after the impregnation in to MPS, indicating improved solubility. In-vitro release profile of genistein from MPS in the simulated gastrointestinal buffer solutions (pH 1.2 and 6.8) demonstrated that incorporating genistein into the MPS enhanced the dissolution rate compared with genistein powder. Release kinetic data were fitted to the Higuchi model (R2 = 0.98), indicating diffusion-controlled release mechanism. Altogether, well-tuned MPS fabrication method can be utilized for an efficient encapsulation and dissolution enhancement of poorly soluble phytochemicals, such as genistein.
Collapse
Affiliation(s)
- Marjan Soleimanpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
44
|
Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Alsmadi MM, Obaidat RM, Alnaief M, Albiss BA, Hailat N. Development, In Vitro Characterization, and In Vivo Toxicity Evaluation of Chitosan-Alginate Nanoporous Carriers Loaded with Cisplatin for Lung Cancer Treatment. AAPS PharmSciTech 2020; 21:191. [PMID: 32661587 DOI: 10.1208/s12249-020-01735-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Polysaccharide-based aerogels are promising drug carriers. Being nanoporous with a high specific surface area allows their use as a drug vehicle for various delivery routes. Intratracheal and intravenous administration of free cisplatin causes toxicity in the rat liver, lungs, and kidneys. In this work, microspherical particles based on alginate-chitosan without a traditional crosslinker were evaluated for targeted delivery of cisplatin by intratracheal administration. The aerogel particles were prepared using the emulsion gelation method, followed by supercritical carbon dioxide extraction. Loading of cisplatin on the prepared porous particles was performed by impregnation using supercritical fluid technology. The prepared carrier and the loaded drug were evaluated for drug content, release, and in vivo acute and subacute toxicity. Cisplatin was successfully loaded (percent drug loading > 76%) on the prepared carrier (particle size = 0.433 ± 0.091 μm) without chemically interacting with the carrier and without losing its crystal form. Sixty percent of cisplatin was released within 2 h, and the rest was loaded inside the polymer pores and had a sustained first-order release over 6 h. Loading cisplatin on the carrier developed herein reduced the cisplatin lung toxicity but increased the liver toxicity after intratracheal administration with nephrotoxicity being proportional to cisplatin dose in case of carrier-loaded cisplatin. Moreover, loading cisplatin on the carrier significantly reduced mortality rate and prevented weight loss in rats as compared to free cisplatin in subacute studies after intratracheal administration. Thus, the developed carrier showed high potential for targeted delivery of cisplatin for lung cancer treatment by inhalation. Graphical abstract.
Collapse
|
46
|
Zhang C, Zhu J, Cao Z, Song P, Zhai T. Flow‐induced microchannel structure of the graphene‐based aerogel microspheres and their use as superabsorbents. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chunmei Zhang
- College of Chemistry and Materials Engineering Guiyang University Guiyang China
| | - Jiazhan Zhu
- College of Chemistry and Materials Engineering Guiyang University Guiyang China
| | - Ziting Cao
- College of Chemistry and Materials Engineering Guiyang University Guiyang China
| | - Ping Song
- College of Chemistry and Materials Engineering Guiyang University Guiyang China
| | - Tianliang Zhai
- School of Chemistry and Materials Science Guizhou Education University Guiyang China
| |
Collapse
|
47
|
Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. Int J Biol Macromol 2020; 155:1060-1068. [DOI: 10.1016/j.ijbiomac.2019.11.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
|
48
|
Hatami T, Viganó J, Innocentini Mei LH, Martínez J. Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020; 153:1035-1046. [DOI: 10.1016/j.ijbiomac.2019.10.233] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
|
50
|
Batista MP, Gonçalves VSS, Gaspar FB, Nogueira ID, Matias AA, Gurikov P. Novel alginate-chitosan aerogel fibres for potential wound healing applications. Int J Biol Macromol 2020; 156:773-782. [PMID: 32302631 DOI: 10.1016/j.ijbiomac.2020.04.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022]
Abstract
Aerogels produced from marine polymers, such as chitosan and alginate, are of interest for wound healing applications due to their attractive properties. These properties can be the aerogel's high porosity along with the antimicrobial activity of chitosan or the capacity to provide a moist environment of alginate. The aim of this work was to develop a new route towards hybrid alginate-chitosan aerogel fibres and to evaluate their potential for wound healing applications. The influence of chitosan molecular weight and its content on the fibres characteristics was evaluated. To produce the fibres, the formation of polyelectrolyte complex hydrogels of both polymers was performed by the emulsion-gelation method. Hydrogels were converted in alcogels through a solvent exchange followed by drying with supercritical CO2. Resulting aerogels were observed to be light-weight, fluffy mesoporous fibres with a specific surface area of 162-302 m2/g and specific pore volume of 1.41-2.49 cm3/g. Biocompatibility of the fibres was evaluated, and the result showed that they were non-cytotoxic. Bioactivity of the fibres regarding the ability to close a wound on an in vitro scale and antibacterial activity were also evaluated. Aerogel fibres presented percentages of recovered scratch area of about 75%, higher than the untreated control (~50%) and a clear antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. The obtained results suggest that these alginate-chitosan aerogel fibres could be good candidates for wound healing applications.
Collapse
Affiliation(s)
- M P Batista
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2825 Monte de Caparica, Portugal.
| | - V S S Gonçalves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - F B Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - I D Nogueira
- MicroLab-Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A A Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - P Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany
| |
Collapse
|