1
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
3
|
Physico-Chemical and Antimicrobial Efficacy of Encapsulated Dhavana Oil: Evaluation of Release and Stability Profile from Base Matrices. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227679. [PMID: 36431780 PMCID: PMC9693536 DOI: 10.3390/molecules27227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Essential oils (EOs) are naturally occurring volatile aromatic compounds extracted from different parts of plants. They are made up of components like terpenes, phenols, etc., and are chemically unstable and susceptible to oxidative deterioration, leading to reduced shelf-life and overall degradation of the product. Encapsulation of EOs in a matrix can prevent degradation of the active ingredient and improve the shelf-life. In this paper, we report encapsulation of Dhavana oil (Artemisia pellen) in a modified starch matrix using a spray-drying technique. Physico-chemical properties of neat and encapsulated Dhavana oil were studied. We selected two powder bases: CaCO3 and TALC and, loaded neat and encapsulated Dhavana oil in it, studied their stability and interaction with the base matrices at 3 °C, 22 °C and 45 °C up to 2 months under closed conditions and one week at 22 °C and 45 °C under open condition. Thermal degradation pattern was studied for neat and encapsulated Dhavana oil and modified starch. Release of primary active component of neat and encapsulated Dhavana oil from the base matrices was evaluated with GCMS. Stability study and release mechanism were elucidated to understand the release pattern in different base powders under similar conditions. Retention of hydroxydhavanone was found to be better in TALC than CaCO3, and therefore, the former can be considered a suitable base matrix for developing a stable powder formulation with an optimum release of the oil. Dhavana oil is known for its anti-microbial activity, and hence, neat and encapsulated Dhavana oil was tested on different bacterial and fungal strains. The encapsulated oil depicted good anti-microbial efficacy against various bacterial and fungal strains, which is a step forward for developing anti-microbial formulations. Thus, the reported work will provide helpful information on cosmetic formulation and, therefore, be useful for perfumery, food, and cosmetic industries.
Collapse
|
4
|
Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 2022; 391:133239. [DOI: 10.1016/j.foodchem.2022.133239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
|
5
|
Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022; 307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
Recent advances in emerging nanocarriers and stimuli-responsive (SR) delivery systems have brought about a revolution in the food and pharmaceutical industries. SR carriers are able to release the encapsulated bioactive compounds (bioactives) upon an external trigger. The potential of releasing the loaded bioactives in site-specific is of great importance for the pharmaceutical industry and medicine that can deliver the cargo in an appropriate condition. For the food industry, release of encapsulated bioactives is considerably important in processing or storage of food products and can be used in their formulation or packaging. There are various stimuli to control the favorite release of bioactives. In this review, we will shed light on the effect of different stimuli such as temperature, humidity, pH, light, enzymatic hydrolysis, redox, and also multiple stimuli on the release of encapsulated cargo and their potential applications in the food and pharmaceutical industries. An overview of cargo release mechanisms is also discussed. Furthermore, various alternatives to manipulate the controlled release of bioactives from carriers and the perspective of more progress in these SR carriers are highlighted.
Collapse
Affiliation(s)
- Atefe Rezaei
- Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Fatemeh Rafieian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
6
|
Qin Z, Zou Y, Zhang Y, Wang P, Zhang H. Electrospun pullulan nanofiber loading zanthoxylum bungeanum essential oil/β-cyclodextrin inclusion complexes for active packaging. Int J Biol Macromol 2022; 210:465-474. [PMID: 35487377 DOI: 10.1016/j.ijbiomac.2022.04.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023]
Abstract
In this study, zanthoxylum bungeanum essential oil/β-cyclodextrin inclusion complexes (ZBEO/β-CD-ICs) were first prepared by precipitation method. When the addition of ZBEO was 1 g, the reaction time was 4 h and the reaction temperature was 55 °C, the recovery (73.88%) and loading content (9.53%) reached the highest value. The characterization results showed inclusion complexation changed the crystalline structure, enhanced interaction among molecules and increased the thermal stability. Then, nanofiber films containing ZBEO/β-CD-ICs were prepared by electrospinning. When the total polymer concentration was constant at 20%, with the increase of ZBEO/β-CD-IC content, the diameter of nanofiber and mechanical strength decreased, but the temperature corresponding to the maximum rate of weight loss increased. X-ray diffraction analysis proved that the addition of ZBEO/β-CD-IC increased the crystallinity degree of film. The Fourier transform infrared spectra indicated hydrogen bond interactions among molecules. Releasing behavior of ZBEO indicated that increase of temperature and relative humidity accelerated the releasing speed. Antibacterial and antioxidant activity results demonstrated the increase of ZBEO content enhanced antibacterial and antioxidant efficiency, Z40P10 nanofibers had the maximum antibacterial rate of 62.02% against S. aureus and the maximum antioxidant activity of 60.18%.
Collapse
Affiliation(s)
- Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yucheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yipeng Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Peng Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
7
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
8
|
Patiño Vidal C, López de Dicastillo C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Muñoz-Shugulí C. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Crit Rev Food Sci Nutr 2021; 62:5495-5510. [PMID: 33605809 DOI: 10.1080/10408398.2021.1886038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
9
|
|
10
|
Encapsulation of carvacrol into ultrafine fibrous zein films via electrospinning for active packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Rodríguez-Sánchez IJ, Vergara-Villa NF, Clavijo-Grimaldo D, Fuenmayor CA, Zuluaga-Domínguez CM. Ultrathin single and multiple layer electrospun fibrous membranes of polycaprolactone and polysaccharides. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520944422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospinning was used to produce fibrous membranes, in single and multiple layers, from poly(ε-caprolactone), pullulan, and from mixtures of poly(ε-caprolactone) with potato modified starch and β-glucan. It was possible to obtain single-layer membranes from solutions of pullulan in water, poly(ε-caprolactone) in chloroform, and from mixtures of poly(ε-caprolactone)/β-glucan and poly(ε-caprolactone)/potato modified starch in chloroform. Scanning electron microscopy images showed the formation of ultrathin homogeneous fibers from electrospun poly(ε-caprolactone) and pullulan, whereas the fibers obtained from mixtures of poly(ε-caprolactone)/ β -glucan and poly(ε-caprolactone)/potato modified starch had different sizes and morphologies, as well as irregular microstructures, characterized by the presence of beads. Contact angle analyses showed that pullulan membranes were extremely hydrophilic, while poly(ε-caprolactone) membranes were predominantly hydrophobic. Subsequently, poly(ε-caprolactone)-pullulan-poly(ε-caprolactone) multilayer membranes, with intermediate wettability, were prepared by successive electrospinning steps. Infrared spectroscopy and calorimetric analyses showed the presence of both polymers and the absence of changes in their structure and stability due to electrospinning, indicating adequate compatibility between the two polymers. We foresee that the polyester-polysaccharide multilayer membrane might be used as a biodegradable vehicle for active agents with different hydrophobicity, with applications as food packaging and biocompatible scaffold materials.
Collapse
Affiliation(s)
| | | | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| |
Collapse
|
12
|
Rodríguez-Sánchez IJ, Fuenmayor CA, Clavijo-Grimaldo D, Zuluaga-Domínguez CM. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
13
|
Garbeva P, Weisskopf L. Airborne medicine: bacterial volatiles and their influence on plant health. THE NEW PHYTOLOGIST 2020; 226:32-43. [PMID: 31651035 DOI: 10.1111/nph.16282] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
Like most other eukaryotes, plants do not live alone but in close association with a diverse microflora. These plant-associated microbes contribute to plant health in many different ways, ranging from modulation of hormonal pathways to direct antibiosis of plant pathogens. Over the last 15 yr, the importance of volatile organic compounds as mediators of mutualistic interactions between plant-associated bacteria and their hosts has become evident. This review summarizes current knowledge concerning bacterial volatile-mediated plant protection against abiotic and biotic stresses. It then discusses the translational potential of such metabolites or of their emitters for sustainable crop protection, the possible ways to harness this potential, and the major challenges still preventing us from doing so. Finally, the review concludes with highlighting the most pressing scientific gaps that need to be filled in order to enable a better understanding of: the molecular mechanisms underlying the biosynthesis of bacterial volatiles; the complex regulation of bacterial volatile emission in natural communities; the perception of bacterial volatiles by plants; and the modes of actions of bacterial volatiles on their host.
Collapse
Affiliation(s)
- Paolina Garbeva
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
14
|
Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 2020; 130:108927. [DOI: 10.1016/j.foodres.2019.108927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
15
|
Zhao L, Duan G, Zhang G, Yang H, He S, Jiang S. Electrospun Functional Materials toward Food Packaging Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E150. [PMID: 31952146 PMCID: PMC7022779 DOI: 10.3390/nano10010150] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
Collapse
Affiliation(s)
- Luying Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Guoying Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266000, China;
| | - Haoqi Yang
- College of Material Science and Engineering, Jilin University, Changchun 130022, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| |
Collapse
|
16
|
Moreira JB, Lim LT, Zavareze EDR, Dias ARG, Costa JAV, Morais MGD. Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Román JT, Fuenmayor CA, Zuluaga Dominguez CM, Clavijo-Grimaldo D, Acosta M, García-Castañeda JE, Fierro-Medina R, Rivera-Monroy ZJ. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21-25) Pal obtained via electrospinning. RSC Adv 2019; 9:20432-20438. [PMID: 35514725 PMCID: PMC9065569 DOI: 10.1039/c9ra03643a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
Electrospinning technology is useful for making ultrafine drug-eluting fibers for the clinical treatment of wounds. We show the incorporation of an antimicrobial LfcinB-derived peptide into Pullulan nanofibers. The palindromic peptide LfcinB (21-25)Pal: RWQWRWQWR was synthesized, purified, and characterized by means of the RP-HPLC and MALDI-TOF MS methods. The peptide's antibacterial activity against the E. coli ATCC 25922 strain was evaluated, and the peptide LfcinB (20-25)Pal exhibited significant antibacterial activity. Nanofibers were obtained by electrospinning a Pullulan or Pullulan-LfcinB (21-25)Pal solution. The obtained nanofibers were characterized via microscopy (AFM and SEM) and RP-HPLC chromatography. The peptide incorporation efficiency was 31%. The Pullulan-LfcinB (21-25)Pal nanofibers were soluble in water, and the peptide was liberated immediately. The Pullulan-LfcinB (21-25)Pal nanofibers exhibited the same antibacterial activity against E. coli strain as the free peptide LfcinB (21-25)Pal. The results suggest that Pullulan-LfcinB (21-25)Pal nanofibers could be considered for designing and developing antibacterial wound dressings.
Collapse
Affiliation(s)
- Julieth Tatiana Román
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de alimentos (ICTA), Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Carlos Mario Zuluaga Dominguez
- Agricultural Sciences Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Dianney Clavijo-Grimaldo
- Medicine Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Martha Acosta
- Servicio Nacional de Aprendizaje (SENA) Technopark Calle 54 No. 10-39 Zip code 110231 Bogotá Colombia
| | - Javier Eduardo García-Castañeda
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Ricardo Fierro-Medina
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Zuly Jenny Rivera-Monroy
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| |
Collapse
|
18
|
Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Jansen-Alves C, Krumreich FD, Zandoná GP, Gularte MA, Borges CD, Zambiazi RC. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2246-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Topuz F, Uyar T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics 2018; 11:E6. [PMID: 30586876 PMCID: PMC6358759 DOI: 10.3390/pharmaceutics11010006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Electrospun nanofibers have sparked tremendous attention in drug delivery since they can offer high specific surface area, tailored release of drugs, controlled surface chemistry for preferred protein adsorption, and tunable porosity. Several functional motifs were incorporated into electrospun nanofibers to greatly expand their drug loading capacity or to provide the sustained release of the embedded drug molecules. In this regard, cyclodextrins (CyD) are considered as ideal drug carrier molecules as they are natural, edible, and biocompatible compounds with a truncated cone-shape with a relatively hydrophobic cavity interior for complexation with hydrophobic drugs and a hydrophilic exterior to increase the water-solubility of drugs. Further, the formation of CyD-drug inclusion complexes can protect drug molecules from physiological degradation, or elimination and thus increases the stability and bioavailability of drugs, of which the release takes place with time, accompanied by fiber degradation. In this review, we summarize studies related to CyD-functional electrospun nanofibers for drug delivery applications. The review begins with an introductory description of electrospinning; the structure, properties, and toxicology of CyD; and CyD-drug complexation. Thereafter, the release of various drug molecules from CyD-functional electrospun nanofibers is provided in subsequent sections. The review concludes with a summary and outlook on material strategies.
Collapse
Affiliation(s)
- Fuat Topuz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
22
|
Fahami A, Fathi M. Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Moreira JB, Lim LT, Zavareze EDR, Dias ARG, Costa JAV, Morais MGD. Microalgae protein heating in acid/basic solution for nanofibers production by free surface electrospinning. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Szente L, Fenyvesi É. Cyclodextrin-Enabled Polymer Composites for Packaging †. Molecules 2018; 23:molecules23071556. [PMID: 29954121 PMCID: PMC6100494 DOI: 10.3390/molecules23071556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrin complexes of fragrances, antimicrobial agents, dyes, insecticides, UV-filters can be incorporated into polymers (packaging films, trays, containers) either to ensure the slow release or a homogeneous distribution of the complexed substances. This way the propagation of microorganisms on surface of enwrapped products is decelerated, or the product is made more attractive by slowly released fragrances, protected against UV-light-induced deterioration, oxidation, etc. Incorporating empty cyclodextrins into the packaging material an aroma barrier packaging is produced, which decelerates the loss of the aroma from the packaged food, prevents the penetration of undesired volatile pollutants from the environment, like components of exhaust gases, cigarette smoke, and reduces the migration of plasticizers, residual solvents and monomers, etc. Applying cyclodextrins in active packaging allows to preserve the quality of food and ensures a longer shelf-life for the packaged items.
Collapse
Affiliation(s)
- Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| |
Collapse
|
25
|
Chen X, Chen M, Xu C, Yam KL. Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci Nutr 2018; 59:2386-2399. [PMID: 29553807 DOI: 10.1080/10408398.2018.1453778] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.
Collapse
Affiliation(s)
- Xi Chen
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Mo Chen
- b College of Engineering, QuFu Normal University , Rizhao , Shangdong , China
| | - Chenyi Xu
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Kit L Yam
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
26
|
Pullulan-alginate fibers produced using free surface electrospinning. Int J Biol Macromol 2018; 112:809-817. [PMID: 29410269 DOI: 10.1016/j.ijbiomac.2018.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 01/12/2023]
Abstract
Pullulan-alginate ultrafine fibers, with and without CaCl2, were electrospun from aqueous polymer solutions using a free-surface electrospinning method, without the use of synthetic spinning aid polymer. Aqueous pullulan solution (10%, w/w) could be electrospun into beaded fibers of 110 nm in diameter with a board diameter distribution. By contrast, continuous and smooth fibers were formed when 0.8 to 1.6% (w/w) alginate was added to the 10% (w/w) pullulan solutions, producing smaller fibers ranging from 87 to 57 nm in diameter. The positive effect of alginate can be attributed to the increase in polymer chain entanglement, as well as enhanced hydrogen bonding interaction between pullulan and alginate. The addition of trace amount of CaCl2 (up to 0.045%, w/w) resulted in smooth and ultrafine fibers that were significantly smaller in diameter and greater thermal stability than those prepared without the addition of CaCl2. The production of typical electrospun fibers involves the use of undesirable organic solvents and/or non-food grade synthetic spinning aid polymer. The water-based edible biopolymer systems presented in this study can be useful for the preparation of nano-scale fibers that are more conducive for food, nutraceutical, and pharmaceutical applications.
Collapse
|
27
|
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
29
|
Wu YM, Wang ZW, Hu CY, Nerín C. Influence of factors on release of antimicrobials from antimicrobial packaging materials. Crit Rev Food Sci Nutr 2017; 58:1108-1121. [DOI: 10.1080/10408398.2016.1241215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yu-Mei Wu
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Zhi-Wei Wang
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Chang-Ying Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Cristina Nerín
- I3A, Department of Analytical Chemistry, University of Zaragoza, Campus Rio Ebro, Zaragoza, Spain
| |
Collapse
|
30
|
Brandelli A, Brum LFW, dos Santos JHZ. Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-39306-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by Multiple Headspace Extraction. Carbohydr Polym 2016; 151:1245-1250. [PMID: 27474677 DOI: 10.1016/j.carbpol.2016.06.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the effect of the preparation method, temperature and humidity on the release of aroma from β-cyclodextrin (β-CD) solid inclusion complexes (IC). Therefore β-CD/trans-anethole (β-CD/AN) IC were prepared by freeze-drying (FD) and co-precipitation coupled to FD (Cop-FD). Release experiments were performed at various temperatures and relative humidities (RH). Multiple headspace extraction-gas chromatography (MHE) was used to determine the loading capacity (LC) and encapsulation efficiency (EE%) and perform release studies. Results underlined that the quantification of encapsulated AN by MHE requires the IC dissolution. The release of AN was accelerated by increases in RH and temperature. However, it was quite negligible below 75% RH. The release behavior of AN was well simulated by Avrami's equation. Cop-FD IC retained more efficiently AN and the release depended on the preparation method and treatment conditions. Thus, the preparation method could be chosen based on the application.
Collapse
|
32
|
Rezaei A, Tavanai H, Nasirpour A. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int J Biol Macromol 2016; 91:536-43. [PMID: 27267574 DOI: 10.1016/j.ijbiomac.2016.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022]
Abstract
In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA.
Collapse
Affiliation(s)
- Atefe Rezaei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Tavanai
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
33
|
Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.024] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Lemma SM, Scampicchio M, Mahon PJ, Sbarski I, Wang J, Kingshott P. Controlled release of retinyl acetate from β-cyclodextrin functionalized poly(vinyl alcohol) electrospun nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3481-3488. [PMID: 25779354 DOI: 10.1021/acs.jafc.5b00103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Retinyl acetate (RA) was effectively incorporated into electrospun nanofibers of poly(vinyl alcohol) (PVA) containing β-cyclodextrin (β-CD) in order to form inclusion complexes for encapsulation to prolong shelf life and thermal stability. The physical and thermal properties of encapsulated RA were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The nanofibers of PVA/RA and PVA/RA/β-CD exhibited bead free average fiber diameters of 264 ± 61 and 223 ± 49 nm, respectively. The surface chemistry of the functional nanofibers was investigated by X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) demonstrated different thermal stabilities between the bioactive and the polymer, with and without β-CD. Square-wave voltammogram peak current changes were used to follow the release kinetics of RA from the nanofibers. Results indicate that RA coated inside PVA/β-CD nanofibers was protected against oxidation much better than RA in PVA nanofibers and should extend the shelf life. In addition, RA encapsulated in the PVA/β-CD had better thermal stability than PVA nanofibers.
Collapse
Affiliation(s)
- Solomon M Lemma
- †Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- ‡Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ∥Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Matteo Scampicchio
- †Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Peter J Mahon
- ‡Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Igor Sbarski
- §Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - James Wang
- §Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ∥Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- †Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- §Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
35
|
Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerfaces 2015; 128:331-338. [PMID: 25769282 DOI: 10.1016/j.colsurfb.2015.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/21/2022]
Abstract
Herein, hydroxypropyl-beta-cyclodextrin (HPβCD) inclusion complex (IC) of a hydrophobic drug, sulfisoxazole (SFS) was incorporated in hydroxypropyl cellulose (HPC) nanofibers (HPC/SFS/HPβCD-IC-NF) via electrospinning. SFS/HPβCD-IC was characterized by DSC to investigate the formation of inclusion complex and the stoichiometry of the complex was determined by Job's plot. Modeling studies were also performed on SFS/HPβCD-IC using ab initio technique. SEM images depicted the defect free uniform fibers and confirmed the incorporation of SFS/HPβCD-IC in nanofibers did not alter the fiber morphology. XRD analyses showed amorphous distribution of SFS/HPβCD-IC in the fiber mat. Release studies were performed in phosphate buffered saline (PBS). The results suggest higher amount of SFS released from HPC/SFS/HPβCD-IC-NF when compared to free SFS containing HPC nanofibers (HPC/SFS-NF). This was attributed to the increased solubility of SFS by inclusion complexation. Sandwich configurations were prepared by placing HPC/SFS/HPβCD-IC-NF between electrospun PCL nanofibrous mat (PCL-HPC/SFS/HPβCD-IC-NF). Consequently, PCL-HPC/SFS/HPβCD-IC-NF exhibited slower release of SFS as compared with HPC/SFS/HPβCD-IC-NF. This study may provide more efficient future strategies for developing delivery systems of hydrophobic drugs.
Collapse
|
36
|
Kayaci F, Sen HS, Durgun E, Uyar T. Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.03.004] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Farris S, Unalan IU, Introzzi L, Fuentes-Alventosa JM, Cozzolino CA. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J Appl Polym Sci 2014. [DOI: 10.1002/app.40539] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS); Packaging Division; University of Milan; Via Celoria 2 Milan I- 20133 Italy
| | - Ilke Uysal Unalan
- Department of Food Environmental and Nutritional Sciences (DeFENS); Packaging Division; University of Milan; Via Celoria 2 Milan I- 20133 Italy
| | - Laura Introzzi
- Department of Food Environmental and Nutritional Sciences (DeFENS); Packaging Division; University of Milan; Via Celoria 2 Milan I- 20133 Italy
| | - José Maria Fuentes-Alventosa
- Centro de Investigación y Formación Agraria “Alameda del Obispo,” Instituto de Investigación y Formación Agraria y Pesquera (IFAPA); Avda. Menéndez Pidal s/n Córdoba 14004 Spain
| | - Carlo A. Cozzolino
- Department of Food Environmental and Nutritional Sciences (DeFENS); Packaging Division; University of Milan; Via Celoria 2 Milan I- 20133 Italy
| |
Collapse
|