1
|
Chalella Mazzocato M, Jacquier JC. Recent Advances and Perspectives on Food-Grade Immobilisation Systems for Enzymes. Foods 2024; 13:2127. [PMID: 38998633 PMCID: PMC11241248 DOI: 10.3390/foods13132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The use of enzyme immobilisation is becoming increasingly popular in beverage processing, as this method offers significant advantages, such as enhanced enzyme performance and expanded applications, while allowing for easy process termination via simple filtration. This literature review analysed approximately 120 articles, published on the Web of Science between 2000 and 2023, focused on enzyme immobilisation systems for beverage processing applications. The impact of immobilisation on enzymatic activity, including the effects on the chemical and kinetic properties, recyclability, and feasibility in continuous processes, was evaluated. Applications of these systems to beverage production, such as wine, beer, fruit juices, milk, and plant-based beverages, were examined. The immobilisation process effectively enhanced the pH and thermal stability but caused negative impacts on the kinetic properties by reducing the maximum velocity and Michaelis-Menten constant. However, it allowed for multiple reuses and facilitated continuous flow processes. The encapsulation also allowed for easy process control by simplifying the removal of the enzymes from the beverages via simple filtration, negating the need for expensive heat treatments, which could result in product quality losses.
Collapse
Affiliation(s)
- Marcella Chalella Mazzocato
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
| | - Jean-Christophe Jacquier
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Núñez-Serrano A, García-Reyes RB, Solís-Pereira S, García-González A. Production and immobilization of pectinases from Penicillium crustosum in magnetic core-shell nanostructures for juice clarification. Int J Biol Macromol 2024; 263:130268. [PMID: 38387627 DOI: 10.1016/j.ijbiomac.2024.130268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Global market of food enzymes is held by pectinases, mostly sourced from filamentous fungi via submerged fermentation. Given the one-time use nature of enzymes to clarify juices and wines, there is a crucial need to explore alternatives for enzyme immobilization, enabling their reuse in food applications. In this research, an isolated fungal strain (Penicillium crustosum OR889307) was evaluated as a new potential pectinase producer in submerged fermentation. Additionally, the enzyme was immobilized in magnetic core-shell nanostructures for juice clarification. Findings revealed that Penicillium crustosum exhibited enzymatic activities higher than other Penicillium species, and pectinase production was enhanced with lemon peel as a cosubstrate in submerged fermentation. The enzyme production (548.93 U/mL) was optimized by response surface methodology, determining the optimal conditions at 35 °C and pH 6.0. Subsequently, the enzyme was covalently immobilized on synthesized magnetic core-shell nanoparticles. The immobilized enzyme exhibited superior stability at higher temperatures (50 °C) and acidic conditions (pH 4.5). Finally, the immobilized pectinases decreased 30 % the orange juice turbidity and maintained 84 % of the enzymatic activity after five consecutive cycles. In conclusion, Penicillium crustosum is a proven pectinase producer and these enzymes immobilized on functionalized nanoparticles improve the stability and reusability of pectinase for juice clarification.
Collapse
Affiliation(s)
- Arely Núñez-Serrano
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Refugio Bernardo García-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Sara Solís-Pereira
- Tecnológico Nacional de México/I.T.Mérida. Unidad de Posgrado e Investigación. Av. Tecnológico Km 5 S/N C.P. 97118, Mérida, Yucatán, México
| | - Alcione García-González
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
3
|
Gui Y, Wu Y, Shu T, Hou Z, Hu Y, Li W, Yu L. Multi-point immobilization of GH 11 endo-β-1,4-xylanase on magnetic MOF composites for higher yield of xylo-oligosaccharides. Int J Biol Macromol 2024; 260:129277. [PMID: 38211918 DOI: 10.1016/j.ijbiomac.2024.129277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
GH 11 endo-β-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqi Hou
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaofeng Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
da Silva PM, Esparza-Flores EE, Virgili AH, de Menezes EW, Fernandez-Lafuente R, Dal Magro L, Rodrigues RC. Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study. Foods 2023; 12:3919. [PMID: 37959038 PMCID: PMC10647825 DOI: 10.3390/foods12213919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This study investigated the impact of a support matrix and active group on the support to the nutritional properties of orange juice after juice clarification. Pectinase was immobilized on chitosan and aminated silica supports, activated with genipin or glutaraldehyde, and applied for juice clarification. The effects on various juice properties, including reducing sugars, total soluble solids, vitamin C, and phenolic compounds, juice color, and pH, were evaluated. The results revealed that the immobilization on chitosan activated using genipin resulted in the highest biocatalyst activity (1211.21 U·g-1). The juice treatments using the biocatalysts led to turbidity reduction in the juice (up to 90%), with the highest reductions observed in treatments involving immobilized enzyme on chitosan. Importantly, the enzymatic treatments preserved the natural sugar content, total soluble solids, and pH of the juice. Color differences between treated and raw juice samples were especially relevant for those treated using enzymes, with significant differences in L* and b*, showing loss of yellow vivid color. Analysis of phenolic compounds and vitamin C showed no significant alterations after the enzymatic treatment of the raw juice. According to our results, the clarification of orange juice using immobilized enzymes can be a compromise in turbidity reduction and color reduction to maintain juice quality.
Collapse
Affiliation(s)
- Pâmela M. da Silva
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| | - Eli Emanuel Esparza-Flores
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| | - Anike H. Virgili
- LSS—Laboratory of Solids and Surfaces, Instituto de Química, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil; (A.H.V.); (E.W.d.M.)
| | - Eliana W. de Menezes
- LSS—Laboratory of Solids and Surfaces, Instituto de Química, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil; (A.H.V.); (E.W.d.M.)
| | | | - Lucas Dal Magro
- Instituto Federal de Educação Ciência e Tecnologia Sul-Rio-Grandense—IFSul, Pelotas 96015-360, RS, Brazil;
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| |
Collapse
|
6
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
7
|
Chen X, Tian Z, Zhou H, Zhou G, Cheng H. Enhanced Enzymatic Performance of β-Mannanase Immobilized on Calcium Alginate Beads for the Generation of Mannan Oligosaccharides. Foods 2023; 12:3089. [PMID: 37628088 PMCID: PMC10453027 DOI: 10.3390/foods12163089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mannan oligosaccharides (MOSs) are excellent prebiotics that are usually obtained via the enzymatic hydrolysis of mannan. In order to reduce the cost of preparing MOSs, immobilized enzymes that demonstrate good performance, require simple preparation, and are safe, inexpensive, and reusable must be developed urgently. In this study, β-mannanase was immobilized on calcium alginate (CaAlg). Under the optimal conditions of 320 U enzyme addition, 1.6% sodium alginate, 2% CaCl2, and 1 h of immobilization time, the immobilization yield reached 68.3%. The optimum temperature and pH for the immobilized β-mannanase (Man-CaAlg) were 75 °C and 6.0, respectively. The Man-CaAlg exhibited better thermal stability, a high degree of pH stability, and less substrate affinity than free β-mannanase. The Man-CaAlg could be reused eight times and retained 70.34% of its activity; additionally, the Man-CaAlg showed 58.17% activity after 30 days of storage. A total of 7.94 mg/mL of MOSs, with 4.94 mg/mL of mannobiose and 3.00 mg/mL of mannotriose, were generated in the oligosaccharide production assay. It is believed that this convenient and safe strategy has great potential in the important field of the use of immobilized β-mannanase for the production of mannan oligosaccharides.
Collapse
Affiliation(s)
- Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Zhuang Tian
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Haina Cheng
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Behram T, Pervez S, Nawaz MA, Ahmad S, Jan AU, Rehman HU, Ahmad S, Khan NM, Khan FA. Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent. Molecules 2023; 28:molecules28010404. [PMID: 36615596 PMCID: PMC9823745 DOI: 10.3390/molecules28010404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
To increase its operational stability and ongoing reusability, B. subtilis pectinase was immobilized on iron oxide nanocarrier. Through co-precipitation, magnetic iron oxide nanoparticles were synthesized. Scanning electron microscopy (SEM) and energy dispersive electron microscopy (EDEX) were used to analyze the nanoparticles. Pectinase was immobilized using glutaraldehyde as a crosslinking agent on iron oxide nanocarrier. In comparison to free pectinase, immobilized pectinase demonstrated higher enzymatic activity at a variety of temperatures and pH levels. Immobilization also boosted pectinase's catalytic stability. After 120 h of pre-incubation at 50 °C, immobilized pectinase maintained more than 90% of its initial activity due to the iron oxide nanocarrier, which improved the thermal stability of pectinase at various temperatures. Following 15 repetitions of enzymatic reactions, immobilized pectinase still exhibited 90% of its initial activity. According to the results, pectinase's catalytic capabilities were enhanced by its immobilization on iron oxide nanocarrier, making it economically suitable for industrial use.
Collapse
Affiliation(s)
- Tayyaba Behram
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
- Correspondence: or
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Amin Ullah Jan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Haneef Ur Rehman
- Department of Natural and Basic Sciences, University of Turbat, Kech, Turbat 92600, Pakistan
| | - Shahbaz Ahmad
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nasir Mehmood Khan
- Department of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Farman Ali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| |
Collapse
|
9
|
Kamal S, Rehman S, Bibi I, Akhter N, Amir R, Alsanie WF, Iqbal HMN. Graphene oxide/chitosan composites as novel support to provide high yield and stable formulations of pectinase for industrial applications. Int J Biol Macromol 2022; 220:683-691. [PMID: 35987366 DOI: 10.1016/j.ijbiomac.2022.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
An extracellular pectinase from a mixed consortium of Bacillus sp. (BSP) was immobilized onto graphene oxide/chitosan composite (GO/CS) through covalent binding to enhance its recycling and operational stability features. Different parameters were optimized, including cross-linker concentration (%), time, pH, and GO/CS-pectinase ratios. GO/CS-pectinase was further characterized by FT-IR and XRD. The activity of GO/CS-pectinase was reached up to 804 μmolmin-1 with an immobilization efficiency of 80.64 ± 1.15 % under optimum conditions. GO/CS-pectinase exhibited a 3.0-folds higher half-life (t1/2) than free pectinase at 50, 55, and 60 °C, respectively. The Vmax and KM values of GO/CS-pectinase were found to be nearly equal to the free pectinase indicating that conformational flexibility was retained. Kd, t1/2, ∆G*, ∆H*, and ∆S* of both free pectinase and GO/CS-pectinase was 0.0339 & 0.0721 min-1, 9.62 and 40.44 min, 81.35, 90.72 kJmol-1, 47.098 & 63.635 kJmol-1, -102.86 & -81.340 Jmole-1 K-1. SEM morphological analysis further confirmed the successful binding of pectinase with GO/CS, which retained about 92 % of its original catalytic activity after ten consecutive reaction cycles. Finally, GO/CS-pectinase was employed for guava juice clarification which exhibited the turbidity reduction up to 81 % after 75 min of treatment.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan.
| | - Saima Rehman
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhter
- College of Allied Health Professionals, Faculty of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Rija Amir
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
10
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
11
|
El-Shora HM, El-Sharkawy RM, Khateb AM, Darwish DB. Production and immobilization of β-glucanase from Aspergillus niger with its applications in bioethanol production and biocontrol of phytopathogenic fungi. Sci Rep 2021; 11:21000. [PMID: 34697353 PMCID: PMC8545931 DOI: 10.1038/s41598-021-00237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities. Herein, the specific objectives of the present study were to purify, characterize and immobilize β-glucanase from Aspergillus niger using covalent binding and cross linking techniques. The evaluation of β-glucanase in hydrolysis of different lignocellulosic wastes with subsequent bioethanol production and its capability in biocontrol of pathogenic fungi was investigated. Upon nutritional bioprocessing, β-glucanase production from A. niger EG-RE (MW390925.1) preferred ammonium nitrate and CMC as the best nitrogen and carbon sources, respectively. The soluble enzyme was purified by (NH4)2SO4, DEAE-Cellulose and Sephadex G200 with 10.33-fold and specific activity of 379.1 U/mg protein. Tyrosyl, sulfhydryl, tryptophanyl and arginyl were essential residues for enzyme catalysis. The purified β-glucanase was immobilized on carrageenan and chitosan with appreciable yield. However, the cross-linked enzyme exhibited superior activity along with remarkable improved thermostability and operational stability. Remarkably, the application of the above biocatalyst proved to be a promising candidate in liberating the associate lignocellulosic reducing sugars, which was utilized for ethanol production by Saccharomyces cerevisiae. The purified β-glucanase revealed an inhibitory effect on the growth of two tested phytopathogens Fusarium oxysporum and Penicillium digitatum.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Aiah M Khateb
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Doaa B Darwish
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
12
|
Zhang S, Bilal M, Zdarta J, Cui J, Kumar A, Franco M, Ferreira LFR, Iqbal HMN. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res Int 2021; 140:109979. [PMID: 33648214 DOI: 10.1016/j.foodres.2020.109979] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Pectinases are the emerging enzymes of the biotechnology industry with a 25% share in the worldwide food and beverage enzyme market. These are green and eco-friendly tools of nature and hold a prominent place among the commercially produced enzymes. Pectinases exhibit applications in various industrial bioprocesses, such as clarification of fruit juices and wine, degumming, and retting of plant fibers, extraction of antioxidants and oil, fermentation of tea/coffee, wastewater remediation, modification of pectin-laden agro-industrial waste materials for high-value products biosynthesis, manufacture of cellulose fibres, scouring, bleaching, and size reduction of fabric, cellulosic biomass pretreatment for bioethanol production, etc. Nevertheless, like other enzymes, pectinases also face the challenges of low operational stability, recoverability, and recyclability. To address the above-mentioned problems, enzyme immobilization has become an eminently promising approach to improve their thermal stability and catalytic characteristics. Immobilization facilitates easy recovery and recycling of the biocatalysts multiple times, leading to enhanced performance and commercial feasibility.In this review, we illustrate recent developments on the immobilization of pectinolytic enzymes using polymers and nanostructured materials-based carrier supports to constitute novel biocatalytic systems for industrial exploitability. The first section reviewed the immobilization of pectinases on polymers-based supports (ca-alginate, chitosan, agar-agar, hybrid polymers) as a host matrix to construct robust pectinases-based biocatalytic systems. The second half covers nanostructured supports (nano-silica, magnetic nanostructures, hybrid nanoflowers, dual-responsive polymeric nanocarriers, montmorillonite clay), and cross-linked enzyme aggregates for enzyme immobilization. The biotechnological applications of the resulted immobilized robust pectinases-based biocatalytic systems are also meticulously vetted. Finally, the concluding remarks and future recommendations are also given.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
13
|
Mohamed AH, Balbool BA, Abdel-Azeem AM. Aspergillus from Different Habitats and Their Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Suhaimi H, Dailin DJ, Malek RA, Hanapi SZ, Ambehabati KK, Keat HC, Prakasham S, Elsayed EA, Misson M, El Enshasy H. Fungal Pectinases: Production and Applications in Food Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Gao M, Li X, Qi D, Lin J. Green Synthesis of Porous Spherical Reduced Graphene Oxide and Its Application in Immobilized Pectinase. ACS OMEGA 2020; 5:32706-32714. [PMID: 33376908 PMCID: PMC7758952 DOI: 10.1021/acsomega.0c05078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Pectinase is widely used in juice production, food processes, and other fields. However, owing to poor stability, free pectinase is difficult to separate from a substrate after hydrolysis and cannot be reused, and thus its industrial use is limited. Immobilized pectinase can solve these problems well. We prepared a carrier material of immobilized enzyme, which is called porous spherical reduced graphene oxide (rGO) with a rich pore structure, large specific surface area, strong hardness, and good biocompatibility to enzyme. Then, we evaluated the performance of the porous spherical rGO immobilized pectinase and characterized its structure by IR, XRD, and SEM. Using this material as a carrier of immobilized enzyme improves the load and catalytic activity of the enzyme. After 10 times of continuous use, the porous spherical rGO immobilized enzyme still maintained its initial relative enzyme activity at around 87%, indicating that immobilized pectinase had a stronger cycling stability, and its thermal stability, acid-base tolerance, and storage stability were superior to those of free pectinase. The results were compared with those of other studies on immobilized pectinase. The relative activity of pectinase immobilized by porous spherical rGO was at a high level after 10 consecutive uses. Overall, the spherical rGO is an excellent immobilized enzyme carrier material.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of
Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur
Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xiaoyuan Li
- Key Laboratory of
Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur
Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Danping Qi
- Key Laboratory of
Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur
Autonomous Region, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Jiangli Lin
- Key Laboratory of Oil and Gas Fine Chemicals,
Ministry of Education & Xinjiang Uyghur Autonomous Region, School
of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
16
|
Qi D, Gao M, Li X, Lin J. Immobilization of Pectinase onto Porous Hydroxyapatite/Calcium Alginate Composite Beads for Improved Performance of Recycle. ACS OMEGA 2020; 5:20062-20069. [PMID: 32832760 PMCID: PMC7439264 DOI: 10.1021/acsomega.0c01625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Pectinase is an industrially important enzyme widely used in juice production, food processing, and other fields. The use of immobilized enzyme systems that allow several reuses of pectinase is beneficial to these fields. Herein, we developed mechanically strong and recyclable porous hydroxyapatite/calcium alginate composite beads for pectinase immobilization. Under the optimal immobilization parameters of 40 °C, pH 4.0, 5.2 U/L pectinase concentration and 4 h reaction time, pectinase showed the highest enzymatic activity (8995 U/mg) and immobilization yield (91%). The thermal stability and pH tolerance of the immobilized pectinase were superior to those of free pectinase. The storage stability of the free and immobilized pectinase for 30 days retained 20 and 50% of their initial activity, respectively. Therefore, these composite beads might be promising support for the efficient immobilization of industrially important enzymes.
Collapse
|
17
|
Sahin S, Ozmen I. Immobilization of pectinase on Zr‐treated pumice for fruit juice industry. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Selmihan Sahin
- Arts and Sciences Faculty, Department of Chemistry Suleyman Demirel University Isparta Turkey
| | - Ismail Ozmen
- Arts and Sciences Faculty, Department of Chemistry Suleyman Demirel University Isparta Turkey
| |
Collapse
|
18
|
Irfan M, Kiran J, Ayubi S, Ullah A, Rana QUA, Khan S, Hasan F, Badshah M, Shah AA. Immobilization of β-1,4-xylanase isolated from Bacillus licheniformis
S3. J Basic Microbiol 2020; 60:600-612. [DOI: 10.1002/jobm.202000077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology; College of Dentistry, University of Florida; Gainesville Florida
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Jawairia Kiran
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Salahuddin Ayubi
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Ameen Ullah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Qurrat Ul Ain Rana
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Aamer A. Shah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
19
|
Ottone C, Romero O, Aburto C, Illanes A, Wilson L. Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Compr Rev Food Sci Food Saf 2020; 19:595-621. [PMID: 33325181 DOI: 10.1111/1541-4337.12538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Enzymes are powerful catalysts already being used in a large number of industrial processes. Impressive advantages in enzyme catalysts improvement have occurred in recent years aiming to improve their performance under harsh operation conditions far away from those of their cellular habitat. Production levels of the winemaking industry have experienced a remarkable increase, and technological innovations have been introduced for increasing the efficiency at different process steps or for improving wine quality, which is a key issue in this industry. Enzymes, such as pectinases and proteases, have been traditionally used, and others, such as glycosidases, have been more recently introduced in the modern wine industry, and many dedicated studies refer to the improvement of enzyme performance under winemaking conditions. Within this framework, a thorough review on the role of enzymes in winemaking is presented, with special emphasis on the use of immobilized enzymes as a significant strategy for catalyst improvement within an industry in which enzymes play important roles that are to be reinforced paralleling innovation.
Collapse
Affiliation(s)
- Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
20
|
Dal Magro L, de Moura KS, Backes BE, de Menezes EW, Benvenutti EV, Nicolodi S, Klein MP, Fernandez-Lafuente R, Rodrigues RC. Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. ACTA ACUST UNITED AC 2019; 24:e00373. [PMID: 31516853 PMCID: PMC6728273 DOI: 10.1016/j.btre.2019.e00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Magnetic-chitosan particles were prepared following three different protocols enabling the preparation of particles with different sizes - nano (Nano-CMag, Micro (Micro-CMag) and Macro (Macro-CMag) - and used for pectinase immobilization and clarification of grape, apple and orange juices. The particle size had a great effect in the kinetic parameters, Nano-CMag biocatalyst presented the highest Vmax value (78.95 mg. min-1), followed by Micro-CMag and Macro-CMag, with Vmax of 57.20 mg.min-1 and 46.03 mg.min-1, respectively. However, the highest thermal stability was achieved using Macro-CMag, that was 8 and 3-times more stable than Nano-CMag and Micro-CMag biocatalysts, respectively. Pectinase immobilized on Macro-CMag kept 85% of its initial activity after 25 batch cycles in orange juice clarification. These results suggested that the chitosan magnetic biocatalysts presented great potential application as clarifying catalysts for the fruit juice industry and the great importance of the chitosan particles preparation on the final biocatalyst properties.
Collapse
Affiliation(s)
- Lucas Dal Magro
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
| | - Kelly Silva de Moura
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Betina Elys Backes
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Eliana Weber de Menezes
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Edilson Valmir Benvenutti
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Sabrina Nicolodi
- Magnetism Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, P.O. Box 15051, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Manuela P. Klein
- Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), ZC 90050-170, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
- Corresponding authors.
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Corresponding authors.
| |
Collapse
|
21
|
Recent advances in the production strategies of microbial pectinases—A review. Int J Biol Macromol 2019; 122:1017-1026. [DOI: 10.1016/j.ijbiomac.2018.09.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023]
|
22
|
El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 2018; 18:71. [PMID: 30413198 PMCID: PMC6230287 DOI: 10.1186/s12896-018-0481-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020. RESULTS The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h. CONCLUSIONS Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
Collapse
Affiliation(s)
- Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
- City of Scientific Research and Technology Application, New Burg Al Arab, Alexandria, Egypt
| | - Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Noorhamizah Suhaimi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Roslinda Abd Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Mona Esawy
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
23
|
Dal Magro L, Silveira VC, de Menezes EW, Benvenutti EV, Nicolodi S, Hertz PF, Klein MP, Rodrigues RC. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. Int J Biol Macromol 2018; 115:35-44. [DOI: 10.1016/j.ijbiomac.2018.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
24
|
Pili J, Vargas CEB, Oro CED, Toniazzo Backes G, Valduga E, Zeni J. Synthesis of Pectin Methylesterase from Aspergillus niger in Submerged Fermentation Using as Citrus Pectin and Orange Peel as Inducers. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonaina Pili
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | | | | | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
25
|
Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chem 2018; 253:185-193. [DOI: 10.1016/j.foodchem.2018.01.157] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/27/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023]
|
26
|
Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 2018; 8:199. [PMID: 29581931 DOI: 10.1007/s13205-018-1220-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
A plethora of solid substrates, cultivation conditions and enzyme assay methods have been used for efficient production and estimation of polygalacturonase and pectin methylesterase enzymes. Recent developments in industrial biotechnology offer several opportunities for the utilization of low cost agro-industrial waste in Solid State Fermentation (SSF) for the pectinolytic enzyme production using fungi. Fruit waste mainly citrus fruit waste alone and along with other agro-industrial waste has been explored in SSF for enzyme production. Agro-industrial waste, due to the economic advantage of low procuring cost has been employed in SSF bioreactors for pectinolytic enzyme production. Acidic pectinases produced by fungi are utilized especially in food industries for clarification of fruit juices. This review focuses on the recent developments in SSF processes utilizing agro-industrial residues for polygalacturonase and pectin methylesterase production, their various assay methods and applications in fruit juice industries.
Collapse
Affiliation(s)
- Mukesh Kumar Patidar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| | - Sadhana Nighojkar
- Mata Gujri College of Professional Studies, A.B. Road, Indore, 452001 India
| | - Anil Kumar
- 3School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, 452001 India
| | - Anand Nighojkar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| |
Collapse
|
27
|
Gaio I, Oro CED, Graboski AM, Bustamante-Vargas CE, Tres MV, Junges A, Dallago RM, Valduga E, Furigo A. Liquefied petroleum gas as solvent medium for the treatment of immobilized pectinases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
29
|
Patidar MK, Nighojkar A, Nighojkar S, Kumar A. Purification and Characterization of Polygalacturonase Produced by Aspergillus niger AN07 in Solid State Fermentation. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int J Biol Macromol 2017; 95:974-984. [DOI: 10.1016/j.ijbiomac.2016.10.086] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
|
31
|
Jampala P, Preethi M, Ramanujam S, Harish B, Uppuluri KB, Anbazhagan V. Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature. Int J Biol Macromol 2017; 95:843-849. [DOI: 10.1016/j.ijbiomac.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/03/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
32
|
Cerreti M, Markošová K, Esti M, Rosenberg M, Rebroš M. Immobilisation of pectinases into PVA gel for fruit juice application. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Cerreti
- Department for Innovation in Biological; Agro-Food and Forest Systems; University of Tuscia; San Camillo de Lellis snc Viterbo 01100 Italy
| | - Kristína Markošová
- Institute of Biotechnology; Faculty of Chemical and Food Technology; Slovak University of Technology; Radlinského 9 Bratislava 812 37 Slovakia
| | - Marco Esti
- Department for Innovation in Biological; Agro-Food and Forest Systems; University of Tuscia; San Camillo de Lellis snc Viterbo 01100 Italy
| | - Michal Rosenberg
- Institute of Biotechnology; Faculty of Chemical and Food Technology; Slovak University of Technology; Radlinského 9 Bratislava 812 37 Slovakia
| | - Martin Rebroš
- Institute of Biotechnology; Faculty of Chemical and Food Technology; Slovak University of Technology; Radlinského 9 Bratislava 812 37 Slovakia
| |
Collapse
|
33
|
Cerreti M, Liburdi K, Benucci I, Esti M. The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Alagöz D, Tükel SS, Yildirim D. Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity. Int J Biol Macromol 2016; 87:426-32. [DOI: 10.1016/j.ijbiomac.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
|
35
|
Bustamante-Vargas CE, de Oliveira D, Valduga E, Venquiaruto LD, Paroul N, Backes GT, Dallago RM. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity. Appl Biochem Biotechnol 2016; 179:1060-72. [DOI: 10.1007/s12010-016-2050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
|
36
|
Poturcu K, Ozmen I, Biyik HH. Characterization of an Alkaline Thermostable Pectin Lyase from Newly Isolated Aspergillus niger _WHAK1 and Its Application on Fruit Juice Clarification. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Rehman HU, Aman A, Nawaz MA, Karim A, Ghani M, Baloch AH, Qader SAU. Immobilization of pectin depolymerising polygalacturonase using different polymers. Int J Biol Macromol 2016; 82:127-33. [DOI: 10.1016/j.ijbiomac.2015.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
38
|
Dal Magro L, Hertz PF, Fernandez-Lafuente R, Klein MP, Rodrigues RC. Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: a potential biocatalyst for grape juice clarification. RSC Adv 2016. [DOI: 10.1039/c6ra03940e] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combi-CLEAs of pectinases and cellulases were prepared for grape juice clarification.
Collapse
Affiliation(s)
- Lucas Dal Magro
- Biotechnology, Bioprocess and Biocatalysis Group
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Plinho F. Hertz
- Biotechnology, Bioprocess and Biocatalysis Group
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | | | - Manuela P. Klein
- Biotechnology, Bioprocess and Biocatalysis Group
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| |
Collapse
|
39
|
In situ immobilization of commercial pectinase in rigid polyurethane foam and application in the hydrolysis of pectic oligosaccharides. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Gotovtsev PM, Yuzbasheva EY, Gorin KV, Butylin VV, Badranova GU, Perkovskaya NI, Mostova EB, Namsaraev ZB, Rudneva NI, Komova AV, Vasilov RG, Sineokii SP. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815080025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Synthesis of a hybrid polymer-inorganic biomimetic support incorporating in situ pectinase from Aspergillus niger ATCC 9642. Bioprocess Biosyst Eng 2015; 38:1569-77. [PMID: 25894295 DOI: 10.1007/s00449-015-1399-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/06/2015] [Indexed: 11/27/2022]
Abstract
The hybrid alginate/gelatin/calcium oxalate (AGOCa) support was successfully synthesized through the biomimetic mineralization method for immobilization in situ of a pectinolytic extract from Aspergillus niger ATCC 9642 via entrapment technique. The efficiency of immobilization reached 72.7%. Sodium oxalate buffer (100 mM, pH 5.5) was selected as adjuvant of the immobilization process by allowing the formation of a calcified shell around the calcium alginate capsule, significantly increasing the stability to storage, thermal and recycling of the enzymatic immobilized pectinolytic extract. The pH and temperature for maximum activity were from 5.0 to 6.0 and 60 to 80 °C, respectively. The new hybrid support can be a potential alternative to obtain immobilized pectinases with properties for advantageous industrial applications.
Collapse
|
42
|
Bibi Z, Shahid F, Ul Qader SA, Aman A. Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 2015; 75:121-7. [DOI: 10.1016/j.ijbiomac.2014.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
43
|
Eş I, Vieira JDG, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 2015; 99:2065-82. [DOI: 10.1007/s00253-015-6390-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
|
44
|
Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydr Polym 2014; 102:622-6. [DOI: 10.1016/j.carbpol.2013.11.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/24/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022]
|
45
|
Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: Characterization and application in juice production. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|