1
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
2
|
Anti-wetting surfaces with self-healing property: fabrication strategy and application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Altinkok C, Acik G, Daglar O, Durmaz H, Tunc I, Agel E. A facile approach for the fabrication of antibacterial nanocomposites: A case study for AgNWs/Poly(1,4-Cyclohexanedimethylene Acetylene Dicarboxylate) composite networks by aza-Michael addition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
In-situ synthesis of polypyrrole/silver for fabricating alginate fabrics with high conductivity, UV resistance and hydrophobicity. Carbohydr Polym 2021; 270:118362. [PMID: 34364607 DOI: 10.1016/j.carbpol.2021.118362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
In this research, the polypyrrole/silver (PPy/Ag) composite was first in-situ prepared on alginate fabrics by chemical oxidative polymerization of pyrrole (Py) monomer using silver nitrate as oxidant and sodium dodecyl sulfate (SDS) as the dopant. The effects of mole ratio of Py to silver nitrate, reaction time and dopant concentration on the preparation of PPy/Ag composite were optimized. It was found the optimal molar ratio of Py to silver nitrate was 1:1.5 with 0.02 M SDS under the reaction time of 10 h. Then, the microstructure and properties of resultant PPy/Ag composite were analyzed by scanning electron microscope (SEM), Fourier infrared spectrometer (FT-IR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and the thermogravimetry analysis (TGA), respectively. Finally, the influences of PPy/Ag coating on the performance of alginate fabrics including electrical conductivity, hydrophilicity, antistatic property and anti-ultraviolet capability were determined. It was found that the electrical conductivity of alginate fabric could be intensively increased after PPy/Ag coating. Meantime, the anti-ultraviolet capability and hydrophobicity could be largely improved by PPy/Ag coating especially under high Py dosage. This paper introduced a simple method for preparing PPy/Ag composite direct on alginate fabric to make it a good functional substrate which could be applied in many fields.
Collapse
|
5
|
Gorji M, Mazinani S, Faramarzi AR, Ghadimi S, Kalaee M, Sadeghianmaryan A, Wilson LD. Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level. Molecules 2021; 26:3570. [PMID: 34208039 PMCID: PMC8230617 DOI: 10.3390/molecules26123570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 μm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.
Collapse
Affiliation(s)
- Mohsen Gorji
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634311, Iran; (S.M.); (A.-R.F.); (S.G.)
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634311, Iran; (S.M.); (A.-R.F.); (S.G.)
| | - Abdol-Rahim Faramarzi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634311, Iran; (S.M.); (A.-R.F.); (S.G.)
| | - Saeedeh Ghadimi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634311, Iran; (S.M.); (A.-R.F.); (S.G.)
| | - Mohammadreza Kalaee
- Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran 1777613651, Iran;
- Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, Tehran 1584743311, Iran
| | - Ali Sadeghianmaryan
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil 5615731567, Iran;
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
6
|
Manufacture of high sensitive Ag-Fe3O4-PDMS nanocomposite pressure sensor through morphology control of conductive filler. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci 2021; 28:3633-3640. [PMID: 34220213 PMCID: PMC8241602 DOI: 10.1016/j.sjbs.2021.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022] Open
Abstract
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Nanthini Devi Periadurai
- Departments of Microbiology, Molecular Virology and Hospital Infection Control, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sardar Hussain
- Department of Biotechnology, Government Science College, Chitradurga 577501, Karnataka, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India
| | - Xinsheng Jiao
- Department of Cosmetic, Plastic and Burn Surgery, No. 50, Normal Road, The Fourth People's Hospital of Jinan, Jinan 250031, China
| |
Collapse
|
8
|
Ampelopsis grossedentata Leaf Extract Induced Gold Nanoparticles as Wound Healing Dressing for Abdominal Wound Dehiscence in Nursing Care. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution. J Colloid Interface Sci 2021; 586:120-134. [PMID: 33162044 DOI: 10.1016/j.jcis.2020.10.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS From the end of the twentieth century, the growing interest in a new generation of wearable electronics with attractive application for military, medical and smart textiles fields has led to a wide investigation of chemical finishes for the production of electronic textiles (e-textiles). EXPERIMENTS Herein, a novel method to turn insulating cotton fabrics in electrically conductive by the deposition of three-dimensional hierarchical vertically aligned carbon nanotubes (VACNT) is proposed. Two VACNT samples with different length were synthesized and then dispersed in 4-dodecylbenzenesulfonic acid combined with silica-based sol-gel precursors. The dispersed VACNT were separately compounded with a polyurethane thickener to obtain homogeneous spreadable pastes, finally coated onto cotton surfaces by the "knife-over-roll" technique. FINDINGS Shorter VACNT-based composite showed the best electrical conductivity, with a sheet resistance value less than 4.0 · 104 ± 6.7 · 103 Ω/sq. As demonstrated, developed e-textiles are suitable for application as humidity sensing materials in wearable smart textiles by exhibiting adequate response time for end-users and repeatability at several exposure cycles, still maintaining excellent flexibility. The proposed environmentally-friendly and cost-effective method can be easily widened to the scalable production of CNT-containing conductive flexible coatings, providing additional support to the development of real integration between electronics and textiles.
Collapse
|
10
|
Ahmad B, Shireen F, Rauf A, Shariati MA, Bashir S, Patel S, Khan A, Rebezov M, Khan MU, Mubarak MS, Zhang H. Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver. IET Nanobiotechnol 2021; 15:1-18. [PMID: 34694726 PMCID: PMC8675842 DOI: 10.1049/nbt2.12007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Published studies indicate that virtually any kind of botanical material can be exploited to make biocompatible, safe, and cost-effective silver nanoparticles. This hypothesis is supported by the fact that plants possess active bio-ingredients that function as powerful reducing and coating agents for Ag+. In this respect, a phytomediation method provides favourable monodisperse, crystalline, and spherical particles that can be easily purified by ultra-centrifugation. However, the characteristics of the particles depend on the reaction conditions. Optimal reaction conditions observed in different experiments were 70-95 °C and pH 5.5-8.0. Green silver nanoparticles (AgNPs) have remarkable physical, chemical, optical, and biological properties. Research findings revealed the versatility of silver particles, ranging from exploitation in topical antimicrobial ointments to in vivo prosthetic/organ implants. Advances in research on biogenic silver nanoparticles have led to the development of sophisticated optical and electronic materials with improved efficiency in a compact configuration. So far, eco-toxicity of these nanoparticles is a big challenge, and no reliable method to improve the toxicity has been reported. Therefore, there is a need for reliable models to evaluate the effect of these nanoparticles on living organisms.
Collapse
Affiliation(s)
- Bashir Ahmad
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Farah Shireen
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of Swabi, SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Shumaila Bashir
- Department of PharmacyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ajmal Khan
- Oman Medicinal Plants and Marine ProductsUniversity of NizwaNizwaOman
| | - Maksim Rebezov
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of SciencesMoscowRussian Federation
- A. M. Prokhorov General Physics InstituteRussian Academy of ScienceMoscowRussian Federation
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL)Washington State UniversityRichlandWasingtonUSA
- Department of Energy Systems EngineeringFaculty of Agricultural Engineering and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Haiyuan Zhang
- Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| |
Collapse
|
11
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
12
|
Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Naeem M, Felipe MBMC, Medeiros SRB, Costa T, Libório MS, Alves C, Nascimento RM, Nascimento IO, Sousa RRM, Feitor MC. Novel antibacterial silver coating on
PET fabric assisted
with
hollow‐cathode
glow discharge. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Naeem
- Department of Physics Women University of Azad Jammu and Kashmir Rawalpindi Pakistan
| | - M. B. M. C. Felipe
- Laboratório de Mutagênese Ambiental, Bioscience Center Federal University of Rio Grande do Norte Natal Brazil
| | - S. R. B. Medeiros
- Department of Cellular Biology and Genetics, Bioscience Center Federal University of Rio Grande do Norte Natal Brazil
| | - T.H.C. Costa
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - M. S. Libório
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - C. Alves
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - R. M. Nascimento
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - I. O. Nascimento
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - R. R. M. Sousa
- Postgraduate Materias Science and Engineering–Federal University of Piauí, UFPI Teresina Brazil
| | - M. C. Feitor
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
14
|
Synthesis of Active Graphene with Para-Ester on Cotton Fabrics for Antistatic Properties. NANOMATERIALS 2020; 10:nano10061147. [PMID: 32545323 PMCID: PMC7353349 DOI: 10.3390/nano10061147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
Abstract
The excellent electrical properties of graphene provide a new functional finishing idea for fabricating conductive cotton fabrics with antistatic properties. This work develops a novel method for synthesizing active graphene to make cotton fabrics conductive and to have antistatic properties. The graphite was oxidized to graphene oxide (GO) by the Hummers method, and was further acid chlorinated and reacted with the para-ester to form the active graphene (JZGO). JZGO was then applied to cotton fabrics and was bonded to the fiber surface under alkaline conditions. Characterizations were done using FT-IR, XRD and Raman spectroscopy, which indicated that the para-ester group was successfully introduced onto JZGO, which also effectively improved the water dispersibility and reactivity of the JZGO. Furthermore, this study found that the antistatic properties of the fabric were increased by more than 50% when JZGO was 3% by weight under low-humidity conditions. The washing durability of the fabrics was also evaluated.
Collapse
|
15
|
Nie X, Wu S, Mensah A, Wang Q, Huang F, Li D, Wei Q. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. J Colloid Interface Sci 2020; 579:233-242. [PMID: 32592988 DOI: 10.1016/j.jcis.2020.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Development of ease-fabricated and effectively self-disinfecting textile materials for antimicrobial and infection prevention has been urgently desired by both consumers and industry. However, some nonresponsive antibacterial agents finished fabrics may be harmful to human. To address this issue, we developed a facile finishing method to endow woven cotton fabrics (WCF) with light-driven antibacterial property. Here in, porphyrinic metal-organic frameworks (PCN-224) were in situ synthesized on WCF (termed PCN-224/WCF) and PCN-224/WCF was proven to be used for antibacterial photodynamic inactivation (aPDI). aPDI studies indicated no difference in bacterial inactivation, the inactivation was 99.9999% of Gram-negative Escherichia coli 8099 and Pseudomonas aeruginosa CMCC (B) 10104 as well as Gram-positive Staphylococcus aureus ATCC-6538 and Bacillus subtilis CMCC (B) 63501 under visible light illumination (500 W, 15 cm vertical distance, λ ≥ 420 nm, 45 min). Cytotoxicity tests revealed PCN-224/WCF had low biological toxicity and good biocompatibility. Mechanism study revealed that singlet oxygen (1O2) was produced by PCN-224/WCF and caused severe damage to bacteria which was observed from the SEM images. This study provided a facile guideline to functionalize cotton fabrics with responsive bactericidal property which showed great potential for new generation of textiles with practical applications.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K, Balakumar C, Premkumar K, Prabu HG. Green biosynthesis of gold nanoparticles using
Croton sparsiflorus leaves
extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pandi Boomi
- Department of BioinformaticsAlagappa University Karaikudi 630003 Tamil Nadu India
| | | | - Samayanan Selvam
- Department of Chemical and Biochemical EngineeringDongguk University‐Seoul Seoul 04620 Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon 210‐702 Republic of Korea
| | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextileZhejiang Sci‐Tech University, Xiasha Higher Education Park Hangzhou 310018 P.R. China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory ServiceUniversity of the Free State Bloemfontein South Africa
| | - Chandrasekaran Balakumar
- Faculty of Pharmacy, Philadelphia University, P. O. Box ‐ 1Philadelphia University (19392) Jordan
| | - Kumpati Premkumar
- Department of Biomedical ScienceBharathidasan University Tiruchirappalli 620024 India
| | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical SciencesAlagappa University Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
17
|
Zhang X, Tian C, Chen Z, Zhao G. Hydrogel‐Based Multifunctional Dressing Combining Magnetothermally Responsive Drug Delivery and Stem Cell Therapy for Enhanced Wound Healing. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Conghui Tian
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Zhongrong Chen
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Gang Zhao
- Department of Electronic Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| |
Collapse
|
18
|
Liu J, Shen J, Wang J, Liang Y, Wu R, Zhang W, Shi D, Shi S, Wang Y, Wang Y, Xia Y. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1916-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Kim JH, Ma J, Jo S, Lee S, Kim CS. Enhancement of Antibacterial Properties of a Silver Nanowire Film via Electron Beam Irradiation. ACS APPLIED BIO MATERIALS 2020; 3:2117-2124. [DOI: 10.1021/acsabm.0c00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ji-Hyeon Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, South Korea
| | - Junfei Ma
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, South Korea
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Sungjin Jo
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghun Lee
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, South Korea
| | - Chang Su Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science, Changwon 51508, South Korea
| |
Collapse
|
20
|
Zhou J, Luo Q, Gao P, Ma H. Assembly of graphene oxide on cotton fiber through dyeing and their properties. RSC Adv 2020; 10:11982-11989. [PMID: 35496578 PMCID: PMC9050822 DOI: 10.1039/d0ra01588a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
Assembly structure of GO on the fiber in the dyeing process is more regular than that in the dip-drying process.
Collapse
Affiliation(s)
- Jie Zhou
- China-Australia Institute for Advanced Materials and Manufacturing
- College of Material and Textile Engineering
- Jiaxing University
- Jiaxing
- PR China
| | - Qiulan Luo
- College of Nanhu
- Jiaxing University
- Jiaxing
- PR China
| | - Pu Gao
- College of Nanhu
- Jiaxing University
- Jiaxing
- PR China
| | - Hui Ma
- China-Australia Institute for Advanced Materials and Manufacturing
- College of Material and Textile Engineering
- Jiaxing University
- Jiaxing
- PR China
| |
Collapse
|
21
|
Jo HS, An S, Park CW, Woo DY, Yarin AL, Yoon SS. Wearable, Stretchable, Transparent All-in-One Soft Sensor Formed from Supersonically Sprayed Silver Nanowires. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40232-40242. [PMID: 31571474 DOI: 10.1021/acsami.9b12847] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The demand for wearable, stretchable soft electronics for human-machine interface applications continues to grow given the potential of these devices in humanoid robotics, prosthetics, and health-monitoring devices. We demonstrate fabrication of multifunctional sensors with simultaneous temperature-, pressure-, proximity-, and strain (or bending)-sensing capabilities, combined with heating and UV-protection features. These multifunctional sensors are flexible, light, and transparent and are thus body-attachable. Silver nanowires are supersonically sprayed on a large-scale transparent and flexible roll-to-roll substrate. The junctions between nanowires are physically fused by a strong impact resulting from supersonic spraying, which promotes adhesion and efficient deposition of the nanowire network. Accordingly, nanowires are strongly interconnected, facilitating efficient propagation of electric signals through the fused nanowire network, which allows simultaneous operation of such sensors while maintaining significant transparency. These multifunctional sensors are mechanically durable and retain long-term stability. A theoretical discussion is provided to explain the respective mechanisms of heating and proximity, pressure, and strain sensing.
Collapse
Affiliation(s)
- Hong Seok Jo
- School of Mechanical Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Seongpil An
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 West Taylor Street , Chicago , Illinois 60607-7022 , United States
| | - Chan-Woo Park
- School of Mechanical Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Deok-Yoon Woo
- School of Mechanical Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 West Taylor Street , Chicago , Illinois 60607-7022 , United States
| | - Sam S Yoon
- School of Mechanical Engineering , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
22
|
Liu X, Zou X, Ge Z, Zhang W, Luo Y. Novel waterborne polyurethanes containing long-chain alkanes: their synthesis and application to water repellency. RSC Adv 2019; 9:31357-31369. [PMID: 35527941 PMCID: PMC9072565 DOI: 10.1039/c9ra06462a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
In the fabric finishing field, the water repellents have received increasing interest in recent years and the development of a fluorine-free water repellent has become an attractive prospect. In this study, glyceryl monostearate-modified waterborne polyurethanes (GWPUs) with a branched structure act as water repellents, and were prepared from toluene diisocyanate, trimethylolpropane, hydroxypropyl polydimethylsiloxane, N-methyldiethanolamine, and glyceryl monostearate (GMS). The water repellency and other properties of GWPUs with different GMS content, such as water resistance, hydrophobicity, and air permeability, were studied. The results show that the GMS content for optimum water repellency was 20 wt%, which achieved the highest score (100 points) in a water repellency evaluation. As for the water repellent ability with a GMS content of 20 wt%, the water absorption of a piece of film was reduced to 7.80%, while the water contact angle of terylene coated by the water repellent rose to 148.0°.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China +86-010-68911608 +86-010-68911608
| | - Xiaobin Zou
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China +86-010-68911608 +86-010-68911608
| | - Zhen Ge
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China +86-010-68911608 +86-010-68911608
| | - Wenguo Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China +86-010-68911608 +86-010-68911608
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China +86-010-68911608 +86-010-68911608
| |
Collapse
|
23
|
Chen W, Jiang J, Zhang W, Wang T, Zhou J, Huang CH, Xie X. Silver Nanowire-Modified Filter with Controllable Silver Ion Release for Point-of-Use Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7504-7512. [PMID: 31184870 DOI: 10.1021/acs.est.9b01678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Waterborne diseases related to unsafe water are still major threats to public health in some developing countries and rural areas. Providing affordable and safe drinking water globally remains a great challenge in the coming decades. In this study, we develop a high-throughput and conductive silver nanowire (AgNW)-modified composite filter via depositing thin and ultralong AgNWs on a macroporous substrate. An electrochemical filtration cell (EFC) equipped with the composite filter achieves controllable Ag+ release at a μg L-1 level and superior bacterial inactivation performance (>6-log inactivation efficiency) with an operation voltage of only 1 V at a high flux of 100 m3 h-1 m-2. Under such operation conditions, each composite filter (effective area: 0.79 cm2) can treat at least 750 mL of the bacterial suspension (∼107 CFU mL-1 of Escherichia coli) with a low effluent Ag+ concentration below 50 μg L-1 and almost negligible energy consumption of only ∼70 J m-3.
Collapse
Affiliation(s)
- Wensi Chen
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jinyue Jiang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- School of Environment , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Wenlong Zhang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ting Wang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jianfeng Zhou
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Xing Xie
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
24
|
Maheshwari N, Abd-Ellah M, Goldthorpe IA. Transfer printing of silver nanowire conductive ink for e-textile applications. FLEXIBLE AND PRINTED ELECTRONICS 2019; 4:025005. [DOI: 10.1088/2058-8585/ab2543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Puchowicz D, Giesz P, Kozanecki M, Cieślak M. Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis. Talanta 2019; 195:516-524. [PMID: 30625577 DOI: 10.1016/j.talanta.2018.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022]
Abstract
This article presents some aspects of application the dispersive Micro- Raman Spectroscopy in textile fibers analysis. Research were dedicated to the methodology of surface enhancement Raman spectroscopy (SERS) studies on cotton fabric and possibility of its application in fibers characterization. Studies were carried out on dyed cotton fabrics modified by silver nanowires (AgNWs). Three reactive dyes (blue, yellow, red) and four color intensities (0.5%, 1%, 2% and 5%) were used. AgNWs colloid was deposited on undyed and dyed cotton fabrics by dipping and drying method. Dyed fabrics were examined by spectroscopic methods: FTIR ATR, Raman, UV-Vis Diffuse Reflectance Spectroscopy, Fluorescence Spectroscopy. Raman signal enhancement phenomena occurring on the silver nanoparticles increases the possibility of fiber and dye identification especially in the case of dyes used in cotton dyeing reveals fluorescence.
Collapse
Affiliation(s)
- Dorota Puchowicz
- Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland.
| | - Patrycja Giesz
- Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Marcin Kozanecki
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Małgorzata Cieślak
- Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
26
|
Sustained Release from Injectable Composite Gels Loaded with Silver Nanowires Designed to Combat Bacterial Resistance in Bone Regeneration Applications. Pharmaceutics 2019; 11:pharmaceutics11030116. [PMID: 30871056 PMCID: PMC6471462 DOI: 10.3390/pharmaceutics11030116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
One-dimensional nanostructures, such as silver nanowires (AgNWs), have attracted considerable attention owing to their outstanding electrical, thermal and antimicrobial properties. However, their application in the prevention of infections linked to bone tissue regeneration intervention has not yet been explored. Here we report on the development of an innovative scaffold prepared from chitosan, composite hydroxyapatite and AgNWs (CS-HACS-AgNWs) having both bioactive and antibacterial properties. In vitro results highlighted the antibacterial potential of AgNWs against both gram-positive and gram-negative bacteria. The CS-HACS-AgNWs composite scaffold demonstrated suitable Ca/P deposition, improved gel strength, reduced gelation time, and sustained Ag+ release within therapeutic concentrations. Antibacterial studies showed that the composite formulation was capable of inhibiting bacterial growth in suspension, and able to completely prevent biofilm formation on the scaffold in the presence of resistant strains. The hydrogels were also shown to be biocompatible, allowing cell proliferation. In summary, the developed CS-HACS-AgNWs composite hydrogels demonstrated significant potential as a scaffold material to be employed in bone regenerative medicine, as they present enhanced mechanical strength combined with the ability to allow calcium salts deposition, while efficiently decreasing the risk of infections. The results presented justify further investigations into the potential clinical applications of these materials.
Collapse
|
27
|
Hwang HJ, Devaraj H, Yang C, Gao Z, Chang CH, Lee H, Malhotra R. Rapid Pulsed Light Sintering of Silver Nanowires on Woven Polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Sci Rep 2018; 8:17159. [PMID: 30464250 PMCID: PMC6249281 DOI: 10.1038/s41598-018-35650-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Fabric-based personal heating patches have small geometric profiles and can be attached to selected areas of garments for personal thermal management to enable significant energy savings in built environments. Scalable fabrication of such patches with high thermal performance at low applied voltage, high durability and low materials cost is critical to the widespread implementation of these energy savings. This work investigates a scalable Intense Pulsed Light (IPL) sintering process for fabricating silver nanowire on woven polyester heating patches. Just 300 microseconds of IPL sintering results in 30% lesser electrical resistance, 70% higher thermal performance, greater durability (under bending up to 2 mm radius of curvature, washing, humidity and high temperature), with only 50% the added nanowire mass compared to state-of-the-art. Computational modeling combining electromagnetic and thermal simulations is performed to uncover the nanoscale temperature gradients during IPL sintering, and the underlying reason for greater durability of the nanowire-fabric after sintering. This large-area, high speed, and ambient-condition IPL sintering process represents an attractive strategy for scalably fabricating personal heating fabric-patches with greater thermal performance, higher durability and reduced costs.
Collapse
Affiliation(s)
- Hyun-Jun Hwang
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey, 08854, USA
| | - Harish Devaraj
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey, 08854, USA
| | - Chen Yang
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey, 08854, USA
| | - Zhongwei Gao
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Johnson Hall, Suite 216, Corvallis, Oregon, 97331, USA
| | - Chih-Hung Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Johnson Hall, Suite 216, Corvallis, Oregon, 97331, USA
| | - Howon Lee
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey, 08854, USA
| | - Rajiv Malhotra
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
28
|
Jaksik J, Tran P, Galvez V, Martinez I, Ortiz D, Ly A, McEntee M, Durke EM, Aishee ST, Cua M, Touhami A, Moore HJ, Uddin MJ. Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Silver Nanowires: Synthesis, Antibacterial Activity and Biomedical Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050673] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. NANOMATERIALS 2018; 8:nano8040232. [PMID: 29641466 PMCID: PMC5923562 DOI: 10.3390/nano8040232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag⁺ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products.
Collapse
|
31
|
Kashid SB, Lakkakula JR, Chauhan DS, Srivastava R, Raut RW. Biocompatible antimicrobial cotton fibres for healthcare industries: a biogenic approach for synthesis of bio-organic-coated silver nanoparticles. IET Nanobiotechnol 2017; 11:1046-1051. [PMID: 29155406 PMCID: PMC8676494 DOI: 10.1049/iet-nbt.2017.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/23/2023] Open
Abstract
Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X-ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton-SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost-effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.
Collapse
Affiliation(s)
- Sahebrao B Kashid
- Department of Analytical Chemistry, The Institute of Science, 15 Madam Cama Road, Mumbai 400032, India
| | - Jaya R Lakkakula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepak S Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajesh W Raut
- Department of Botany, The Institute of Science, 15 Madam Cama Road, Mumbai 400032, India.
| |
Collapse
|
32
|
Multifunctional hybrid functionalization of cellulose fabrics with AgNWs and TiO2. Carbohydr Polym 2017; 177:397-405. [DOI: 10.1016/j.carbpol.2017.08.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
|
33
|
Li Z, Chen J, Cao W, Wei D, Zheng A, Guan Y. Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr Polym 2017; 180:192-199. [PMID: 29103495 DOI: 10.1016/j.carbpol.2017.09.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Antimicrobial cotton fabrics received much attention for the demand of health and hygiene fields. In this work, an antimicrobial copolymer was prepared via a reaction between polyhexamethylene guanidine hydrochloride and polypropylene glycol diglycidyl ether. The copolymer has amphiphilic characteristic and excellent antimicrobial properties. When the copolymer was adhered onto cotton fabrics through physical adsorption and chemical bonding using dipping-drying method, the resultant cotton fabrics had excellent and durable antimicrobial properties. The antimicrobial rates against Escherichia coli and Staphylococcus aureus were higher than 99.99% when the adsorption amount of the copolymer was above 35.5mg/g. The antimicrobial cotton fabrics remained the excellent antimicrobial properties even after laundered with detergent solution.
Collapse
Affiliation(s)
- Zongliang Li
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Chen
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Cao
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Dafu Wei
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| | - Anna Zheng
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Guan
- Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
34
|
Cataldi P, Ceseracciu L, Athanassiou A, Bayer IS. Healable Cotton-Graphene Nanocomposite Conductor for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13825-13830. [PMID: 28401760 DOI: 10.1021/acsami.7b02326] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrically conductive materials based on cotton have important implications for wearable electronics. We have developed flexible and conductive cotton fabrics (∼10 Ω/sq) by impregnation with graphene and thermoplastic polyurethane-based dispersions. Nanocomposite fabrics display remarkable resilience against weight-pressed severe folding as well as laundry cycles. Folding induced microcracks can be healed easily by hot-pressing, restoring initial electrical conductivity. Impregnated cotton fabric conductors demonstrate better mechanical properties compared to pure cotton and thermoplastic polyurethane maintaining breathability. They also resist environmental aging such as solar irradiation and high humidity.
Collapse
Affiliation(s)
- Pietro Cataldi
- Smart Materials and ‡Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Luca Ceseracciu
- Smart Materials and ‡Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Athanassia Athanassiou
- Smart Materials and ‡Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Ilker S Bayer
- Smart Materials and ‡Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
35
|
Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, Liu CJ. The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydr Polym 2017; 161:270-276. [DOI: 10.1016/j.carbpol.2017.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
36
|
Rajavel K, Gomathi R, Pandian R, Rajendra Kumar RT. In situ attachment and its hydrophobicity of size- and shape-controlled silver nanoparticles on fabric surface for bioapplication. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1284111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Krishnamoorthy Rajavel
- Advanced Materials and Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, India
| | - Rajkumar Gomathi
- Microbiology Laboratory, Department of Botany, Bharathiar University, Coimbatore, India
| | | | | |
Collapse
|
37
|
Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6052-6075. [PMID: 27753213 DOI: 10.1002/smll.201602581] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/16/2016] [Indexed: 05/02/2023]
Abstract
Transparent electrodes attract intense attention in many technological fields, including optoelectronic devices, transparent film heaters and electromagnetic applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO's lack of flexibility and the relatively high manufacturing costs have a prompted search into alternative materials. With their outstanding physical properties, metallic nanowire (MNW)-based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution-based processing, and are compatible with large area deposition techniques. Estimations of cost of the technology are lower, in particular thanks to the small quantities of nanomaterials needed to reach industrial performance criteria. The present review investigates recent progress on the main applications reported for MNW networks of any sort (silver, copper, gold, core-shell nanowires) and points out some of the most impressive outcomes. Insights into processing MNW into high-performance transparent conducting thin films are also discussed according to each specific application. Finally, strategies for improving both their stability and integration into real devices are presented.
Collapse
Affiliation(s)
- Thomas Sannicolo
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
- Univ. Grenoble Alpes, CNRS, LMGP, F-38000, Grenoble, France
| | | | - Anthony Cabos
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
| | - Caroline Celle
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
| | | | - Daniel Bellet
- Univ. Grenoble Alpes, CNRS, LMGP, F-38000, Grenoble, France
| |
Collapse
|
38
|
Doganay D, Coskun S, Genlik SP, Unalan HE. Silver nanowire decorated heatable textiles. NANOTECHNOLOGY 2016; 27:435201. [PMID: 27651222 DOI: 10.1088/0957-4484/27/43/435201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The modification of insulating fabrics with electrically conductive nanomaterials has opened up a novel application field. With the help of Joule heating mechanism, conductive fabrics can be used as mobile heaters. In this work, heatable textiles are fabricated using silver nanowires (Ag NWs). Cotton fabrics are decorated with polyol synthesized Ag NWs via a simple dip-and-dry method. The time-dependent thermal response of the fabrics under different applied voltages is investigated. It is found that the fabrics can be heated to 50 °C under an applied power density of as low as 0.05 W cm(-2). Uniform deposition of Ag NWs resulted in the homogeneous generation of heat. In addition, the stability of the fabrics with time and under different bending and washing conditions is examined. Moreover, a simple control circuit is fabricated and integrated in order to demonstrate the high potential of the fabrics for mobile applications. This work provides a roadmap for researchers who would like to work on heatable textiles with metallic NWs.
Collapse
Affiliation(s)
- Doga Doganay
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | | | | | | |
Collapse
|
39
|
Mengal N, Sahito IA, Arbab AA, Sun KC, Qadir MB, Memon AA, Jeong SH. Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material. Carbohydr Polym 2016; 152:19-25. [PMID: 27516245 DOI: 10.1016/j.carbpol.2016.06.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Textile electrodes are highly desirable for wearable electronics as they offer light-weight, flexibility, cost effectiveness and ease of fabrication. Here, we propose the use of lyocell fabric as a flexible textile electrode because of its inherently super hydrophilic characteristics and increased moisture uptake. A highly concentrated colloidal solution of graphene oxide nanosheets (GONs) was coated on to lyocell fabric and was then reduced in to graphene nanosheets (GNs) using facile chemical reduction method. The proposed textile electrode has a very high surface conductivity with a very low value of surface resistance of only 40Ωsq(-1), importantly without use of any binding or adhesive material in the processing step. Atomic force spectroscopy (AFM) and Transmission electron microscopy (TEM) were conducted to study the topographical properties and sheet exfoliation of prepared GONs. The surface morphology, structural characterization and thermal stability of the fabricated textile electrode were studied by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X ray photon spectroscopy (XPS), Raman spectroscopy, Wide angle X ray diffraction spectroscopy (WAXD) and Thermogravimetric analysis (TGA) respectively. These results suggest that the GONs is effectively adhered on to the lyocell fabric and the conversion of GONs in to GNs by chemical reduction has no adverse effect on the crystalline structure of textile substrate. The prepared graphene coated conductive lyocell fabric was found stable in water and electrolyte solution and it maintained nearly same surface electrical conductivity at various bending angles. The electrical resistance results suggest that this lyocell based textile electrode (L-GNs) is a promising candidate for flexible and wearable electronics and energy harvesting devices.
Collapse
Affiliation(s)
- Naveed Mengal
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Iftikhar Ali Sahito
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea; Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Alvira Ayoub Arbab
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea; Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Kyung Chul Sun
- Department of Fuel Cell and Hydrogen Technology, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute of Industrial Technology Convergence Technical Textile and Materials R&D Group, Korea Institute of Industrial Technology, Republic of Korea
| | - Muhammad Bilal Qadir
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Anam Ali Memon
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sung Hoon Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
40
|
Lee TW, Lee SE, Jeong YG. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13123-32. [PMID: 27156577 DOI: 10.1021/acsami.6b02218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.
Collapse
Affiliation(s)
- Tae-Won Lee
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Sang-Eui Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Company, Ltd. , Suwon 16678, Republic of Korea
| | - Young Gyu Jeong
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
| |
Collapse
|
41
|
Liu H, Gao SW, Cai JS, He CL, Mao JJ, Zhu TX, Chen Z, Huang JY, Meng K, Zhang KQ, Al-Deyab SS, Lai YK. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. MATERIALS 2016; 9:ma9030124. [PMID: 28773253 PMCID: PMC5456681 DOI: 10.3390/ma9030124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applications related to artificial superhydrophobic fabrics with special wettability and controllable adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic manipulation, air/liquid directional gating, and micro-template for patterning. In addition to the anti-wetting properties and promising applications, particular attention is paid to coating durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and future prospects of this traditional and developing field are briefly proposed and discussed.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Shou-Wei Gao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Jing-Sheng Cai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Cheng-Lin He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Jia-Jun Mao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Tian-Xue Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | - Jian-Ying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Kai Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
- Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou 215123, China.
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
- Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou 215123, China.
| | - Salem S Al-Deyab
- Department of Chemistry, Petrochemical Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yue-Kun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
- Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou 215123, China.
| |
Collapse
|
42
|
Yu Z, Gao Y, Di X, Luo H. Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv 2016. [DOI: 10.1039/c6ra13104b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A personal thermal management device that uses a coating of a silver nanowire/polydopamine nanocomposite was prepared, which allows Joule heating with a quick thermal response (1 min, from 22 °C to 40 °C).
Collapse
Affiliation(s)
- Ziya Yu
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Yanfeng Gao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Xue Di
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Hongjie Luo
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
- Materials Genome Institute
| |
Collapse
|
43
|
Hou A, Feng G, Zhuo J, Sun G. UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3,3',4,4'-Benzophenone Tetracarboxylic Acid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27918-24. [PMID: 26636826 DOI: 10.1021/acsami.5b09993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
3,3',4,4'-Benzophenone tetracarboxylic acid (BPTCA) could directly react with hydroxyl groups on cellulose to form ester bonds. The modified cotton fabrics not only provided good wrinkle-free and ultraviolet (UV) protective functions, but also exhibited important photochemical properties such as producing reactive oxygen species (ROS) including hydroxyl radicals (HO(•)) and hydrogen peroxide (H2O2) under UV light exposure. The amounts of the produced hydroxyl radical and hydrogen peroxide were measured, and photochemical reactive mechanism of the BPTCA treated cellulose was discussed. The results reveal that the fabrics possess good washing durability in generation of hydroxyl radicals and hydrogen peroxide. The cotton fabrics modified with different concentrations of BPTCA and cured at an elevated temperature demonstrated excellent antimicrobial activities, which provided 99.99% antibacterial activities against both E. coli and S. aureus. The advanced materials have potential applications in medical textiles and biological material fields.
Collapse
Affiliation(s)
- Aiqin Hou
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University , Shanghai 201620, China
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| | - Guanchen Feng
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University , Shanghai 201620, China
| | - Jingyuan Zhuo
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| | - Gang Sun
- Division of Textiles and Clothing, University of California , Davis, California 95616, United States
| |
Collapse
|