1
|
Akgul B, Gulcan C, Tornaci S, Erginer M, Toksoy Oner E, Abamor ES, Acar S, Allahverdiyev AM. Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations. Macromol Biosci 2024:e2400291. [PMID: 39461894 DOI: 10.1002/mabi.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
Collapse
Affiliation(s)
- Busra Akgul
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Cansu Gulcan
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selay Tornaci
- IBSB, Department of Bioengineering, Marmara University, Istanbul, 34854, Turkey
| | - Merve Erginer
- Institute of Nanotechnology and Biotechnology, Istanbul University-Cerrahpaşa, Istanbul, 34500, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, 34220, Turkey
| | - Ebru Toksoy Oner
- IBSB, Department of Bioengineering, Marmara University, Istanbul, 34854, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Serap Acar
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Adil M Allahverdiyev
- The V. Akhundov Scientific Research Medical Preventive Institute, Baku, AZ1004, Azerbaijan
| |
Collapse
|
2
|
Koşarsoy Ağçeli G. Similarities and differences of nano-sized levan synthesized by Bacillus haynesii at low and high temperatures: Characterization and bioactivity. Int J Biol Macromol 2023; 253:126804. [PMID: 37709216 DOI: 10.1016/j.ijbiomac.2023.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Levan is a biopolymer with many different uses. Temperature is an important parameter in biopolymer synthesis. Herein, levan production was carried out from Bacillus haynesii, a thermophilic microorganism, in the temperature range of 4 °C-95 °C. The highest levan production was measured as 10.9 g/L at 37 °C. The synthesized samples were characterized by FTIR and NMR analysis. The particle size of the levan samples varied between 153 and 824.4 nm at different temperatures. In levan samples produced at high temperatures, the water absorption capacity is higher in accordance with the particle size. Irregularities were observed in the surface pores at temperatures of 60 °C and above. The highest emulsion capacity of 83.4 % was measured in the sample synthesized at 4 °C. The antioxidant activity of all levan samples synthesized at different temperatures was measured as 84 % on average. All synthesized levan samples showed antibacterial effect on pathogenic bacteria. In addition, levan synthesized at 45 °C showed the highest antimicrobial effect on E. coli ATCC 35218 with an inhibition zone of 21.3 ± 1.82 mm. Antimicrobial activity against yeast sample C. albicans, was measured only in levan samples synthesized at 80 °C, 90 °C, 95 °C temperatures. Levan synthesized from Bacillus haynesii at low and high temperatures showed differences in characterization and bioactivity.
Collapse
Affiliation(s)
- Gözde Koşarsoy Ağçeli
- Hacettepe University, Faculty of Science, Department of Biology, Beytepe Campus, 06800 Ankara, Turkey.
| |
Collapse
|
3
|
El-Habashy SE, El-Kamel AH, Mehanna RA, Abdel-Bary A, Heikal L. Engineering tanshinone-loaded, levan-biofunctionalized polycaprolactone nanofibers for treatment of skin cancer. Int J Pharm 2023; 645:123397. [PMID: 37690657 DOI: 10.1016/j.ijpharm.2023.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ahmed Abdel-Bary
- Department of Dermatology, Andrology, Venerology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
4
|
Mujtaba M, Ali Q, Yilmaz BA, Seckin Kurubas M, Ustun H, Erkan M, Kaya M, Cicek M, Oner ET. Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chem 2023; 416:135816. [PMID: 36893634 DOI: 10.1016/j.foodchem.2023.135816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Sweet cherry (Prunus avium L.) fruits are prone to quality and quantity loss in shelf-life conditions and cold storage due to their short post-harvest life. Until now efforts have been made to extend the shelf life of the sweet cherry. However, an efficient and commercially scalable process remains elusive. To contribute to this challenge, here in this study, biobased composite coatings consisting of chitosan, mucilage, and levan, were applied on sweet cherry fruits and tested for postharvest parameters in both market and cold storage conditions. Results demonstrated that the shelf life of sweet cherries can be extended until the 30th day while retaining important post-harvest properties like decreased weight loss, fungal deterioration, increased stem removal force, total flavonoid, l-ascorbic acid, and oxalic acid. Given the cost-effectiveness of the polymers used, the findings of this study indicate the feasibility of extending the shelf-life of sweet cherries on a larger scale.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Qasid Ali
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Bahar Akyuz Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Seckin Kurubas
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Hayri Ustun
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Mustafa Erkan
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Murat Kaya
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Cicek
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Denizli, Turkey
| | - Ebru Toksoy Oner
- IBSB, Department of Bioengineering, Marmara University, RTE Campus, Istanbul, Turkey
| |
Collapse
|
5
|
Xu M, Pan L, Zhou Z, Han Y. Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydr Polym 2022; 291:119519. [DOI: 10.1016/j.carbpol.2022.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
|
6
|
da Silva DL, Cabrera MP, Cavalcanti IT, Coelho GR, Neto EB, Padilha RJR, da Silva CES, Correia MTDS, Pimenta DC, Junior LBDC. Magnetite-levan nanoparticles for lectin purification: a single-step strategy for protein isolation from the seeds extract of the plant Cratylia mollis. J Chromatogr A 2022; 1677:463292. [DOI: 10.1016/j.chroma.2022.463292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
7
|
Wang H, Xue T, Wang S, Jia X, Cao S, Niu B, Guo R, Yan H. Preparation, characterization and food packaging application of nano ZnO@Xylan/quaternized xylan/polyvinyl alcohol composite films. Int J Biol Macromol 2022; 215:635-645. [PMID: 35777507 DOI: 10.1016/j.ijbiomac.2022.06.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Xylan could be considered as a good potential candidate for food packaging film because of the vast source and biodegradability, however, its application was restricted by the drawbacks of poor film-forming property, humidity sensitivity, weak mechanical strength and poor antibacterial property. In this paper, xylan was firstly modified by quaternization to improve the film-forming property, then ZnO nanoparticles encapsulated by xylan (nano ZnO@Xylan) was prepared by nanoprecipitation method, finally a series of biodegradable composite films were prepared using quaternized xylan and polyvinyl alcohol with incorporation of nano ZnO@Xylan. The surface morphology, molecular structure and crystallography structure of the films were characterized. The addition of nano ZnO@Xylan decreased water vapor permeability and solubility, meanwhile obviously increased the ultraviolet shielding performance as well as the antibacterial properties of the films. The bacteriostasis rate of the films against E. coli and S. aureus reached up to 99 %. Furthermore, the preservation time of cherry tomatoes covered with ZnO@Xylan/QX/PVA films was extended to at least 21 days. In conclusion, all the results ensure that the fabricated composite films have considerable promising application in the food packaging industry.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Tianren Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shuo Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaoli Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shenghui Cao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruijie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
8
|
Barbosa TCM, Grisi CVB, da Fonseca SB, de Albuquerque Meireles BRL, de Magalhães Cordeiro AMT. Effect of active gelatin-starch film containing Syzygium cumini and Origanum vulgare extract on the preservation of lamb burgers. Meat Sci 2022; 191:108844. [DOI: 10.1016/j.meatsci.2022.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
9
|
Effect of Irradiation on Structural Changes of Levan. Int J Mol Sci 2022; 23:ijms23052463. [PMID: 35269605 PMCID: PMC8910695 DOI: 10.3390/ijms23052463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Levan, as a biocompatible and renewable biopolymer with anticancer properties, is a promising candidate for a wide range of applications in various fields of industry. However, in the literature, there is a lack of information about its behavior under the influence of UV irradiation, which may limit its potential application, including medical science. Therefore, this study describes the effects of irradiation on the structural properties of levan. This type of fructan was subjected to stability tests under radiation conditions using LED and polychromatic lamps. The results showed that the photodegradation of levan irradiated with a polychromatic light occurs faster and more efficiently than the photodegradation of levan irradiated with an LED lamp. Furthermore, AFM analysis showed that the surface became smoother after irradiation, as evidenced by decreasing values of roughness parameters. Moreover, UV irradiation causes the decrease of total surface free energy and both its components in levan; however, more significant changes occur during irradiation of the sample with a polychromatic lamp.
Collapse
|
10
|
Development of ostrich eggshell and nano-levan-based edible biopolymer composite films: characterization and bioactivity. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04069-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Koşarsoy Ağçeli G, Hammamchi H, Cihangir N. Novel levan/bentonite/essential oil films: characterization and antimicrobial activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:249-256. [PMID: 35068569 PMCID: PMC8758875 DOI: 10.1007/s13197-021-05009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023]
Abstract
Paenibacillus polymyxa is a microorganism used for the production of carbohydrate biopolymer levan in this work. Film samples were prepared with different contents of levan/bentonite. Film samples were evaluated for thickness, water vapor permeability, tensile strength and elongation properties. The most suitable film composite was chosen to evaluate antimicrobial activity. Antimicrobial properties were determined on different microorganisms by adding calendula oil, citronella oil, lemon oil, tamanu oil, peppermint (medical peppermint) oil in varying amounts to the film samples. The highest activity of levan/bentonite/oil composite film on microorganisms was measured with a diameter of 40 mm on Candida albicans in the composition of 0.5 mL of film content +1.5 mL of peppermint (medical peppermint) oil. This high antimicrobial activity film composite was characterized by TGA and SEM. It was made with levan/bentonite and peppermint oil, and the determination of antimicrobial effects of this film composite was reported for the first time. The bio-degradable film obtained has a high potential for use in different areas, especially in food packaging.
Collapse
Affiliation(s)
- Gözde Koşarsoy Ağçeli
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Hamideh Hammamchi
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Nilüfer Cihangir
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
12
|
Porto AS, Alves JL, Morales AR. Interactions of PP-PET blends modified by montmorillonite with different polarities. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Mendonça CMN, Oliveira RC, Freire RKB, Piazentin ACM, Pereira WA, Gudiña EJ, Evtuguin DV, Converti A, Santos JHPM, Nunes C, Rodrigues LR, Oliveira RPS. Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. Int J Biol Macromol 2021; 186:788-799. [PMID: 34245738 DOI: 10.1016/j.ijbiomac.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear β(2 → 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Carlos M N Mendonça
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo C Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Rominne K B Freire
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Anna C M Piazentin
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Wellison A Pereira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Eduardo J Gudiña
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Dmitry V Evtuguin
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Cláudia Nunes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lígia R Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo P S Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
15
|
Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers (Basel) 2021; 13:530. [PMID: 33578978 PMCID: PMC7916691 DOI: 10.3390/polym13040530] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Retno Wahyu Nurhayati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia;
- Stem Cell and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Minh Hong Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
17
|
Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World J Microbiol Biotechnol 2020; 36:161. [DOI: 10.1007/s11274-020-02937-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
|
18
|
Chelminiak-Dudkiewicz D, Rybczynski P, Smolarkiewicz-Wyczachowski A, Mlynarczyk DT, Wegrzynowska-Drzymalska K, Ilnicka A, Goslinski T, Marszałł MP, Ziegler-Borowska M. Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. APPLIED SURFACE SCIENCE 2020; 524:146602. [PMID: 32382204 PMCID: PMC7204711 DOI: 10.1016/j.apsusc.2020.146602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 05/08/2023]
Abstract
Phototherapies, including photodynamic therapy (PDT), have been widely used in the treatment of various diseases, especially for cancer. However, there is still a lack of effective, safe photosensitizers that would be well tolerated by patients. The combination of several methods (like phototherapy and hyperthermia) constitutes a modern therapeutic approach, which demands new materials based on components that are non-toxic without irradiation. Therefore, this study presents the synthesis and properties of novel, advanced nanomaterials in which the advantage features of the magnetic nanoparticles and photoactive compounds were combined. The primary purpose of this work was the synthesis of magnetic nanoparticles coated with biocompatible and antitumor polysaccharide - levan, previously unknown from scientific literature, and the deposition of potent photosensitizer - zinc(II) phthalocyanine on their surface. In order to better characterize the nature of the coating covering the magnetic core, the atomic force microscope analysis, a contact angle measurement, and the mechanical properties of pure levan and its blend with zinc(II) phthalocyanine films were investigated. This magnetic nanomaterial revealed the ability to generate singlet oxygen upon exposure to light. Finally, preliminary toxicity of obtained nanoparticles was tested using the Microtox® test - with and without irradiation.
Collapse
Affiliation(s)
| | - Patryk Rybczynski
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | | | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Michał P. Marszałł
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, dr A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
19
|
Zikmanis P, Kolesovs S, Semjonovs P. Production of biodegradable microbial polymers from whey. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00326-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
de Siqueira EC, Rebouças JDS, Pinheiro IO, Formiga FR. Levan-based nanostructured systems: An overview. Int J Pharm 2020; 580:119242. [PMID: 32199961 DOI: 10.1016/j.ijpharm.2020.119242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Bacterial levan is a fructose homopolymer that offers great potential in biotechnological applications due to biocompatibility, biodegradability and non-toxicity. This biopolymer possesses diverse multifunctional features, which translates into a wide range of applicability, including in industry, consumer products, pharmaceuticals and biomedicine. Extensive research has identified great potential for its exploitation in human health. In addition, nanostructured systems have provided significant advances in the area of health, mainly with respect to disease diagnosis and treatment. While the functional properties of these natural polysaccharide-based polymers are desirable in these systems, research in this area has been limited to few natural polymers, such as chitosan, alginate and dextran, which obscures the true potential of levan in the production of nanostructured systems for biotechnological and medical applications. The present review considers the latest research in the field to focus on the use of levan as a promising biopolymer for the development of nanomaterials.
Collapse
Affiliation(s)
- Edmilson Clarindo de Siqueira
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Juliana de Souza Rebouças
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Irapuan Oliveira Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Fabio Rocha Formiga
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
21
|
Xu W, Peng J, Ni D, Zhang W, Wu H, Mu W. Preparation, characterization and application of levan/montmorillonite biocomposite and levan/BSA nanoparticle. Carbohydr Polym 2020; 234:115921. [DOI: 10.1016/j.carbpol.2020.115921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
|
22
|
Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Lunter DJ, Daniels R, Savić S. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci 2019; 142:105109. [PMID: 31770662 DOI: 10.1016/j.ejps.2019.105109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s-1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.
Collapse
Affiliation(s)
- Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Gordana Gojgić-Cvijović
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11 000 Belgrade, Serbia.
| | - Dragica Jakovljević
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11 000 Belgrade, Serbia.
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Dominique Jasmin Lunter
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Rolf Daniels
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| |
Collapse
|
23
|
Lončarević B, Lješević M, Marković M, Anđelković I, Gojgić-Cvijović G, Jakovljević D, Beškoski V. Microbial levan and pullulan as potential protective agents for reducing adverse effects of copper on Daphnia magna and Vibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:187-193. [PMID: 31195227 DOI: 10.1016/j.ecoenv.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Microbial polysaccharides, due to their unique physiochemical properties, have found application in the food industry, cosmetics, pharmacy and medicine. In the environment, microbes can use polysaccharides to alleviate the adverse effects of heavy metals in their close proximity. This adaptive property shows interesting potential for bioremediation. Herein, the effects of the exopolysaccharides (EPS) levan, produced by the bacterium Bacillus licheniformis NS032 and pullulan, produced by the fungus Aureobasidium pullulans CH-1 in the presence of copper (Cu2+) have been investigated for the first time on antioxidant enzyme activity, respiration and Cu2+ bioaccumulation of Daphnia magna as well as the bioluminescence of Vibrio fischeri. Both EPS decreased toxicity of Cu2+ in the acute test with D. magna. The activity of catalase (CAT) was significantly diminished after acute exposure to Cu2+ in comparison to treatments with Cu2+ and EPS, while in the prolonged acute exposure the CAT activity did not show statistically significant (P ≤ 0.05) differences between treatments with and without the EPS. According to ICP-MS results, during prolonged acute exposure of neonates, the bioaccumulation of Cu2+ in treatments without the EPS was 52.03 μg/g of biomass (wet), while in treatments with EPS, the bioaccumulation was lower by one order of magnitude. The respiration of neonates during acute exposure to Cu2+ with or without the EPS was monitored using the MicroOxymax respirometer, and the results show the EPS can positively effect the respiration. In the case of bacterial bioluminescence, the toxicity of Cu2+ decreased in treatments with EPS (30 min EC10) from 3.54 mg/L to 140.61 mg/L (levan) and 45.00 mg/L (pullulan). This study demonstrates protective effect of EPS against Cu2+ toxicity on D. magna and V. fischeri, and opens the door for further investigation of potential application of levan and pullulan in bioremediation of heavy metals and mitigation of their adverse effects in the aquatic environment.
Collapse
Affiliation(s)
- Branka Lončarević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Marija Lješević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marijana Marković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ivan Anđelković
- Innovation Center, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, 11000, Serbia; School of Agriculture, Food and Wine, University of Adelaide, Urrbrae SA, 5064, Australia
| | - Gordana Gojgić-Cvijović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Dragica Jakovljević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vladimir Beškoski
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
24
|
Sun M, Liu N, Ni S, Bian H, Fu Y, Chen X. Poplar Hot Water Extract Enhances Barrier and Antioxidant Properties of Chitosan/Bentonite Composite Film for Packaging Applications. Polymers (Basel) 2019; 11:polym11101614. [PMID: 31590316 PMCID: PMC6836026 DOI: 10.3390/polym11101614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, the chitosan-based (CS) composite film was fabricated via a simple and efficient blending approach by adding poplar hot water extract (HWE), bentonite (BT) and chitosan. The addition of HWE largely improved the UV blocking ability and antioxidant properties of the resultant composite film, and simultaneously a tortuous path was constructed within the chitosan matrix to enhance the water vapor and oxygen barriers after the addition of BT. Specially, the content of HWE at 10 wt % gave a greatly decreased UV light transmittance at 280 nm to the CS-BT-HWE composite film that was 99.36% lower than that of CS-BT film, and the oxidation resistance was 9.65 times higher than that of CS-BT. The mechanical properties and surface morphological observation evaluated by scanning electron microscopy (SEM) and scanning probe microscope (SPM) confirmed the film had a denser structure. The internal chemical structure analyzed using solid state NMR, FTIR and X-ray spectra exhibited the resultant Maillard structure and strong hydrogen bonding that contributed to the improved mechanical properties. Overall, the as-prepared composite film has great potential as food packaging materials, and also provides a high-efficient utilization pathway for HWE.
Collapse
Affiliation(s)
- Mengya Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Na Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Shuzhen Ni
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiaoqian Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
25
|
Hu Y, Chen C, Yang L, Cui J, Hao Q, Sun D. Handy purifier based on bacterial cellulose and Ca-montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym 2019; 222:115017. [PMID: 31320078 DOI: 10.1016/j.carbpol.2019.115017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023]
Abstract
Water purification has always being an imperative but challenging issue of our times. Here, we used an organic-inorganic material, i.e. bacterial cellulose (BC) and Ca-montmorillonite (Ca-MMT) composites to treat complex wastewater. The surface and inside of the BC/Ca-MMT was a microporous structure capable of providing abundant adsorption sites. We demonstrated the BC/Ca-MMT has superior removal efficiency towards methylene blue (MB) and tetracycline (TC). Typically, the sample showed significant uptake ability towards MB and TC with uptake characteristics of pseudo-second-order model and Langmuir isotherm model. More interestingly, in MB-TC binary system, the removal of the two contaminative species was hardly affected by other coexisting components. Meanwhile, the sample was ease of regeneration and kept stable reusability through consecutive four recycles. With more virtues, such as low cost and wide range of resources of the two raw materials, the BC/Ca-MMT is expected to be a promising versatile water purifier in sewage treatment.
Collapse
Affiliation(s)
- Ying Hu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Luyu Yang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jian Cui
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Qingli Hao
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
26
|
Characterization of Microbial Communities Associated with Ceramic Raw Materials as Potential Contributors for the Improvement of Ceramic Rheological Properties. MINERALS 2019. [DOI: 10.3390/min9050316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Technical ceramics are being widely employed in the electric power, medical and engineering industries because of their thermal and mechanical properties, as well as their high resistance qualities. The manufacture of technical ceramic components involves complex processes, including milling and stirring of raw materials in aqueous solutions, spray drying and dry pressing. In general, the spray-dried powders exhibit an important degree of variability in their performance when subjected to dry-pressing, which affects the efficiency of the manufacturing process. Commercial additives, such as deflocculants, biocides, antifoam agents, binders, lubricants and plasticizers are thus applied to ceramic slips. Several bacterial and fungal species naturally occurring in ceramic raw materials, such as Sphingomonas, Aspergillus and Aureobasidium, are known to produce exopolysaccharides. These extracellular polymeric substances (EPS) may confer unique and potentially interesting properties on ceramic slips, including viscosity control, gelation, and flocculation. In this study, the microbial communities present in clay raw materials were identified by both culture methods and DNA-based analyses to select potential EPS producers based on the scientific literature for further assays based on the use of EPS for enhancing the performance of technical ceramics. Potential exopolysaccharide producers were identified in all samples, such as Sphingomonas sp., Pseudomonas xanthomarina, P. stutzeri, P. koreensis, Acinetobacter lwoffi, Bacillus altitudinis and Micrococcus luteus, among bacteria. Five fungi (Penicillium citrinum, Aspergillus niger, Fusarium oxysporum, Acremonium persicinum and Rhodotorula mucilaginosa) were also identified as potential EPS producers.
Collapse
|
27
|
Xu W, Peng J, Zhang W, Zhang T, Guang C, Mu W. Enhancement of the Brenneria sp. levansucrase thermostability by site-directed mutagenesis at Glu404 located at the “-TEAP-” residue motif. J Biotechnol 2019; 290:1-9. [DOI: 10.1016/j.jbiotec.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023]
|
28
|
|
29
|
Combie J, Öner ET. From healing wounds to resorbable electronics, levan can fill bioadhesive roles in scores of markets. BIOINSPIRATION & BIOMIMETICS 2018; 14:011001. [PMID: 30457113 DOI: 10.1088/1748-3190/aaed92] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Levan is a fructose homopolysaccharide which gained attention recently for its unusual combination of properties distinguishing it from other natural biodegradable polysaccharides like chitosan, cellulose or starch. Among the strongest bioadhesives, film-forming levan is garnering interest for its role in some simple solutions to difficult problems. One of these is illustrated by the elegant research using laser-based techniques to construct levan films for healing wounds and burned tissue. Another is the development of bioresorbable electronic implants. Levan has been found in habitats as diverse as salterns and thermal waters to tropical plants and sugar factories. This review of the low viscosity, levan adhesive describes the mechanisms by which it forms bonds and the reasons behind some of its practical and industrial applications. Here we present descriptions from the literature for feasible approaches ready to transition from the laboratory to those searching for answers in fields as varied as medicine, packaging and furniture assembly.
Collapse
Affiliation(s)
- Joan Combie
- Montana Biopolymers Inc., 119 Cathcart Circle, Winnsboro, SC 29180, United States of America
| | | |
Collapse
|
30
|
Peng J, Xu W, Ni D, Zhang W, Zhang T, Guang C, Mu W. Preparation of a novel water-soluble gel from Erwinia amylovora levan. Int J Biol Macromol 2018; 122:469-478. [PMID: 30342147 DOI: 10.1016/j.ijbiomac.2018.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 02/04/2023]
Abstract
Less attention has been focused on the industrial applications of levan-type fructan than that of inulin. Levan-type fructan is a unique homopolysaccharide consisting of fructose residues with a β-(2, 6) linkage that possesses unique physiochemical properties such as low intrinsic viscosity. In this study, the recombinant levansucrase from Erwinia amylovora was used to efficiently produce levan from sucrose, and under optimised conditions, 195 g/L levan was produced from 500 g/L sucrose, with the highest conversion rate of 59%. The physicochemical properties of E. amylovora levan, such as surface morphology, thermal behaviour, rheology behaviour and texture analysis, were evaluated and compared with those of commercial gels, including xanthan, guar, carrageenan and Arabic gums. The produced E. amylovora levan showed a series of acceptable physicochemical properties, indicating a potential application for levan as a novel water-soluble micro gel. The conclusions of this study support the exploration of the use of more hydrogels in the food, medicinal and cosmetic industries.
Collapse
Affiliation(s)
- Jiaying Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Xu W, Ni D, Yu S, Zhang T, Mu W. Insights into hydrolysis versus transfructosylation: Mutagenesis studies of a novel levansucrase from Brenneria sp. EniD312. Int J Biol Macromol 2018; 116:335-345. [DOI: 10.1016/j.ijbiomac.2018.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/21/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
32
|
Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. Int J Biol Macromol 2018; 109:810-818. [DOI: 10.1016/j.ijbiomac.2017.11.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
33
|
González-Garcinuño Á, Tabernero A, Domínguez Á, Galán MA, Martin del Valle EM. Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1314467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Salamanca, Spain
| | - Ángel Domínguez
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Miguel A. Galán
- Department of Chemical Engineering, University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
34
|
Chen GG, Fu GQ, Wang XJ, Gong XD, Niu YS, Peng F, Yao CL, Sun RC. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance. Sci Rep 2017; 7:41075. [PMID: 28112259 PMCID: PMC5253625 DOI: 10.1038/srep41075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/02/2022] Open
Abstract
Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.
Collapse
Affiliation(s)
- Ge-Gu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Gen-Que Fu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Jun Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Dong Gong
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ya-Shuai Niu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chun-Li Yao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
35
|
Mao Y, Li S, Fang RL, Ploehn HJ. Magadiite/styrene-butadiene rubber composites for tire tread applications: Effects of varying layer spacing and alternate inorganic fillers. J Appl Polym Sci 2017. [DOI: 10.1002/app.44764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yating Mao
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
| | - Shigeng Li
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
| | - Randy L. Fang
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
| | - Harry J. Ploehn
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
| |
Collapse
|
36
|
Yi YJ, Kamala-Kannan S, Lim JM, Oh BT, Lee SM. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs. J Biomed Res 2017; 31:453-461. [PMID: 28958997 PMCID: PMC5706438 DOI: 10.7555/jbr.31.20160115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Difructose dianhydride IV (DFA-IV) is produced from levan, which is a natural polysaccharide that belongs to the fructan family, through the activity of levan fructotransferase (LF) derived from microorganisms. Recently, DFA-IV has been expected to have diverse applications in the food and medical industry. Here, we examined the potential application of DFA-IV forin vitro fertilization (IVF) in pigs. In the assessment of acrosomal integrity during incubation, intact acrosomal or viable spermatozoa were highly sustained in 0.1% or 0.25% DFA-IV (69.8%-70.8%,P<0.05). Reactive oxygen species (ROS) levels during sperm incubation decreased following the addition of DFA-IV, and 0.1%-0.5% DFA-IV in particular significantly decreased ROS production relative to that seen with no addition or 0.75% DFA-IV. Total fertilization (mono+ polyspermic oocyte) rate was significantly higher in the addition of 0.1% DFA-IV (94.2%) than with other concentrations (71.8%-86.7%,P<0.05). When using reduced IVF times and lower sperm numbers, we found that addition of 0.1%–0.5% DFA-IV significantly increased the fertilization rate (P<0.05). Fertilized oocytes treated with 0.1% DFA-IV exhibited higher embryonic development and blastocyst formation than those treated with other concentrations (P<0.05). Consequently, the addition of DFA-IV during IVF improved fertilization and embryonic development, suggesting the possible use of novel sugars for enhancement of assisted reproductive technology (ART) in mammals.
Collapse
Affiliation(s)
- Young-Joo Yi
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea.,Safety, Environment and Life Science Institute, Chonbuk National University, Iksan 54596, Korea
| | - S Kamala-Kannan
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Byung-Taek Oh
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea.,Safety, Environment and Life Science Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
37
|
Öner ET, Hernández L, Combie J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv 2016; 34:827-844. [DOI: 10.1016/j.biotechadv.2016.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023]
|
38
|
Sezer AD, Kazak Sarılmışer H, Rayaman E, Çevikbaş A, Öner ET, Akbuğa J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol 2015; 22:627-634. [DOI: 10.3109/10837450.2015.1116564] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ali Demir Sezer
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| | - Hande Kazak Sarılmışer
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Adile Çevikbaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Jülide Akbuğa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| |
Collapse
|
39
|
Srikanth R, Siddartha G, Sundhar Reddy CH, Harish B.S., Janaki Ramaiah M, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr Polym 2015; 123:8-16. [DOI: 10.1016/j.carbpol.2014.12.079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/15/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
40
|
Alcântara ACS, Darder M, Aranda P, Ayral A, Ruiz-Hitzky E. Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ana C. S. Alcântara
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco; Madrid E-28049 Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco; Madrid E-28049 Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco; Madrid E-28049 Spain
| | - André Ayral
- Institut Européen des Membranes, CNRS-ENSCM-UM, CC47, Université de Montpellier; Montpellier F-34095, CEDEX 5 France
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco; Madrid E-28049 Spain
| |
Collapse
|
41
|
Review on production, characterization and applications of microbial levan. Carbohydr Polym 2015; 120:102-14. [DOI: 10.1016/j.carbpol.2014.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/27/2014] [Accepted: 12/05/2014] [Indexed: 11/24/2022]
|
42
|
Affiliation(s)
- Min Zhou
- College of Food Science; Southwest University; Chongqing P. R. China
| | - Dan Xu
- College of Food Science; Southwest University; Chongqing P. R. China
| |
Collapse
|
43
|
Liu F, Antoniou J, Li Y, Ma J, Zhong F. Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|