1
|
Liu Y, Long M, Wang Y, Liang Z, Dong Y, Qu M, Ge X, Nan Y, Chen Y, Zhou X. Chitosan-alginate/R8 ternary polyelectrolyte complex as an oral protein-based vaccine candidate induce effective mucosal immune responses. Int J Biol Macromol 2024; 275:133671. [PMID: 38971274 DOI: 10.1016/j.ijbiomac.2024.133671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Vaccination is the most effective method for preventing infectious diseases. Oral vaccinations have attracted much attention due to the ability to boost intestinal and systemic immunity. The focus of this study was to develop a poly (lactide-co-glycolide) acid (PLGA)-based ternary polyelectrolyte complex (PEC) with chitosan, sodium alginate, and transmembrane peptides R8 for the delivery of antigen proteins. In this study, the antigen protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis (MAP) antigens HBHA, Ag85B, and Bfra, was combined with R8 to generate self-assembled conjugates. The results showed that PEC presented a cross-linked reticular structure to protect the encapsulated proteins in the simulated gastric fluid. Then, the nanocomposite separated into individual nanoparticles after entering the simulated intestinal fluid. The ternary PEC with R8 promoted the in vivo uptake of antigens by intestinal lymphoid tissue. Moreover, the ternary PEC administered orally to mice promoted the secretion of specific antibodies and intestinal mucosal IgA. In addition, in the mouse models of MAP infection, the ternary PEC enhanced splenic T cell responses, thus reducing bacterial load and liver pathology score. These results suggested that this ternary electrolyte complex could be a promising delivery platform for oral subunit vaccine candidates, not limited to MAP infection.
Collapse
Affiliation(s)
- Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Zhengmin Liang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xin Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yue Nan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yulan Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China.
| |
Collapse
|
2
|
Mohammadpour F, Kamali H, Gholami L, McCloskey AP, Kesharwani P, Sahebkar A. Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin Drug Deliv 2022; 19:1577-1595. [PMID: 36287584 DOI: 10.1080/17425247.2022.2138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Insulin plays a critical role in metabolism modulation including carbohydrate, lipid, and protein metabolism. There is room to improve insulin delivery but optimizing the best carrier remains challenging. Traditional and conventional approaches for insulin delivery do not emulate the normal fate of insulin release in the body. Despite extensive research attempts to overcome this and other challenges, the goal of achieving optimal insulin delivery that emulates the natural system remains unresolved. AREAS COVERED Solid Lipid Nanoparticles (SLNs) may provide a solution, because they are nontoxic, biocompatible, and straightforward to formulate thus providing a promising platform for achieving targeted and controlled delivery of various therapeutic agents. This review aims to provide an overview on the suitability and application of SLNs for insulin delivery. A special emphasis is placed on the biopharmaceutical aspects of insulin loaded SLNs which have not been explored in detail to date. EXPERT OPINION SLNs have proven to be safe and versatile drug delivery systems suitable for insulin delivery and capable of improving the efficacy and pharmacokinetic profile of encapsulated insulin. There is still some work to be done to fully explore SLNs' true potential as drug delivery and specifically insulin delivery vehicles suitable for clinical use.
Collapse
Affiliation(s)
- Fatemeh Mohammadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, 110062, Jamia Hamdard, India.,Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
De Marchi JGB, Cé R, Onzi G, Alves ACS, Santarém N, Cordeiro da Silva A, Pohlmann AR, Guterres SS, Ribeiro AJ. IgG functionalized polymeric nanoparticles for oral insulin administration. Int J Pharm 2022; 622:121829. [PMID: 35580686 DOI: 10.1016/j.ijpharm.2022.121829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
The oral route is the best way to administer a drug; however, fitting peptide drugs in this route is a major challenge. In insulin cases, less than 0.5% of the administered dose achieves systemic circulation. Oral delivery by nanoparticles can increase insulin permeability across the intestinal epithelium while maintaining its structure and activity until release in the gut. This system can be improved to increase permeability across intestinal cells through active delivery. This study aimed to improve a nanoparticle formulation by promoting functionalization of its surface with immunoglobulin G to increase its absorption by intestinal epithelium. The characterization of formulations showed an adequate size and a good entrapment efficiency. Functionalized nanoparticles led to a desirable increase in insulin release time. Differential scanning calorimetry, infrared spectroscopy and paper chromatography proved the interactions of nanoparticle components. With immunoglobulin G, the nanoparticle size was slightly increased, which did not show aggregate formation. The developed functionalized nanoparticle formulation proved to be adequate to carry insulin and potentially increase its internalization by epithelial gut cells, being a promising alternative to the existing formulations for orally administered low-absorption peptides.
Collapse
Affiliation(s)
- J G B De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal
| | - R Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A C S Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - N Santarém
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Cordeiro da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - S S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal.
| |
Collapse
|
4
|
Ali FR, Shoaib MH, Ali SA, Yousuf RI, Siddiqui F, Raja R, Jamal HS, Saleem MT, Ahmed K, Imtiaz MS, Ahmad M, Sarfaraz S, Ahmed FR. A nanoemulsion based transdermal delivery of insulin: Formulation development, optimization, in-vitro permeation across Strat-M® membrane and its pharmacokinetic/pharmacodynamic evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
Cancer is the second leading cause of death worldwide, and the search for specialised therapy options has been a challenge for decades. The emergence of active targeted therapies provides the opportunity to treat cancerous tissues without harming healthy ones due to peculiar physiological changes. Herein, peptides and peptide analogs have been gaining a lot of attention over the last decade, especially for the on-site delivery of therapeutics to target tissues in order to achieve efficient and reliable cancer treatment. Combining peptides with highly efficient drug delivery platforms could potentially eliminate off-target adverse effects encountered during active targeting of conventional chemotherapeutics. Small size, ease of production and characterisation, low immunogenicity and satisfactory binding affinity of peptides offer some advantages over other complex targeting moiety, no wonder the market of peptide-based drugs continues to expand expeditiously. It is estimated that the global peptide drug market will be worth around USD 48.04 billion by 2025, with a compound annual growth rate of 9.4%. In this review, the current state of art of peptide-based therapeutics with special interest on tumour targeting peptides has been discussed. Moreover, various active targeting strategies such as the use functionalised peptides or peptide analogs are also elaborated.
Collapse
Affiliation(s)
- Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Li S, Liang N, Yan P, Kawashima Y, Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydr Polym 2021; 252:117202. [DOI: 10.1016/j.carbpol.2020.117202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
|
7
|
Zhang Y, Zhang H, Ghosh D, Williams RO. Just how prevalent are peptide therapeutic products? A critical review. Int J Pharm 2020; 587:119491. [PMID: 32622810 PMCID: PMC10655677 DOI: 10.1016/j.ijpharm.2020.119491] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
How prevalent are peptide therapeutic products? How innovative are the formulations used to deliver peptides? This review provides a critical analysis of therapeutic peptide products and the formulations approved by the United States Food and Drug administration (FDA), the European Medicines Agency (EMA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). This review also provides an in-depth analysis of dosage forms and administration routes for delivering peptide therapeutics, including injectables, oral dosage forms, and other routes of administration. We discuss the function of excipients in parenteral formulations in detail, since most peptide therapeutics are parenterally administered. We provide case studies of alternate delivery routes and dosage forms. Based on our analysis, therapeutic peptides administered as injectables remain the most commonly used dosage forms, particularly in the form of subcutaneous, intravenous, or intramuscular injections. In addition, therapeutic peptides are formulated to achieve prolonged release, often through the use of polymer carriers. The limited number of oral therapeutic peptide products and their poor absorption and subsequent low bioavailability indicate a need for new technologies to broaden the formulation design space. Therapeutic peptide products may also be delivered through other administration routes, including intranasal, implant, and sublingual routes. Therefore, an in-depth understanding of how therapeutic peptides are now formulated and administered is essential to improve peptide delivery, improve patient compliance, and reduce the healthcare burden for these crucial therapeutic agents.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Parvez S, Yadagiri G, Gedda MR, Singh A, Singh OP, Verma A, Sundar S, Mudavath SL. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep 2020; 10:12243. [PMID: 32699361 PMCID: PMC7376178 DOI: 10.1038/s41598-020-69276-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
The development of an effective oral therapeutics is an immediate need for the control and elimination of visceral leishmaniasis (VL). We exemplify the preparation and optimization of 2-hydroxypropyl-β-cyclodextrin (HPCD) modified solid lipid nanoparticles (SLNs) based oral combinational cargo system of Amphotericin B (AmB) and Paromomycin (PM) against murine VL. The emulsion solvent evaporation method was employed to prepare HPCD modified dual drug-loaded solid lipid nanoparticles (m-DDSLNs). The optimized formulations have a mean particle size of 141 ± 3.2 nm, a polydispersity index of 0.248 ± 0.11 and entrapment efficiency for AmB and PM was found to be 96% and 90% respectively. The morphology of m-DDSLNs was confirmed by scanning electron microscopy and transmission electron microscopy. The developed formulations revealed a sustained drug release profile upto 57% (AmB) and 21.5% (PM) within 72 h and were stable at both 4 °C and 25 °C during short term stability studies performed for 2 months. Confocal laser scanning microscopy confirmed complete cellular internalization of SLNs within 24 h of incubation. In vitro cytotoxicity study against J774A.1 macrophage cells confirmed the safety and biocompatibility of the developed formulations. Further, m-DDSLNs did not induce any hepatic/renal toxicities in Swiss albino mice. The in vitro simulated study was performed to check the stability in simulated gastric fluids and simulated intestinal fluids and the release was found almost negligible. The in vitro anti-leishmanial activity of m-DDSLNs (1 µg/ml) has shown a maximum percentage of inhibition (96.22%) on intra-cellular amastigote growth of L. donovani. m-DDSLNs (20 mg/kg × 5 days, p.o.) has significantly (P < 0.01) reduced the liver parasite burden as compared to miltefosine (3 mg/kg × 5 days, p.o.) in L. donovani-infected BALB/c mice. This work suggests that the superiority of as-prepared m-DDSLNs as a promising approach towards the oral delivery of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Mallikarjuna Rao Gedda
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, 244001, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India.
| |
Collapse
|
9
|
Momoh MA, Franklin KC, Agbo CP, Ugwu CE, Adedokun MO, Anthony OC, Chidozie OE, Okorie AN. Microemulsion-based approach for oral delivery of insulin: formulation design and characterization. Heliyon 2020; 6:e03650. [PMID: 32258491 PMCID: PMC7113630 DOI: 10.1016/j.heliyon.2020.e03650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Oral delivery of insulin provides a good alternative because it is non-invasive and patient-friendly. However, multiple challenges affected this route. To overcome barriers for oral delivery of insulin, we aimed to develop a novel insulin-loaded microemulsion system based on snail mucin for oral administration. The strategy in the novel system of using mucin loading insulin into the inner core of prepared water in oil microemulsion to provide sustained released, increased in vivo stability and enhanced drug absorption in the gastrointestinal tract. We report how microemulsion composed of varying ratios of snail mucin and Tween® 80 (1:9–9:1) using oil/water emulsion preparation method influenced insulin performance after oral administration. The results obtained include an encapsulation efficiency of above 70 %; in vitro release was sustained over 10 h and in vivo evaluations in diabetic rat model shows that insulin-loaded microencapsulation effectively reduced blood glucose levels over a period >8 h after oral administration. Therefore, we suggest that the developed formulation for oral insulin can be a promising alternative dosage form for oral protein delivery.
Collapse
Affiliation(s)
- Mumuni A Momoh
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Kenechukwu C Franklin
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chinazom P Agbo
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Calister E Ugwu
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Musiliu O Adedokun
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy University of Uyo, Akwa-Ibom State, Nigeria
| | - Ofomata C Anthony
- National Centre for Energy Research and Development, University of Nigeria Nsukka, Nigeria
| | - Omeje E Chidozie
- Drug Delivery Research Unit, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences University of Nigeria Nsukka, Enugu State, Nigeria
| | - Augustine N Okorie
- Department of Pharmacology and Toxicology University of University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
10
|
Feng XP, Na X, Guo YF, Qian R, Zhang JQ, Chen Z, Yang R. Host-guest inclusion system of 1, 2-O, O-Diacetyllycorine (DALY) and α-cyclodextrin: Preparation, characterization, inclusion modes and anticancer activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rehmani S, Dixon JE. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides 2018; 100:24-35. [PMID: 29412825 DOI: 10.1016/j.peptides.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023]
Abstract
Oral delivery of insulin and other anti-diabetic peptides is inhibited by low intestinal absorption caused by the poor permeability across cellular membranes and the susceptibility to enzymatic degradation in the gastrointestinal tract. Cell-penetrating peptides (CPPs) have been investigated for a number of years as oral absorption enhancers for hydrophilic macromolecules by electrostatic or covalent conjugation on in conjunction with nanotechnology. Endogenous cellular uptake mechanisms present in the intestine can be exploited by engineering peptide conjugates that transcytose; entering cells by endocytosis and leaving by exocytosis. Efficiently delivering hydrophilic and sensitive peptide drugs to safely transverse the digestive barrier with no effect on gut physiology using remains a key driver for formulation research. Here we review the use of CPP and transcytosis peptide approaches, their modification and use in delivering anti-diabetic peptides (with the primary example of Insulin and engineered homologues) by direct oral administration to treat diabetes and associated metabolic disorders.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
12
|
Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery vehicles across biological barriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018; 48:89-111. [PMID: 29963321 PMCID: PMC6023411 DOI: 10.1007/s40005-017-0374-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
Abstract
Peptides are small biological molecules that are attractive in drug delivery and materials engineering for applications including therapeutics, molecular building blocks and cell-targeting ligands. Peptides are small but can possess complexity and functionality as larger proteins. Due to their intrinsic properties, peptides are able to overcome the physiological and transport barriers presented by diseases. In this review, we discuss the progress of identifying and using peptides to shuttle across biological barriers and facilitate transport of drugs and drug delivery systems for improved therapy. Here, the focus of this review is on rationally designed, phage display peptides, and even endogenous peptides as carriers to penetrate biological barriers, specifically the blood-brain barrier(BBB), the gastrointestinal tract (GI), and the solid tumor microenvironment (T). We will discuss recent advances of peptides as drug carriers in these biological environments. From these findings, challenges and potential opportunities to iterate and improve peptide-based approaches will be discussed to translate their promise towards the clinic to deliver drugs for therapeutic efficacy.
Collapse
Affiliation(s)
- Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Rashmi Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| |
Collapse
|
13
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
14
|
A cell-penetrating peptide mediated chitosan nanocarriers for improving intestinal insulin delivery. Carbohydr Polym 2017; 174:182-189. [DOI: 10.1016/j.carbpol.2017.06.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/20/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022]
|
15
|
Khandia R, Munjal A, Kumar A, Singh G, Karthik K, Dhama K. Cell Penetrating Peptides: Biomedical/Therapeutic Applications with Emphasis as Promising Futuristic Hope for Treating Cancer. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.677.689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Qiu C, Gao LN, Yan K, Cui YL, Zhang Y. A promising antitumor activity of evodiamine incorporated in hydroxypropyl-β-cyclodextrin: pro-apoptotic activity in human hepatoma HepG2 cells. Chem Cent J 2016; 10:46. [PMID: 27458481 PMCID: PMC4959055 DOI: 10.1186/s13065-016-0191-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Evodiamine has gained wide interests recently because of its antitumor activities. However, a superior bioavailability is required to achieve better efficacy due to its poor water solubility. The aim of this study was to enhance the evodiamine's aqueous solubility by preparing evodiamine/hydroxypropyl-β-cyclodextrin (EVO/HP-β-CD) inclusion complex, which is incorporated evodiamine into HP-β-CD, and compare the antitumor activities before and after inclusion with HP-β-CD in human hepatoma HepG2 cells. RESULTS The EVO/HP-β-CD inclusion complexes were prepared by the kneading method and structurally characterized. P-glycoprotein ATPase assays firstly demonstrated that evodiamine was a substrate of P-glycoprotein, while HP-β-CD and EVO/HP-β-CD inclusion complexes inhibited P-glycoprotein by blocking P-glycoprotein ATPase activity. The EVO/HP-β-CD inclusion complexes may be a promising anticancer drug candidate without drug resistance. After given evodiamine or EVO/HP-β-CD inclusion complexes intervention, cell viability evaluation indicated that the half inhibition concentration of evodiamine and EVO/HP-β-CD inclusion complexes on HepG2 cells was 8.516 and 0.977 μM, respectively. The caspase-3 enzyme activity analysis and Annexin V/PI double-staining revealed that EVO/HP-β-CD inclusion complexes possessed better antitumor activities than evodiamine. Additionally, Hoechst 33258 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay demonstrated that EVO/HP-β-CD inclusion complexes induced HepG2 cell apoptosis more effectively than evodiamine. CONCLUSIONS The improved antitumor activities of evodiamine were attributed to the enhanced solubility and P-glycoprotein inhibition by HP-β-CD. These results are promising for the drug administration of EVO/HP-β-CD inclusion complexes to enhance the bioavailability of evodiamine in vivo.
Collapse
Affiliation(s)
- Chao Qiu
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 YuQuan Road, Nankai District, Tianjin, 300193 China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 China
| | - Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 YuQuan Road, Nankai District, Tianjin, 300193 China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 China
| | - Kuo Yan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 YuQuan Road, Nankai District, Tianjin, 300193 China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 China
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 YuQuan Road, Nankai District, Tianjin, 300193 China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 China
| | - Ye Zhang
- Department of Pharmaceutical Sciences, Zibo Vocational Institute, Zibo, 255314 Shandong China
| |
Collapse
|
17
|
Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhang Y, Li L, Han M, Hu J, Zhang L. Amphiphilic Lipopeptide-Mediated Transport of Insulin and Cell Membrane Penetration Mechanism. Molecules 2015; 20:21569-83. [PMID: 26633348 PMCID: PMC6332136 DOI: 10.3390/molecules201219771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/25/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022] Open
Abstract
Arginine octamer (R8) and its derivatives were developed in this study for the enhanced mucosal permeation of insulin. R8 was substituted with different aminos, then modified with stearic acid (SA). We found that the SAR6EW-insulin complex had stronger intermolecular interactions and higher complex stability. The amphiphilic lipopeptide (SAR6EW) was significantly more efficient for the permeation of insulin than R8 and R6EW both in vitro and in vivo. Interestingly, different cellular internalization mechanisms were observed for the complexes. When the effectiveness of the complexes in delivering insulin in vivo was examined, it was found that the SAR6EW-insulin complex provided a significant and sustained (six hours) reduction in the blood glucose levels of diabetic rats. The improved absorption could be the comprehensive result of stronger intermolecular interactions, better enzymatic stability, altered internalization pathways, and increased transportation efficacy. In addition, no sign of toxicity was observed after consecutive administrations of SAR6EW. These results demonstrate that SAR6EW is a promising epithelium permeation enhancer for insulin and suggest that the chemical modification of cell-penetrating peptides is a feasible strategy to enhance their potential.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Lei Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Mei Han
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Jiaoyin Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Liefeng Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
19
|
Wang LL, Zheng WS, Chen SH, Han YX, Jiang JD. Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluorouracil hydroxypropyl-β-cyclodextrin complex. Carbohydr Polym 2015; 137:9-18. [PMID: 26686100 DOI: 10.1016/j.carbpol.2015.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022]
Abstract
We have developed a novel 5-Fluorouracil (5FU) formulation for rectal application to improve its therapeutic efficiency in colorectal cancer. The results indicated that 5FU formed an inclusion complex with Hydroxypropyl-β-Cyclodextrin (HP-β-CD). The stoichiometry of the complex was 1:1, with apparent stability constant of 100.4M(-1). After investigating physicochemical properties of the 5FU-HP-β-CD complex encapsulated with thermo-reversible gelling film, the optimized formulation P407/P188/HPMC/5FU-HP-β-CD (18.5/2.5/0.2/15%) was selected and evaluated. The result showed that the 5FU-HP-β-CD complex increased the solubility of 5FU, prolonged and enhanced its releasing. As compared to the raw drug, the transport efficiency of the 5FU-HP-β-CD complex itself or entrapped in thermo-reversible gelling film were respectively 7.3- and 6.8-fold increased, and the cellular uptake of 5-FU 4.9- and 5.4-fold elevated. There was no irritation or damage to rectal sites in the 10h treatment period. Therefore, this HP-β-CD based formulation might improve the therapeutic effect of 5FU on colon-rectal cancer.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wen-Sheng Zheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shao-Hua Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan-Xing Han
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Jian-Dong Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
20
|
Valentini SR, Nogueira AC, Fenelon VC, Sato F, Medina AN, Santana RG, Baesso ML, Matioli G. Insulin complexation with hydroxypropyl-beta-cyclodextrin: Spectroscopic evaluation of molecular inclusion and use of the complex in gel for healing of pressure ulcers. Int J Pharm 2015; 490:229-39. [DOI: 10.1016/j.ijpharm.2015.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/23/2015] [Accepted: 05/13/2015] [Indexed: 12/27/2022]
|
21
|
Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RMF, de Baptista Veiga FJ, Ribeiro AJ. Intestinal absorption of insulin nanoparticles: Contribution of M cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1139-51. [DOI: 10.1016/j.nano.2014.02.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/19/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
22
|
Zhang L, Zhang Z, Li N, Wang N, Wang Y, Tang S, Xu L, Ren Y. Synthesis and evaluation of a novel β-cyclodextrin derivative for oral insulin delivery and absorption. Int J Biol Macromol 2013; 61:494-500. [DOI: 10.1016/j.ijbiomac.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022]
|
23
|
Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release 2012; 165:129-38. [PMID: 23159827 DOI: 10.1016/j.jconrel.2012.11.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/04/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
The search for an effective and reliable oral insulin delivery system has been a major challenge facing pharmaceutical scientists for over many decades. Even though innumerable carrier systems that protect insulin from degradation in the GIT with improved membrane permeability and biological activity have been developed, yet a clinically acceptable device is not available for human application. Efforts in this direction are continuing at an accelerated speed. One of the preferred systems widely explored is based on polymeric hydrogels that protect insulin from enzymatic degradation in acidic stomach and delivers effectively in the intestine. Swelling and deswelling mechanisms of the hydrogel under varying pH conditions of the body control the release of insulin. The micro and nanoparticle (NP) hydrogel devices based on biopolymers have been widely explored, but their applications in human insulin therapy are still far from satisfactory. The present review highlights the recent findings on hydrogel-based devices for oral delivery of insulin. Literature data are critically assessed and results from different laboratories are compared.
Collapse
Affiliation(s)
- Kiran Chaturvedi
- Soniya Education Trust's College of Pharmacy, S.R. Nagar, Dharwad, India
| | | | | | | |
Collapse
|