1
|
Sheraz M, Sun XF, Wang Y, Siddiqui A, Chen J, Sun L. Preparation of Magnetic Hemicellulosic Composite Microspheres and Adsorption of Copper Ions. Polymers (Basel) 2024; 16:3460. [PMID: 39771312 PMCID: PMC11679899 DOI: 10.3390/polym16243460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the fabrication of magnetic hemicellulosic composite microspheres and the adsorption of copper ions are explored. The microspheres were prepared by the micro-emulsion technique, using Fe3O4 nanoparticles and hemicellulose extracted from wheat straw with the ionic liquid B[mim]Cl as a solvent. Fe3O4 nanoparticles, synthesized through coprecipitation, were evenly encapsulated within the hemicellulosic microspheres. The Fe3O4 nanoparticles measured 10-15 nm in size, while the microspheres had an average diameter of about 20 μm and displayed a saturation magnetization of 35.95 emu/g. The optimal conditions for copper adsorption by the microspheres were found to be a pH of 5.0, a temperature of 323 K, and an initial copper ion concentration of 80 mg/L, resulting in an adsorption capacity of 85.65 mg/g after 24 h. The adsorption kinetics followed a pseudo-second-order model, and the Langmuir isotherm suggested a monomolecular layer adsorption mechanism, with a theoretical maximum capacity of 149.25 mg/g. In summary, the magnetic hemicellulosic microspheres exhibited considerable adsorption potential and favorable recycling capabilities for copper ions.
Collapse
Affiliation(s)
- Muhammad Sheraz
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Xiao-Feng Sun
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518063, China
| | - Yongke Wang
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Adeena Siddiqui
- Faculty of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology University, Karachi 75600, Pakistan
| | - Jiayi Chen
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| | - Le Sun
- Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.)
| |
Collapse
|
2
|
Gu S, Lourenço A, Wei X, Gominho J, Wang G, Cheng H. Structural and Chemical Analysis of Three Regions of Bamboo ( Phyllostachys Edulis). MATERIALS (BASEL, SWITZERLAND) 2024; 17:5027. [PMID: 39459732 PMCID: PMC11509333 DOI: 10.3390/ma17205027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
This study focuses on three different regions of moso bamboo (Phyllostachys edulis): an inner layer (IB), middle layer (MB), and outer layer (OB), to comprehensively characterize the structural features, chemical composition (ash, extractives and lignin contents), and the lignin monomeric composition as determined by analytical pyrolysis. The results show that bamboo presents a gradient structure. From the IB to OB, the vascular bundle density and fiber sheath ratio increase, the porosity decreases (from 45.92% to 18.14%), and the vascular bundle diameter-chord ratio increases (from 0.85 to 1.48). In terms of chemical composition, the ash, extractives, and acid-soluble lignin content gradually decrease from IB to OB. The holocellulose content follows the trend: MB (66.3%) > OB (65.9%) > IB (62.8%), while the acid-insoluble lignin content exhibits the opposite trend: IB (22.6%) > OB (17.8%) > MB (17.7%). Pyrolysis products reveal the diversity of carbohydrates and lignin derivatives, with a lignin monomeric composition rich in syringyl and guaiacyl units and lower amounts of H-units: the IB has an H:G:S relation of 18:26:55, while 15:27:58 is the ratio for the MB and 15:40:45 for the OB; S/G ratio values were, respectively, 1.22, 1.46, and 0.99. A comprehensive analysis highlights significant gradient variations in the structure and chemistry of bamboo, providing robust support for the classification and refinement methods of bamboo residues for potential applications.
Collapse
Affiliation(s)
- Shaohua Gu
- International Center for Bamboo and Rattan, Beijing 100102, China; (S.G.); (G.W.)
- Centro de Estudos Florestais & Laboratório TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Ana Lourenço
- Centro de Estudos Florestais & Laboratório TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Xin Wei
- College of Furniture and Art Design of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Jorge Gominho
- Centro de Estudos Florestais & Laboratório TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Ge Wang
- International Center for Bamboo and Rattan, Beijing 100102, China; (S.G.); (G.W.)
| | - Haitao Cheng
- International Center for Bamboo and Rattan, Beijing 100102, China; (S.G.); (G.W.)
| |
Collapse
|
3
|
Chang X, Zhang D, Shi W, Yu Q, Wu Z, Yang J, Tang Z, Chen H, Yan C. An arabinoxylan (AOP70-1) isolated from Alpinia oxyphylla alleviates neuroinflammation and neurotoxicity by TLR4/MyD88/NF-κB pathway. Int J Biol Macromol 2024; 277:134339. [PMID: 39089558 DOI: 10.1016/j.ijbiomac.2024.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Alpinia oxyphylla is famous for its neuroprotective and memory-improving effects. A crude polysaccharide AO70 from A. oxyphylla remarkably ameliorated neuroinflammation and cognitive dysfunction in Alzheimer's disease mice. This study aimed to explore the bioactive component of AO70 and its mechanism of action. A homogeneous polysaccharide (AOP70-1) rich in arabinose and xylose was purified from AO70, which was consisted of α-L-Araf-(1→, →5)-α-L-Araf-(1→, β-D-Xylp-(1→,→2,4)-β-D-Xylp-(1→, →2,3,4)-β-D-Xylp-(1→, α-L-Rhap-(1→, α-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-α-D-GlcpA-(1→, β-D-Galp-(1→, →2)-α-D-Galp-(1→, →6)-α-D-Galp-(1 → and →3,6)-α-D-Manp-(1 →. AOP70-1 (2.5, 5, 10 μM) significantly suppressed NO, IL-1β, and TNF-α production in a concentration-dependent manner and inhibited the migration of BV2 microglia. AOP70-1 inhibited LPS-mediated activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein (MyD88), and nuclear factor kappa B (NF-κB). Moreover, AOP70-1 exerted neuroprotection on SH-SY5Y cells and primary neurons by reducing neuronal apoptosis (72 %, 44 %), alleviating ROS accumulation (63 %, 55 %), and improving mitochondrial membrane potential (63 %, 77 %). Overall, AOP70-1 is one of the major bioactive components in AO70 from A. oxyphylla, which has great potential in the prevention and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Xiao Chang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenting Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhijian Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
5
|
Zhu J, Ren W, Guo F, Wang H, Yu Y. Structural elucidation of lignin, hemicelluloses and LCC from both bamboo fibers and parenchyma cells. Int J Biol Macromol 2024; 274:133341. [PMID: 38908621 DOI: 10.1016/j.ijbiomac.2024.133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biomass recalcitrance, a key challenge in biomass utilization, is closely linked to the architectural composition and cross-linkages of molecules within cell walls. With three bamboo species investigated, this study aims to elucidate the inherent molecular-scale structural differences between bamboo fibers and parenchyma cells through a systematic chemical extraction and structural characterization of isolated hemicelluloses, lignin, and lignin-carbohydrate complexes (LCC). We observed that parenchyma cells exhibit superior alkaline extractability compared to fibers. Additionally, we identified the hemicelluloses in parenchyma cells as L-arabino-4-O-methyl-D-glucurono-D-xylan, displaying a highly branched structure, while that in fibers is L-arabino-D-xylan. Furthermore, the parenchyma cell lignin exhibited a higher syringyl-to-guaiacyl (S/G) ratio and β-O-4 linkage content compared to fibers, whereas fibers contain more carbon‑carbon linkages including β-β, β-5, and β-1. This notable structural difference suggests a denser and more stable lignin in bamboo fibers. Importantly, we found that LCC in parenchyma cells predominantly comprises γ-ester linkages, which exhibit an alkaline-unstable nature. In contrast, fibers predominantly contain phenyl glycoside linkages, characterized by their alkaline-stable nature. These findings were observed for all the tested bamboo species, indicating the conclusions should be also valid for other bamboo species, suggesting the competitiveness of bamboo parenchyma cells as a valuable biofuel feedstock.
Collapse
Affiliation(s)
- Jiawei Zhu
- Bamboo Industry Institute, Zhejiang A & F University, Hanzhou 311300, PR China
| | - Wenting Ren
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, PR China
| | - Hankun Wang
- Institute of New Bamboo and Rattan Based Materials, International Center for Bamboo and Rattan, Beijing 100020, PR China
| | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, PR China.
| |
Collapse
|
6
|
Gao Q, Li G, Ran H, Hou Y, Jiang Y, Li S, Feng G, Shen S, Zhang X, Wang X, Wang G. Ultrasound-assisted complex enzyme extraction, structural characterization, and biological activity of polysaccharides from Ligustrum robustum. Int J Biol Macromol 2024; 268:131753. [PMID: 38657937 DOI: 10.1016/j.ijbiomac.2024.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Ligustrum robustum is one of the traditional teas in China with a long history of drinking and medicinal use. Through Response surface optimization, the yield of polysaccharides extracted by ultrasonic-assisted complex enzyme (UAE-EN) method was increased to 14.10 ± 0.56 %. Neutral homogeneous polysaccharide (LRNP) and acidic homogeneous polysaccharide (LRAP-1, LRAP-2, LRAP-3) from L. robustum were purified. The molecular weights of them were 5894, 4256, 4621 and 3915 Da. LRNP was composed of glucose (Glc), galactose (Gal), arabinose (Ara) with molar percentage of 24.97, 42.38 and 30.80. Structure analysis revealed that the backbone of LRNP consisted of 1,5-linked α-Araf, 1,4-linked β-Galp, 1,6-linked β-Galp, and 1,4-linked β-Glcp with the branches of 1,2-linked α-Araf, 1,3-linked α-Araf, 1,3-linked β-Glcp and 1,6-linked β-Galp residues, some terminal residues of α-Araf, β-Glcp and α-Galp were also included. In vitro experiments showed that the four polysaccharides possessed excellent antioxidant, antitumor and hypoglycemic activities. LRNP possessed the protective effect against oxidative stress. The studies provide a basis for further exploitation of L. robustum.
Collapse
Affiliation(s)
- Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Gang Li
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang 310000, Zhejiang, China
| | - Hailin Ran
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yiru Hou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Guangyong Feng
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shasha Shen
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiaoshuang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
7
|
Tao J, Song S, Qu C. Recent Progress on Conversion of Lignocellulosic Biomass by MOF-Immobilized Enzyme. Polymers (Basel) 2024; 16:1010. [PMID: 38611268 PMCID: PMC11013631 DOI: 10.3390/polym16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The enzyme catalysis conversion of lignocellulosic biomass into valuable chemicals and fuels showed a bright outlook for replacing fossil resources. However, the high cost and easy deactivation of free enzymes restrict the conversion process. Immobilization of enzymes in metal-organic frameworks (MOFs) is one of the most promising strategies due to MOF materials' tunable building units, multiple pore structures, and excellent biocompatibility. Also, MOFs are ideal support materials and could enhance the stability and reusability of enzymes. In this paper, recent progress on the conversion of cellulose, hemicellulose, and lignin by MOF-immobilized enzymes is extensively reviewed. This paper focuses on the immobilized enzyme performances and enzymatic mechanism. Finally, the challenges of the conversion of lignocellulosic biomass by MOF-immobilized enzyme are discussed.
Collapse
Affiliation(s)
- Juan Tao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Shengjie Song
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Chen Qu
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 9808577, Japan
| |
Collapse
|
8
|
Zhu J, Du C. Interaction between lignin and cellulose during the pyrolysis process. Int J Biol Macromol 2024; 265:131093. [PMID: 38521306 DOI: 10.1016/j.ijbiomac.2024.131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The hierarchical and heterogeneous structures and the interactions between biomass components within cell walls are closely related to the pyrolysis characteristics. In this work, thermogravimetric analysis (TGA) and pyrolysis kinetics analysis were used to investigate the pyrolysis characteristics of windmill palm (Trachycarpus fortunei (Hook.) H. Wendl.) culm and silk after delignification. The results demonstrate cellulose pyrolysis temperature of silk is much higher than that of culm, attributed to the higher lignin content of the former. After delignification, the cellulose pyrolysis temperature of silk decreased by 48 °C, which is much higher than that of culm by 18 °C, suggesting a strong interaction between lignin and cellulose during the pyrolysis process. Futhermore, pyrolysis kinetics analysis also found that the frequency factor of slik and culm increased by 129 % and 26 %, respectively, attributed to the disappearance of the carbon layer formed by lignin pyrolysis process. And, differ in lignin content is responsible for the discrepancy of frequency factor increase. In conclusion, we propose a mechanism model for lignin hindering cellulose pyrolysis, which is of great significance for understanding the pyrolysis interactions of biomass components in complex supramolecular cell wall.
Collapse
Affiliation(s)
- Jiawei Zhu
- Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China; College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Chungui Du
- Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China; College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China.
| |
Collapse
|
9
|
Maderuelo-Solera R, Torres-Olea B, Jiménez-Gómez CP, Moreno-Tost R, García-Sancho C, Mérida-Robles J, Cecilia JA, Maireles-Torres P. Nb-Based Catalysts for the Valorization of Furfural into Valuable Product through in One-Pot Reaction. Int J Mol Sci 2024; 25:2620. [PMID: 38473867 DOI: 10.3390/ijms25052620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Nb-based catalysts supported on porous silica with different textural properties have been synthesized, characterized, and tested in the one-pot reaction of furfural to obtain valuable chemicals. The catalytic results reveal that the presence of fluoride in the synthesis, which limits the growing of the porous silica, limits diffusional problems of the porous silica, obtaining higher conversion values at shorter reaction times. On the other hand, the incorporation of NbOx species in the porous silica provides Lewis acid sites and a small proportion of Brönsted acid sites, in such a way that the main products are alkyl furfuryl ethers, which can be used as fuel additives.
Collapse
Affiliation(s)
- Rocío Maderuelo-Solera
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Benjamín Torres-Olea
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Carmen Pilar Jiménez-Gómez
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Ramón Moreno-Tost
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Cristina García-Sancho
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Josefa Mérida-Robles
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Juan Antonio Cecilia
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| | - Pedro Maireles-Torres
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Málaga University, 29071 Málaga, Spain
| |
Collapse
|
10
|
Zhao K, Wu X, Han G, Sun L, Zheng C, Hou H, Xu BB, El-Bahy ZM, Qian C, Kallel M, Algadi H, Guo Z, Shi Z. Phyllostachys nigra (Lodd. ex Lindl.) derived polysaccharide with enhanced glycolipid metabolism regulation and mice gut microbiome. Int J Biol Macromol 2024; 257:128588. [PMID: 38048922 DOI: 10.1016/j.ijbiomac.2023.128588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
This study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr). The extracts from dilute hydrochloric acid, hot water, and 2 % sodium hydroxide solution were characterized through molecular weight, gel permeation chromatography, monosaccharides, Fourier transform infrared, and nuclear magnetic resonance spectroscopy analyses. Polysaccharide from alkali extraction and molecular sieve purification (named as: PNS2A) exhibited optimal inhibitory of 3T3-L1 cellular differentiation and lowered insulin resistance. The PNS2A is made of a hemicellulose-like main chain of →4)-β-D-Xylp-(1→ that was connected by branches of 4-O-Me-α-GlcAp-(1→, T-α-D-Galp-(1→, T-α-L-Araf-(1→, →2)-α-L-Araf-(1→, as well as β-D-Glcp-(1→4-β-D-Glcp-(1→ fragments. Oral delivery of PNS2A in diabetes mice brought down blood glucose and cholesterol levels and regulated glucose and lipid metabolism. PNS2A alleviated diabetes symptoms and body weight and protected liver and kidney function in model animals by altering the gut microbiome. Polysaccharides can be a new approach to develop bamboo resources.
Collapse
Affiliation(s)
- Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Xueyi Wu
- Department of Endocrinology, The Second People's Hospital of Guiyang, Guiyyang 550081, China
| | - Guiqi Han
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu, Sichuan 610075, China
| | - Lin Sun
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Changwen Zheng
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu, Sichuan 610075, China
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ben Bin Xu
- Department of Mechanical and Civil Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Cheng Qian
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Mohamed Kallel
- Department of Physics, Faculty of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hassan Algadi
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Zhanhu Guo
- Department of Mechanical and Civil Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Zhengjun Shi
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
11
|
Li J, Wang W, Wu H, Peng F, Gao H, Guan Y. Preparation and characterization of hemicellulose films reinforced with amino polyhedral oligomeric silsesquioxane for biodegradable packaging. Int J Biol Macromol 2024; 254:127795. [PMID: 37939756 DOI: 10.1016/j.ijbiomac.2023.127795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Biomass is one of the powerful alternatives to petroleum-based packaging materials. Herein, carboxymethyl hemicellulose (CMH) based films (CPF) were prepared using a convenient strategy. The chains of CMH provided the necessary supporting matrix, and the aminopropyl polyhedral oligomeric silsesquioxane (POSS-NH2) regulated the thermal and barrier properties of the CPF. The secondary amide groups and hydrogen bond were appeared in chemical structure, and SEM-EDS results indicated the preferable dispersion and compatibility of POSS-NH2 in CPFs. The thermal degradation temperature (Tonset > 260 °C), the coefficient of linear thermal expansion and glass transition temperature (Tg > 130 °C) have been improved by introduction of POSS-NH2. The tensile strength of CPF showed a higher level of 39.43 MPa with the POSS-NH2 loading of 20 wt%, which was 18.8 % higher than that of CMH film. More importantly, water vapor barrier property of films almost improved by two times, and its value is reduced to 18.82 g m-2 h-1. The shelf life of blueberry was effectively extended by the CPF coating for one week compared with commercial PE film. Therefore, CPF films displayed effective thermal performances, water vapor barrier characteristic and biodegradability, which might be exploited in packaging material for food application.
Collapse
Affiliation(s)
- Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Han Wu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Hui Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| | - Ying Guan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
12
|
Wang J, Zhao C, Li P, Wang L, Li S. Structural Characteristics and Multiple Bioactivities of Volvariella volvacea Polysaccharide Extracts: The Role of Extractive Solvents. Foods 2023; 12:4357. [PMID: 38231875 DOI: 10.3390/foods12234357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The chemical structures and functional properties of plant-based polysaccharides are critically influenced by extractive solvents, but their roles are not clear. In this study, the structural characteristics and multiple bioactivities of Volvariella volvacea polysaccharides (VVPs) subjected to water (VVP-W), alkalis (sodium hydroxide, VVP-A), and acids (citric acid, VVP-C) as extractive solvents are investigated systematically. Of the above three polysaccharides, VVP-W exhibited the highest molecular weights, apparent viscosity, and viscoelastic properties. Functional analyses revealed that VVP-C had an excellent water-holding capacity, foaming properties, and emulsifying capacity, while VVP-A exhibited a promising oil-holding capacity. Moreover, VVP-C displayed strong inhibitory effects on α-amylase and α-glucosidase, which could be attributed to its content of total phenolics, proteins, and molecular weights. These findings have important implications for selecting the appropriate extraction techniques to obtain functional polysaccharides with targeted bioactive properties as food additives.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ping Li
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Du R, Deng J, Huang E, Chen L, Tang J, Liu Y, Shi Z, Wang F. Effects of salicylic acid-grafted bamboo hemicellulose on gray mold control in blueberry fruit: The phenylpropanoid pathway and peel microbial community composition. Int J Biol Macromol 2023; 251:126303. [PMID: 37573915 DOI: 10.1016/j.ijbiomac.2023.126303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Bamboo hemicellulose (HC) is a natural plant polysaccharide with good biocompatibility and biodegradability. But its poor antibacterial activity limits its application in fruits preservation. In this study, based on the good inducer of salicylic acid (SA) for plant diseases resistance, a novel antibacterial coating material was synthesized by grafting SA onto HC. The study aimed to investigate the synergistic effect of HC-g-SA on antibacterial ability, induces diseases resistance and microbial community composition of postharvest fruit. The graft copolymer treatment significantly reduced the incidence of gray mold caused by Botrytis cinerea in blueberries during storage (P < 0.05), and significantly stimulated the activity of key enzymes, including phenylalanine ammonia-lyase, chalcone isomerase, laccase, and polyphenol oxidase, leading to an increase in fungicidal compounds such as flavonoids, lignin, and total phenolics produced by the phenylpropanoid pathway in blueberries (P < 0.05). Moreover, the HC-g-SA coating altered bacterial and fungal community composition such that the abundance of postharvest fruit-peel pathogens was significantly reduced. After 8 days storage, the blueberry fruits treated by HC-g-SA had a weight loss rate of 12.42 ± 0.85 %. Therefore, the HC-g-SA graft copolymer had a positive impact on the control of gray mold in blueberry fruit during postharvest storage.
Collapse
Affiliation(s)
- Rongyu Du
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Jia Deng
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China.
| | - Erbin Huang
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Lin Chen
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Junrong Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China
| | - Yun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China
| | - Fang Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, PR China; Forestry college, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
14
|
Reeder MW, Li M, Li M, Wu T. Corn cob hemicelluloses as stabilizer for ice recrystallization inhibition in ice cream. Carbohydr Polym 2023; 318:121127. [PMID: 37479439 DOI: 10.1016/j.carbpol.2023.121127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/23/2023]
Abstract
Food stabilizers, such as guar gum and locust bean gum (LBG), are often added to ice cream to improve its texture and to combat its main shelf-life concern - ice recrystallization. Recently these gums have become increasingly expensive due to the limited supplies. In this study, holocellulose nanocrystals (holoCNCs) and hemicelluloses (hemiCs) were prepared from readily available corn cobs and tested for ice recrystallization inhibition (IRI) activities in the 25.0 % sucrose solution and ice cream mixes (ICMs). In the sucrose solution, holoCNCs were not IRI active at a concentration of 0.5 %, but hemiCs demonstrated a good IRI activity, even at 0.1 %. In the ICMs, the IRI activity of hemiCs was better than those of guar gum and LBG at a concentration of 0.2 %. Adding 0.2-0.5 % hemiCs had no negative influences on the physicochemical properties of ICMs and ice cream, including viscosity profile, particle size distribution, overrun, hardness, and meltdown rate. These research findings demonstrated corn cob hemiCs' potential as a more sustainable ice cream stabilizer.
Collapse
Affiliation(s)
- Matthew Winston Reeder
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, The University of Tennessee, Knoxville, TN 37996, USA
| | - Min Li
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA.
| |
Collapse
|
15
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
16
|
Research Progress in Hemicellulose-Based Nanocomposite Film as Food Packaging. Polymers (Basel) 2023; 15:polym15040979. [PMID: 36850261 PMCID: PMC9964622 DOI: 10.3390/polym15040979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
As the main component of agricultural and forestry biomass, hemicellulose has the advantages of having an abundant source, biodegradability, nontoxicity and good biocompatibility. Its application in food packaging has thus become the focus of efficient utilization of biomass resources. However, due to its special molecular structure and physical and chemical characteristics, the mechanical properties and barrier properties of hemicellulose films are not sufficient, and modification for performance enhancement is still a challenge. In the field of food packaging materials preparation, modification of hemicellulose through blending with nanofibers or nanoparticles, both inorganic and organic, has attracted research attention because this approach offers the advantages of efficient improvement in the expected properties and better cost efficiency. In this paper, the composition of hemicellulose, the classification of nanofillers and the research status of hemicellulose-based nanocomposite films are reviewed. The research progress in modification of hemicellulose by using layered silicate, inorganic nanoparticles and organic nanoparticles in food packaging is described. Challenges and outlook of research in hemicellulose-based nanocomposite film in food packaging is discussed.
Collapse
|
17
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
18
|
Efficient conversion of biomass derivatives to furfural with a novel carbon-based solid acid catalyst. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Fe(III)-Rhamnoxylan-A Novel High Spin Fe(III) Octahedral Complex Having Versatile Physical and Biological Properties. Polymers (Basel) 2022; 14:polym14204290. [PMID: 36297868 PMCID: PMC9611695 DOI: 10.3390/polym14204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
An iron (III) complex with rhamnoxylan, a hemicellulose from Salvia plebeia seeds, was synthesized and characterized by elemental analysis, spectroscopic and magnetic susceptibility measurements, thermal analysis and scanning electron microscopy. The rhamnoxylan was found to be a branched hemicellulose consisting of β-1,4-linked xylose main chain and rhamnose attached to the chain at β-1,3 positions. The complex was found to contain 18.8% w/w iron. A high-spin octahedral geometry of Fe3+ was indicated by the electronic absorption spectrum of the complex. In other experiments, the complex exhibited good electrical and magnetic properties. In vivo efficacy, as hematinic, of the complex in induced anemia was demonstrated equivalent to that of iron protein succinylate (taken as standard) as evidenced by raised red blood cell count, hemoglobin, hematocrit and total iron in rabbit. The complex was found to be non-toxic with LD50 > 5000 mg kg−1 body weight in rabbit. Thus, iron(III)-rhamnoxylan hold the potential for application as hematinic for treatment of iron deficiency anemia.
Collapse
|
20
|
Rissanen JV, Lagerquist L, Eränen K, Hemming J, Eklund P, Grènman H. O2 as initiator of autocatalytic degradation of hemicelluloses and monosaccharides in hydrothermal treatment of spruce. Carbohydr Polym 2022; 293:119740. [DOI: 10.1016/j.carbpol.2022.119740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
|
21
|
Characterization of a novel antimicrobial film based on sage seed gum and Zataria multiflora Boiss essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
A xylan from the fresh leaves of Piper betle: Structural characterization and studies of bioactive properties. Carbohydr Polym 2022; 291:119570. [DOI: 10.1016/j.carbpol.2022.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022]
|
23
|
Long H, Xiao J, Wang X, Liang M, Fan Y, Xu Y, Lin M, Ren Z, Wu C, Wang Y. Laminarin acetyl esters: Synthesis, conformational analysis and anti-viral effects. Int J Biol Macromol 2022; 216:528-536. [PMID: 35809670 DOI: 10.1016/j.ijbiomac.2022.06.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
Chemical modification of polysaccharides is important for expanding their applications and gaining new insights into their structure-property relationships. Here we reported the synthesis, characterization, and anti-viral activities of laminarin acetyl derivatives. The chemical structure and chain conformation of acetylated laminarin were characterized by FT-IR, H1 NMR, AFM, UV-vis spectrum, and induced circular dichroism based on a modified Congo Red assay (ICD-CR assay). The inhibition effect of laminarin and its acetyl derivatives on HSV-1 was evaluated by viral plaque assay and virus-associated DNA/protein change. Acetylation modification was found to trigger the conformation transition of laminarin from triple helix to single helix, and the extent of transition can be tuned by the degree of substitution. The single helical acetylated laminarins were found to be stable in neutral aqueous solution and exhibited no cytotoxicity. However, the acetylated laminarin exhibited declined antiviral activity after modification.
Collapse
Affiliation(s)
- Haiyue Long
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaohui Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Minting Liang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yapei Fan
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuying Xu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mengting Lin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
24
|
Xia Y, Meng P, Liu S, Tan Z, Yang X, Liang L, Xie F, Zhang H, Wang G, Xiong Z, Lo J, Ai L. Structural and Potential Functional Properties of Alkali-Extracted Dietary Fiber From Antrodia camphorata. Front Microbiol 2022; 13:921164. [PMID: 35875549 PMCID: PMC9301256 DOI: 10.3389/fmicb.2022.921164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
Antrodia camphorata is rich in a variety of bioactive ingredients; however, the utilization efficiency of the residue of A. camphorata is low, resulting in serious waste. It is necessary to deeply study the functional components of A. camphorata residues to achieve high-value utilization. In this study, the components, structural characteristics, and functional properties of alkali-extracted dietary fiber extracted from residues of A. camphorata (basswood and dish cultured fruiting body, respectively) were investigated. There were similar components and structural characteristics of ACA-DK (extract from basswood cultured) and ACA-DF (extract from dish cultured). The two alkali-extracted dietary fiber were composed of mainly cellulose and xylan. However, ACA-DK has better adsorption capacities than ACA-DF on lipophilic substances such as oil (12.09 g/g), cholesterol (20.99 mg/g), and bile salts (69.68 mg/g). In vitro immunomodulatory assays stated that ACA-DK had a good effect on promoting the proliferation of RAW 264.7 cells and can activate cell phagocytosis, NO synthesis, and other immune capabilities. The edible fungus A. camphorata is a good source of functional dietary fiber. The alkali-extracted dietary fiber of A. camphorata might be used as a functional ingredient in the medicine and food industry.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Meng
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Shaodong Liu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuoming Tan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xi Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lihong Liang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Jenyu Lo
- Honest and Humble Biotechnology Co., Ltd., New Taipei City, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Lianzhong Ai
| |
Collapse
|
25
|
Lin T, Wang Q, Zheng X, Chang Y, Cao H, Zheng Y. Investigation of the Structural, Thermal, and Physicochemical Properties of Nanocelluloses Extracted From Bamboo Shoot Processing Byproducts. Front Chem 2022; 10:922437. [PMID: 35774859 PMCID: PMC9237254 DOI: 10.3389/fchem.2022.922437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose has gained increasing interest due to its excellent properties and great potential as a functional component or carrier in food and pharmaceutical industries. This study investigated the structural, thermal, and physicochemical properties of nanofibrillated cellulose (NFC) and nanocrystalline cellulose (CNC) extracted from bamboo shoot (Leleba oldhami Nakal) processing byproducts. NFCs were prepared through low concentration acid hydrolysis combined with ultrasonic treatment. CNCs were further isolated from NFCs using sulfuric acid hydrolysis treatment. TEM images showed that NFC and CNC exhibited typical long-chain and needle-like structures, respectively. CNC suspension was stable due to its zeta potential of -34.3 ± 1.23 mV. As expected, both NFC and CNC displayed high crystallinity indexes of 68.51 and 78.87%, and FTIR analysis confirmed the successful removal of lignin and hemicellulose during the treatments. However, the thermogravimetric analysis indicated that sulfuric acid hydrolysis decreased the thermal stability of CNCs. The improved physicochemical properties of NFC and CNC suggested their potential in various applications.
Collapse
Affiliation(s)
- Tong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, China
| | - Xuan Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Cao
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
- Faculty of Food Science and Technology, University of Vigo, Pontevedra, Spain
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou, China
- *Correspondence: Yafeng Zheng,
| |
Collapse
|
26
|
Xiao Z, Li J, Wang H, Zhang Q, Ge Q, Mao J, Sha R. Hemicellulosic Polysaccharides From Bamboo Leaves Promoted by Phosphotungstic Acids and Its Attenuation of Oxidative Stress in HepG2 Cells. Front Nutr 2022; 9:917432. [PMID: 35769382 PMCID: PMC9234559 DOI: 10.3389/fnut.2022.917432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
In this work, we exploited an efficient method to release hemicellulosic polysaccharides (BLHP) from bamboo (Phyllostachys pubescens Mazel) leaves assisted by a small amount of phosphotungstic acid. Structural unit analysis proved that BLHP-A1 and BLHP-B1 samples possessed abundant low-branch chains in →4)-β-D-Xylp-(1→ skeleton mainly consisting of Xylp, Manp, Glcp, Galp, and Araf residues. According to the results of the antioxidant activity assays in vitro, both of the two fractions demonstrated the activity for scavenging DPPH⋅ and ABTS+ radicals and exhibited relatively a high reducing ability compared to the recently reported polysaccharides. Moreover, the antioxidant activities of purified polysaccharides were evaluated against H2O2-induced oxidative stress damage in HepG2 cells. BLHP-B1 showed more activity for preventing damages from H2O2 in HepG2 cells by improving the enzyme activities of SOD, CAT, and GSH-Px and decreasing the production of MDA as well as suppressing reactive oxygen species (ROS) formation. This study implied that BLHP could demonstrate its attenuation ability for oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Zhuqian Xiao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Zhuqian Xiao,
| | - Jiajie Li
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Hongpeng Wang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qiang Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qing Ge
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jianwei Mao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruyi Sha
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
27
|
High strength holocellulose paper from bamboo as biodegradable packaging tape. Carbohydr Polym 2022; 283:119151. [DOI: 10.1016/j.carbpol.2022.119151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 11/23/2022]
|
28
|
Saini MK, Kumar S, Li H, Babu SA, Saravanamurugan S. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. CHEMSUSCHEM 2022; 15:e202200107. [PMID: 35171526 DOI: 10.1002/cssc.202200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
One-pot synthesis of sustainable primary amines by catalytic reductive amination of bio-based carbonyl compounds with NH3 and H2 is emerging as a promising and robust approach. The primary amines, especially furfuryl amine (FUA) derived from furfural (FUR), with a wide range of applications from pharmaceuticals to agrochemicals, have attracted much attention due to their versatility. This Review is majorly comprised of two segments on the reductive amination of FUR to FUA, one with precious (Ru, Pd, Rh) and the other with non-precious (Co, Ni) metals on different supports and in various solvent systems in the presence of NH3 and H2 . The active metal sites generated on multiple supports are accentuated with experimental evidence based on CO-diffuse reflectance infrared Fourier-transform spectroscopy, H2 temperature-programmed reduction, X-ray photoelectron spectroscopy, and calorimetry. Moreover, this Review comprehensively describes the role of acidic and basic support for the metal on the yield of FUA. Overall, this Review provides an insight into how to design and develop an efficiently robust catalyst for the selective reductive amination of a broad spectrum of carbonyl compounds to corresponding amines.
Collapse
Affiliation(s)
- Ms Kanika Saini
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Sahil Kumar
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| |
Collapse
|
29
|
Nasir HM, Wee SY, Aris AZ, Abdullah LC, Ismail I. Processing of natural fibre and method improvement for removal of endocrine-disrupting compounds. CHEMOSPHERE 2022; 291:132726. [PMID: 34718023 DOI: 10.1016/j.chemosphere.2021.132726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Persistent endocrine-disrupting compounds (EDCs) in bodies of water are a concern for human health and constitute an environmental issue, even if present in trace amounts. Conventional treatment systems do not entirely remove EDCs from discharge effluent. Due to the ultra-trace level of EDCs which affect human health and pose an environmental issue, developing new approaches and techniques to remove these micropollutants from the discharged effluent is vital. This review discusses the most common methods of eliminating EDCs through preliminary, primary, secondary and tertiary treatments. The adsorption process is favoured for EDC removal, as it is an economical and straightforward option. The NABC aspects, which are the need, approach, benefits and challenges, were analysed based on existing circumstances, highlighting biochar as a green and renewable adsorbent for the removal of organic contaminants. From the environmental point of view, the effectiveness of this method, which uses natural fibre from the kenaf plant as a porous and economical biochar material with a selected lignocellulosic biomass, provides insights into the advantages of biochar-derived adsorbents. Essentially, the improvement of the natural fibre as an adsorbent is a focus, using carbonisation, activation, and the physiochemical process to enhance the adsorption ability of the material for pollutants in bodies of water. This output will complement sustainable water management approaches presented in previous studies for combating the emerging pollutant crisis via novel green and environmentally safe options.
Collapse
Affiliation(s)
- Hanisah Mohmad Nasir
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ismayadi Ismail
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Rini DS, Ishiguri F, Nezu I, Aji IML, Irawati D, Ohshima J, Yokota S. Longitudinal and geographic variations in the green moisture content and basic density of bamboo culm in three species naturally grown in Lombok Island, Indonesia. TROPICS 2022. [DOI: 10.3759/tropics.ms21-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Ikumi Nezu
- School of Agriculture, Utsunomiya University
| | | | | | | | | |
Collapse
|
31
|
Borrero-López AM, Valencia C, Franco JM. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers (Basel) 2022; 14:881. [PMID: 35267704 PMCID: PMC8912558 DOI: 10.3390/polym14050881] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present review is devoted to the description of the state-of-the-art techniques and procedures concerning treatments and modifications of lignocellulosic materials in order to use them as precursors for biomaterials, biochemicals and biofuels, with particular focus on lignin and lignin-based products. Four different main pretreatment types are outlined, i.e., thermal, mechanical, chemical and biological, with special emphasis on the biological action of fungi and bacteria. Therefore, by selecting a determined type of fungi or bacteria, some of the fractions may remain unaltered, while others may be decomposed. In this sense, the possibilities to obtain different final products are massive, depending on the type of microorganism and the biomass selected. Biofuels, biochemicals and biomaterials derived from lignocellulose are extensively described, covering those obtained from the lignocellulose as a whole, but also from the main biopolymers that comprise its structure, i.e., cellulose, hemicellulose and lignin. In addition, special attention has been paid to the formulation of bio-polyurethanes from lignocellulosic materials, focusing more specifically on their applications in the lubricant, adhesive and cushioning material fields. High-performance alternatives to petroleum-derived products have been reported, such as adhesives that substantially exceed the adhesion performance of those commercially available in different surfaces, lubricating greases with tribological behaviour superior to those in lithium and calcium soap and elastomers with excellent static and dynamic performance.
Collapse
Affiliation(s)
- Antonio M. Borrero-López
- Pro2TecS—Chemical Process and Product Technology Research Center, Departamento de Ingeniería Química, Escuela Técnica Superior de Ingeniería, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain; (C.V.); (J.M.F.)
| | | | | |
Collapse
|
32
|
Arzami AN, Ho TM, Mikkonen KS. Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Res Int 2022; 151:110818. [PMID: 34980370 DOI: 10.1016/j.foodres.2021.110818] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The biomass from cereal side streams is rich in valuable components, such as hemicelluloses. Among the hemicelluloses, arabinoxylans and β-glucans are the most acknowledged for potential health benefits. Numerous publications discuss the potential to use purified forms of these hemicelluloses for various applications. However, as the purification of hemicelluloses may not be economically feasible to upscale, sustainable and cost-effective methods are needed to make their valorization more realistic for industrial applications. Co-components present in hemicellulose-rich fractions may also provide added functionality, such as flavonoid content and antioxidant capacity. This review provides an overview on the feasibility of sustainably upscaling hemicellulose extraction processes, focusing on by-products from different cereal streams. We describe the hemicelluloses' physicochemical properties and provide various possible applications of pure and impure fractions from small scale to pilot and industrial scale. Furthermore, real case examples on the industrial utilization of cereal side streams are enclosed. This review provides pathways for future research for developing the hemicellulose extraction methods to obtain fractions with optimized purity, and offers suggestions to valorize them.
Collapse
Affiliation(s)
- Anis N Arzami
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland.
| | - Thao M Ho
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, 00014, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, 00014, University of Helsinki, Finland
| |
Collapse
|
33
|
Zhu J, Wang H, Guo F, Salmén L, Yu Y. Cell wall polymer distribution in bamboo visualized with in situ imaging FTIR. Carbohydr Polym 2021; 274:118653. [PMID: 34702472 DOI: 10.1016/j.carbpol.2021.118653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
To better understand the high recalcitrance of bamboo during bioconversion, the fine spatial distribution of polymers in bamboo was studied with Imaging FTIR microscopy under both transmission and ATR modes, combined with PCA data processing. The results demonstrated that lignin, xylan and hydroxycinnamic acid (HCA) were more concentrated in the fibers near the xylem conduit, while cellulose was evenly distributed across the whole fiber sheath. PCA processing produced a clear separation between bamboo fibers and parenchyma cells, indicating that the parenchyma cells contains more pectin and HCA than fibers. It also demonstrated that cellulose, xylan and S-lignin were concentrated most heavily in bamboo fiber secondary cell walls, while G-lignin, pectin and HCA were found more in the compound middle lamella. The revealed information regarding polymer distribution is of great significance for better understanding of the inherent design mechanism of plant cell wall and its efficient utilization.
Collapse
Affiliation(s)
- Jiawei Zhu
- Institute of New Bamboo and Rattan Based Materials, International Center for Bamboo and Rattan, Beijing 100102, PR China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, PR China
| | - Hankun Wang
- Institute of New Bamboo and Rattan Based Materials, International Center for Bamboo and Rattan, Beijing 100102, PR China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, PR China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | | | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
34
|
Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation. Molecules 2021; 26:molecules26226770. [PMID: 34833862 PMCID: PMC8618192 DOI: 10.3390/molecules26226770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.
Collapse
|
35
|
Xu C, Zhang X, Hussein Z, Wang P, Chen R, Yuan Q, Gao Y, Song N, Gouda SG. Influence of the structure and properties of lignocellulose on the physicochemical characteristics of lignocellulose-based residues used as an environmentally friendly substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148089. [PMID: 34098276 DOI: 10.1016/j.scitotenv.2021.148089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The extensive use of nonrenewable peat does not meet the strategic goals of sustainable development. This study explores the advantages and disadvantages of using lignocellulose-based agricultural and forestry wastes as peat substitute in substrates for soilless cultivation; further, it also investigates the key factors influencing the physical and chemical properties of the substrates. Accordingly, the physical and chemical properties of four gramineous crop straws and two woody forestry wastes were determined and compared with those of peat and coconut bran. In addition, cellulose, hemicellulose, and lignin were extracted from wheat straw and pine sawdust, and their basic characteristics and structures were compared and analyzed. The results showed that the influence of particle size on the physical properties of substrates was significantly higher (P < 0.01) than the influence of the substrate type, especially with respect to the water-holding and aeration porosities, which had effect sizes (Eta2) of 73.8% and 68.2%, respectively. The electrical conductivity values of the four straws (1.87-3.42 mS/cm) were higher than those of peat and coconut bran (0.50-0.96 mS/cm), which was mainly due to the high hemicellulose contents (28.52%-30.10%) and total nutrient contents (28.46-47.81 g/kg) of the straws. In contrast, the electrical conductivity values of the woody waste substrates were lower (0.28-0.33 mS/cm) than those of peat and coconut bran. Peat and coconut bran contained the lowest cellulose (17.84%-20.95%) and hemicellulose contents (5.14%-7.19%) of all substrates, resulting in a low degradability and good stability. The crystallinity of coconut bran (23.06%) was significantly lower than that of all other substrates (30.36%-43.03%), which mainly contributed to the superior compressibility of coconut bran. The best pretreatment method for biomass waste used as a substrate should be selected according to the target properties of the corresponding components.
Collapse
Affiliation(s)
- Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zakia Hussein
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Ruyi Chen
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| | - Yong Gao
- Wuhan Optics Valley Bluefire New Energy Co. Ltd., Wuhan 430000, China
| | - Na Song
- Hubei Haitu Horticultural Landscape Engineering Co. Ltd., Wuhan 430070, China
| | - Shaban G Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt
| |
Collapse
|
36
|
Ye L, Han Y, Wang X, Lu X, Qi X, Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Sherif N, Gadalla M, Kamel D. Acid–hydrolysed furfural production from rice straw bio-waste: Process synthesis, simulation, and optimisation. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
40
|
Felisberto MHF, Beraldo AL, Sentone DT, Klosterhoff RR, Clerici MTPS, Cordeiro LMC. Young culm of Dendrocalamus asper, Bambusa tuldoides and B. Vulgaris as source of hemicellulosic dietary fibers for the food industry. Food Res Int 2021; 140:109866. [PMID: 33648184 DOI: 10.1016/j.foodres.2020.109866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Bamboo is a grass that has gained economic attention in the food industry as a source of dietary fiber, and the young bamboo culm may be an alternative to supply fibers to the market. The objective was to evaluate and characterize different portions (bottom, middle and top) of the young bamboo culm fibrous fractions from Dendrocalamus asper, Bambusa tuldoides and B. vulgaris regarding their color parameters, physicochemical composition and hemicellulosic polysaccharide characterization. Fibrous fractions were obtained after starch extraction and results showed high amounts of total dietary fiber (79-89%). The hemicellulosic polysaccharide contents (35.4-41.5%) demonstrated great potential for commercial extraction and so, we extracted them with alkali and fractionated regarding their solubility in cold-water. Insoluble polysaccharides (KP fractions) were obtained in higher yields (from 21.2% to 38.5%) than the soluble ones (KS fractions, yields from 2.3% to 5.2%). Monosaccharide composition showed mainly xylose and arabinose, with some minor amounts of mannose and galactose in some fractions. In a detailed NMR analysis, the presence of neutral xylans and arabinoxylans could be observed in all studied bamboo species, which can be used in food products and also in the production of xylooligosaccharides (XOS), biomaterials and biofuels.
Collapse
Affiliation(s)
- Mária Herminia Ferrari Felisberto
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil; Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Daniel Tourinho Sentone
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Rafael R Klosterhoff
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
41
|
Synthesis and characterization of xylan-gelatin cross-linked reusable hydrogel for the adsorption of methylene blue. Carbohydr Polym 2021; 256:117520. [DOI: 10.1016/j.carbpol.2020.117520] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
|
42
|
Gao Y, Wang Y, Ji X, Xiao Y, Xiao B, Peng P. Tea polysaccharides from Camellia sinensis: chemical analysis, structural characterization, and inhibition of HeLa cells activity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1877957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| | | | - Xuening Ji
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiao
- Department of Foreign Languages, Northwest A&F University, Yangling, China
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions. SUSTAINABILITY 2020. [DOI: 10.3390/su122410601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rice straw is an abundant material with the potential to be converted into a sustainable energy resource. Transition-metal catalysis activated the C–O bond in the hemicellulose of raw rice straw, cleaving it to form monosaccharides. The mechanism of rice straw catalytic conversion had a synergistic effect due to in situ acid catalysis and metal catalysis. The conditions for the hydrogenation of hemicellulose from rice straw were optimized: catalyst to rice straw solid/solid ratio of 3:10, stirring speed of 600 r/min, temperature of 160 °C, time of 3 h, solid/liquid ratio of 1:15, and H2 gas pressure of 1.5 MPa. An excellent hemicellulose conversion of 97.3% with the yields of xylose and arabinose at 53.0% and 17.3%, respectively, were obtained. The results from FTIR and SEM experiments also confirmed the destruction of the rigidity and reticulate structure of rice straw after the catalytic reaction.
Collapse
|
44
|
Ju Z, Zhan T, Zhang H, He Q, Yuan M, Lu X. Preparation of functional bamboo by combining nano-copper with hemicellulose and lignin under high voltage electric field (HVEF). Carbohydr Polym 2020; 250:116936. [PMID: 33049848 DOI: 10.1016/j.carbpol.2020.116936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
A simple and effective method for preparing functional bamboo by combining nano-copper with hemicellulose and lignin was proposed. The influences of HVEF treatment time and voltage on the reaction of nano-copper with hemicellulose and lignin were studied. The combination was characterized by scanning electron microscopy-X-ray energy dispersive spectrometer (ESEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results indicated that the O/C ratio and OH content of the treated bamboo decreased, the number of CHO groups decreased, the number of CO groups increased, and the nano-copper interacted with the hemicellulose and lignin in the bamboo. Copper was presented in the treated bamboo in the form of Cu0, Cu+ and Cu2+. The concentration of copper increased with the increasing treatment time or voltage. The bamboo underwent the high-voltage electrostatic in situ impregnation copper treatment had significant antibacterial properties and excellent UV protection performance. Therefore, the in situ impregnation of nano-copper particles with an HVEF treatment is simple and effective to produce functionalized bamboo, and has broad application prospects.
Collapse
Affiliation(s)
- Zehui Ju
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tianyi Zhan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Haiyang Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian He
- College of Civil Science and Engineering, Yangzhou University, 225000, PR China
| | - Man Yuan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoning Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
45
|
Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. NANOSCALE 2020; 12:22845-22890. [PMID: 33185217 DOI: 10.1039/d0nr04795c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jo Heuschele D, Smith KP, Annor GA. Variation in Lignin, Cell Wall-Bound p-Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12569-12576. [PMID: 33126793 DOI: 10.1021/acs.jafc.0c04025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the contribution of stem cell wall components to lodging is important in developing breeding programs aimed at reducing lodging in cereal crops. This study is one of the first to investigate the correlation between the amounts of cell wall-bound ferulic acid, p-coumaric acid, and lignin in the nodes and internodes of cereals (oat, wheat, and barley) and their lodging susceptibility during grain fill. All samples, except two-row barley, were susceptible to lodging and expressed a significantly lower stalk strength. Lignin and phenolic contents between nodes and internodes of all samples were significantly different, with internodes having higher amounts (5.5-7.0 and 10.9-16.2 μg/g p-coumaric acid, and 2.5-3.2 and 3.9-7.1 μg/g ferulic acid in nodes and internodes, respectively). The acid-soluble lignin content was different between nodes and internodes but not between crops. This data set did not correlate with lodging classification, possibly due to sample size and type.
Collapse
Affiliation(s)
- D Jo Heuschele
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - George A Annor
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
47
|
Wang X, Liu Y, Cui X, Xiao J, Lin G, Chen Y, Yang H, Chen H. Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:43-52. [PMID: 32673980 DOI: 10.1016/j.wasman.2020.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The liquid product from biomass direct pyrolysis is usually complex and difficult to effectively utilize. By combining hydrothermal conversion and low-temperature pyrolysis, the hemicellulose and cellulose of biomass can be transformed into value-added furfural and levoglucosan (LG), respectively. The effects of temperature during hydrothermal treatment (160-240 °C) and subsequent pyrolysis (340-400 °C) on the production of furfural and LG were investigated by using three typical agricultural wastes, namely corn stalk, peanut shells, and rice stalk. The maximum furfural yield of 4.2% was achieved upon hydrolysis of peanut shells at 200 °C. The hydrochar produced from peanut shells presented the highest LG yield of 7.3% (based on original biomass weight) for a pyrolysis temperature of 360 °C. Under this optimal condition, the total revenue from various products of the hybrid thermochemical process was estimated at $0.362 per kilogram of peanut shells, whereas furfural and LG account for 90% of the revenue.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Cui
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianjun Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guiying Lin
- Hubei Normal University, Huangshi 435002, China
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Choline chloride-based deep eutectic solvents for efficient delignification of Bambusa bambos in bio-refinery applications. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Extraction, purification, and determination of the gastroprotective activity of glucomannan from Bletilla striata. Carbohydr Polym 2020; 246:116620. [PMID: 32747259 DOI: 10.1016/j.carbpol.2020.116620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022]
Abstract
In this study, a water-soluble polysaccharide (BSP) was extracted and purified from pseudobulb of Bletilla striata. The preliminary structure and gastroprotective activity of BSP were analyzed. Results indicate that BSP is a glucomannan with a molar ratio of 7.45:2.55 (Man:Glc), and its molecular weight is approximately 1.7 × 105 Da. BSP displayed outstanding protective action against ethanol-induced GES-1 cell injury in vitro, as well as, excellent gastroprotective activity in vivo. Especially, a high-dose of BSP (100 mg/kg) could reduce the ulcer index of the gastric mucosa and increase the percentage of ulcer inhibition, which possibly caused by enhancing the antioxidant capacity and inhibiting the apoptotic pathway in gastric tissue. Interestingly, BSP exhibited a comparative gastroprotective activity to that of positive control (omeprazole). In summary, our results indicated that BSP could be considered as a potential supplement for the prevention of gastric injury.
Collapse
|
50
|
Yekta R, Mirmoghtadaie L, Hosseini H, Norouzbeigi S, Hosseini SM, Shojaee-Aliabadi S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int J Biol Macromol 2020; 158:327-337. [PMID: 32278602 DOI: 10.1016/j.ijbiomac.2020.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Althaea rosea flowers were used to procure the gum (ARG) needed for film preparation. Pretest studies suggested 1.5% ARG + 50% glycerol as optimum for film preparation. The reinforcement impact of 3, 5, and 8 wt% bacterial nanocrystalline cellulose (BNC) incorporation (based on the dry weight of ARG) was investigated on the structural, mechanical, physical, thermal, optical, morphological, and barrier properties of films. The Results suggested that increasing the BNC concentration until a certain level (5 wt% BNC) could improve the latter properties. However, at higher concentration (8 wt% BNC), cellulose nanoparticles tended to agglomerate, which led to the impairment of some of those properties, especially barrier properties. According to AFM and SEM results, BNC addition increased surface roughness and coarseness. All BNC-loaded films showed better functions compared to control sample (0 wt% BNC) and the film containing 5 wt% BNC was suggested as the optimum film.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Norouzbeigi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|