1
|
Gomes A, Costa ALR, Fasolin LH, Silva EK. Rheological properties, microstructure, and encapsulation efficiency of inulin-type dietary fiber-based gelled emulsions at different concentrations. Carbohydr Polym 2025; 347:122742. [PMID: 39486971 DOI: 10.1016/j.carbpol.2024.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Gelled emulsion systems offer promising matrices for encapsulating bioactive compounds, enhancing stability, bioavailability, and controlled release. Incorporating inulin-type dietary fibers into emulsion-filled gels can innovate food products. This study explored the impact of inulin concentration (0-15 % w/w) on visual aspect, microstructure, particle size distribution, creaming stability, rheological behavior, and encapsulation efficiency of emulsions and gelled emulsions with clove bud oil rich in eugenol. Regardless of inulin concentration, systems exhibited evenly distributed small oil droplets, ensuring good creaming stability. Emulsions with 10-15 % inulin formed gels upon natural cooling to approximately 30 °C. Viscoelastic properties varied with inulin concentration, attributed to increased polymer chain approximation and mobility. Higher inulin content decreased the transition temperature (66 °C, 56 °C, and 54 °C for 10 %, 12.5 %, and 15 % inulin, respectively). While inulin did not enhance creaming stability, it acted as a physical barrier, improving encapsulation efficiency of eugenol to nearly 100 %. Inulin-based emulsion-filled gels offer potential for functional food development, enriching nutritional value and health benefits.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C, 05508-080 São Paulo, SP, Brazil
| | - Ana Letícia Rodrigues Costa
- Institute of Exact and Technological Sciences, Campus Florestal, Federal University of Viçosa (UFV), 35690-000 Florestal, MG, Brazil
| | - Luiz Henrique Fasolin
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Eric Keven Silva
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
2
|
Zhou Z, Sarwar A, Xue R, Hu G, Wu J, Aziz T, Alasmari AF, Yang Z, Yang Z. Metabolomics analysis of potential functional metabolites in synbiotic ice cream made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin. Food Chem 2024; 454:139839. [PMID: 38810444 DOI: 10.1016/j.foodchem.2024.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Probiotic lactic acid bacteria have been widely studied, but much less was focused on probiotic yeasts in food systems. In this study, probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 was employed to prepare ice cream added with and without inulin (1%, w/v). Metabolomics analysis on the effect of inulin showed 84 and 147 differentially expressed metabolites identified in the ice cream samples from day 1 and day 30 of storage (-18 °C), respectively. Various potential functional metabolites were found, including citric acid, ornithine, D-glucuronic acid, sennoside A, stachyose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cis-aconitic acid, gamma-aminobutyric acid, L-threonine, L-glutamic acid, tryptophan, benzoic acid, and trehalose. Higher expression of these metabolites suggested their possible roles through relevant metabolic pathways in improving survivability of the probiotic yeast and functionality of ice cream. This study provides further understanding on the metabolic characteristics of probiotic yeast that potentially affect the functionality of ice cream.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Xue
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Gege Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingwei Wu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy King, Saud University, Riyadh 11451, Saudi Arabia
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 55005, China.
| |
Collapse
|
3
|
Ni D, Zhang S, Huang Z, Liu X, Xu W, Zhang W, Mu W. Multistrategy Engineering of an Inulosucrase to Enhance the Activity and Thermostability for Efficient Production of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18100-18109. [PMID: 39090787 DOI: 10.1021/acs.jafc.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Wang W, Sun B, Deng J, Ai N. Addressing flavor challenges in reduced-fat dairy products: A review from the perspective of flavor compounds and their improvement strategies. Food Res Int 2024; 188:114478. [PMID: 38823867 DOI: 10.1016/j.foodres.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
In recent years, the demand for reduced-fat dairy products (RFDPs) has increased rapidly as the health risks associated with high-fat diets have become increasingly apparent. Unfortunately, lowering the fat content in dairy products would reduce the flavor perception of fat. Fat-derived flavor compounds are the main contributor to appealing flavor among dairy products. However, the contribution of fat-derived flavor compounds remains underappreciated among the flavor improvement factors of RFDPs. Therefore, this review aims to summarize the flavor perception mechanism of fat and the profile of fat-derived flavor compounds in dairy products. Furthermore, the characteristics and influencing factors of flavor compound release are discussed. Based on the role of these flavor compounds, this review analyzed the current and potential flavor improvement strategies for RFDPs, including physical processing, lipolysis, microbial applications, and fat replacement. Overall, promoting the synthesis of milk fat characteristic flavor compounds in RFDPs and aligning the release properties of flavor compounds from the RFDPs with those of equivalent full-fat dairy products are two core strategies to improve the flavor of reduced-fat dairy products. In the future, better modulation of the behavior of flavor compounds by various methods is promising to replicate the flavor properties of fat in RFDPs and meet consumer sensory demands.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China.
| |
Collapse
|
5
|
Wang K, Duan F, Sun T, Zhang Y, Lu L. Galactooligosaccharides: Synthesis, metabolism, bioactivities and food applications. Crit Rev Food Sci Nutr 2024; 64:6160-6176. [PMID: 36632761 DOI: 10.1080/10408398.2022.2164244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prebiotics are non-digestible ingredients that exert significant health-promoting effects on hosts. Galactooligosaccharides (GOS) have remarkable prebiotic effects and structural similarity to human milk oligosaccharides. They generally comprise two to eight sugar units, including galactose and glucose, which are synthesized from substrate lactose by microbial β-galactosidase. Enzyme sources from probiotics have received particular interest because of their safety and potential to synthesize specific structures that are particularly metabolized by intestinal probiotics. Owing to advancements in modern analytical techniques, many GOS structures have been identified, which vary in degree of polymerization, glycosidic linkage, and branch location. After intake, GOS adjust gut microbiota which produce short chain fatty acids, and exhibit excellent biological activities. They selectively stimulate the proliferation of probiotics, inhibit the growth and adhesion of pathogenic bacteria, alleviate gastrointestinal, neurological, metabolic and allergic diseases, modulate metabolites production, and adjust ion storage and absorption. Additionally, GOS are safe and stable, with high solubility and clean taste, and thus are widely used as food additives. GOS can improve the appearance, flavor, taste, texture, viscosity, rheological properties, shelf life, and health benefits of food products. This review systemically covers GOS synthesis, structure identifications, metabolism mechanisms, prebiotic bioactivities and wide applications, focusing on recent advances.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zong X, Wang Z, Chen S, Li S, Xie M, Nie S, Yin J. Optimized acid hydrolysis conditions for better characterization the structure of inulin-type fructan from Polygonatum sibiricum. Int J Biol Macromol 2024; 256:128030. [PMID: 37981289 DOI: 10.1016/j.ijbiomac.2023.128030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 → or →2)-Fruf-(1 → with branching →1,6)-Fruf-(2 → and terminates in Glcp-(1 → or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.
Collapse
Affiliation(s)
- Xinyan Zong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Zhe Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Shikang Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Si Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province, 330047, China.
| |
Collapse
|
7
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
8
|
Zhang D, Jiang K, Luo H, Zhao X, Yu P, Gan Y. Replacing animal proteins with plant proteins: Is this a way to improve quality and functional properties of hybrid cheeses and cheese analogs? Compr Rev Food Sci Food Saf 2024; 23:e13262. [PMID: 38284577 DOI: 10.1111/1541-4337.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.
Collapse
Affiliation(s)
- Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kai Jiang
- School of Resources and Civil Engineering, No, rtheastern University, Shenyang, Liaoning, China
| | - Hui Luo
- Laboratory of Oncology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Zhao
- Differentiated & Biofunctional Food, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Peng Yu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Gan
- Plant Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
9
|
Morais R, Soares PI, Morais SK, Oriente S, Nascimento A, Melo MO, Sousa FM, Cavalcanti-Mata M, Lisboa HM, Gusmão RP, Abrantes T. Development and Characterization of Symbiotic Buffalo Petit Suisse Cheese Utilizing Whey Retention and Inulin Incorporation. Foods 2023; 12:4343. [PMID: 38231859 DOI: 10.3390/foods12234343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
This study presents the development and characterization of a novel buffalo Petit Suisse cheese, enhanced with symbiotic properties through an innovative whey retention method and incorporating inulin and xanthan gum. The research focused on assessing the cheese's physicochemical properties, shelf life, lactic acid bacteria viability, syneresis behavior, and the impact of varying concentrations of functional ingredients. The addition of inulin and xanthan gum, following a design of experiments, significantly influenced the cheese's texture and consistency. Higher inulin concentrations were associated with increased fermentation activity, as indicated by total titratable acidity, which showed an increase from 1.22% to 1.50% over a 28-day period, and pH levels that decreased from 3.33 to 2.96. The syneresis index varied across trials, with the highest reduction observed in trials with increased xanthan gum concentrations, effectively reducing syneresis to 0%. Lactic acid bacteria viability also showed notable variations, with the highest cell survival percentage reaching 107.89% in formulations with higher inulin and xanthan gum concentrations. These results underscore the importance of inulin and xanthan gum in enhancing the cheese's microbial stability and textural quality. The study concludes that the strategic use of inulin and xanthan gum improves the nutritional profile of buffalo Petit Suisse cheese and optimizes its textural and sensory attributes.
Collapse
Affiliation(s)
- Rebeca Morais
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Pedro Ivo Soares
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Sinthya Kelly Morais
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Suelma Oriente
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Amanda Nascimento
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Mylena Olga Melo
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Francisca Moises Sousa
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Mario Cavalcanti-Mata
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Hugo M Lisboa
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Rennan Pereira Gusmão
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| | - Thaisa Abrantes
- Food Engineering Department, Universidade Federal Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Paraíba, Brazil
| |
Collapse
|
10
|
Espinosa-Ramírez J, Figueroa-Cárdenas JDD, Chuck-Hernández C, Garcia-Amezquita LE, Dávila-Vega JP, Casamayor VF, Mariscal-Moreno RM. Agave inulin as a fat replacer in tamales: Physicochemical, nutritional, and sensory attributes. J Food Sci 2023; 88:4472-4482. [PMID: 37799063 DOI: 10.1111/1750-3841.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Tamales are a traditional dish rich in fat and carbohydrates with increasing popularity. The present study aimed to investigate the use of agave inulin powder (AIP) as a potential fat replacer in tamales. The effect of replacing 0%, 33%, 66%, and 100% (w/w) of fat with AIP was evaluated in the physicochemical, sensory, and nutritional features of tamales. The fat content of tamales decreased up to 88% in AIP tamales, whereas total dietary fiber (TDF) increased up to 14%. TDF in AIP tamales had a higher proportion of soluble dietary fiber (SDF). Moreover, results indicated that both insoluble and SDF were formed during the processing of tamales. Fat replacement led to a reduction of up to 26% in the calorie load of tamales. Fourier transform infrared spectroscopy analysis confirmed changes in the absorption bands related to carbohydrates, with increments in peaks associated with inulin (936 and 862 cm-1 ), and inhibition of retrogradation when inulin was included. AIP addition resulted in tamales with lighter color. Fat replacement with AIP affected the texture of tamales increasing their softness, adhesiveness, and cohesiveness. In general, inulin positively affected the hedonic attributes and acceptance of tamales. Interestingly, full-fat tamales had a lower glycemic index and presented higher contents of resistant starch compared to tamales with AIP. Nevertheless, agave inulin may serve as a fat replacer yielding reduced-fat tamales with higher TDF and SDF and yielding a lower calorie load without significantly affecting the sensory acceptability of this traditional meal.
Collapse
|
11
|
Fan M, Wei T, Lu X, Liu M, Huang Y, Chen F, Luo T, Fan Y, Liu R, Deng Z, Li J. Comprehensive quality evaluation of plant-based cheese analogues. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6595-6604. [PMID: 37245213 DOI: 10.1002/jsfa.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND In recent years, there has been an increasing demand for plant-based cheese analogues, however, the protein content of plant-based cheeses currently on the market is generally low and cannot meet the nutritional needs of consumers. RESULTS Based on the ideal value similarity method (TOPSIS) analysis the best recipe for plant-based cheese was 15% tapioca starch, 20% soy protein isolate, 7% gelatine as a quality enhancer and 15% coconut oil. The protein content of this plant-based cheese was170.1 g kg-1 , which was close to commercial dairy-based cheese and significantly higher than commercial plant-based cheese, The fat content was 114.7 g kg-1 , lower than that of commercial dairy-based cheese. The rheology properties show that the viscoelasticity of the plant-based cheese is higher than that of dairy-based cheese and commercial plant-based. The microstructure results show that the type and content of protein has a significant impact on its microstructure. The Fourier-transform infrared (FTIR) spectrum of the microstructure shows a characteristic value at 1700 cm-1 , because the starch was heated and leached to form a complex with lauric acid under the action of hydrogen bond. It can be inferred that in the interaction between plant-based cheese raw materials, fatty acids serve as a bridge between starch and protein. COUCLUSION This study described the formula of plant-based cheese and the interaction mechanism between the ingredients, providing a basis for the development of subsequent plant-based cheese related products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xiang Lu
- Technical Service Department, Beijing Shiji Chuangzhan Food Technology Co., Ltd, Beijing, China
| | - Mengge Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yingchao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Rong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Perinelli DR, Santanatoglia A, Caprioli G, Bonacucina G, Vittori S, Maggi F, Sagratini G. Inulin Functionalized "Giuncata" Cheese as a Source of Prebiotic Fibers. Foods 2023; 12:3499. [PMID: 37761209 PMCID: PMC10528394 DOI: 10.3390/foods12183499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The development of functional foods in the dairy sector represents a flourishing field of technological research. In this study, an Italian fresh cheese as "giuncata" was enriched with inulin, a dietary fiber, with the aim of developing a product with improved nutritional properties in terms of prebiotic action on intestinal microbiota. An inulin concentration of ~4% w/w was determined in the fresh cheese after the fortification process, enabling the claim of being a "source of dietary fiber" (inulin > 3 g/100 g) according to the European regulation. The addition of inulin has no effect on the pH of cheese and does not relevantly influence its color as well as the total fat content (fat reduction ~0.61%) in comparison to the control. Mechanical properties of the cheese were also not markedly affected as evidenced from rheological and tensile testing analyses. Indeed, the incorporation of inulin in "giuncata" only exerts a slight "softening effect" resulting in a slightly lower consistency and mechanical resistance in comparison to the control. Overall, this study demonstrates the feasibility of producing a fiber-enriched dairy functional food from a large consumed fresh and soft cheese as "giuncata".
Collapse
Affiliation(s)
| | | | | | | | | | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (D.R.P.); (A.S.); (G.C.); (G.B.); (S.V.); (G.S.)
| | | |
Collapse
|
13
|
Darwish AG, El-Sharkawy I, Tang C, Rao Q, Tan J. Investigation of Antioxidant and Cytotoxicity Activities of Chocolate Fortified with Muscadine Grape Pomace. Foods 2023; 12:3153. [PMID: 37685084 PMCID: PMC10487172 DOI: 10.3390/foods12173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Muscadine grape pomace and mixed products with chocolate extracts from three muscadine genotypes exhibiting different berry skin colors (black and bronze) were investigated for total phenolic content (TPC), total flavonoid content (TFC), DPPH, FRAP antioxidant activity, and anticancer activity using MDA-MB-468 (MM-468; African American) breast cancer cells. Muscadine berry extracts and mixed products showed cytotoxicity activities of up to 70% against MM-468 breast cancer cells. Cell growth inhibition was higher in 'macerated Floriana' with an IC50 value of 20.70 ± 2.43 followed by 'Alachua' with an IC50 value of 22.25 ± 2.47. TPC and TFC in macerated MGP powder were (1.4 ± 0.14 and 0.45 ± 0.01 GAE/g FW, respectively), which was significantly higher than those in cocoa powder. Data analysis showed a high association between DPPH, FRAP antioxidant activities, and TPC content and a positive high correlation between anticancer activity and antioxidant capacity and between TPC and anticancer activity. The anticancer and antioxidant effects of muscadine grape pomace and chocolate extracts are attributed to the TPC of extracts, which showed a stronger positive correlation with growth inhibition of African American breast cancer cells. This study would be of great value for food industries as well as other manufacturers who are interested in new food blends.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Juzhong Tan
- Department of Animal and Food Science, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Karim A, Raji Z, Habibi Y, Khalloufi S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Crit Rev Food Sci Nutr 2023:1-35. [PMID: 37565505 DOI: 10.1080/10408398.2023.2243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dietary fiber (DF) significantly affects the quality attributes of food matrices. Depending on its chemical composition, molecular structure, and degree of hydration, the behavior of DF may differ. Numerous reports confirm that incorporating DF derived from food waste into food products has significant effects on textural, sensory, rheological, and antimicrobial properties. Additionally, the characteristics of DF, modification techniques (chemical, enzymatic, mechanical, thermal), and processing conditions (temperature, pH, ionic strength), as well as the presence of other components, can profoundly affect the functionalities of DF. This review aims to describe the interactions between DF and water, focusing on the effects of free water, freezing-bound water, and unfreezing-bound water on the hydration capacity of both soluble and insoluble DF. The review also explores how the structural, functional, and environmental properties of DF contribute to its hydration capacity. It becomes evident that the interactions between DF and water, and their effects on the rheological properties of food matrices, are complex and multifaceted subjects, offering both opportunities and challenges for further exploration. Utilizing DF extracted from food waste exhibits promise as a sustainable and viable strategy for the food industry to create nutritious and high-value-added products, while concurrently reducing reliance on primary virgin resources.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada
| |
Collapse
|
15
|
Yu XX, Chi SX, Wang XH, Liu BH, Wang Y, Zhang YH. Preparation of fat substitute based on maize starch hydrolysates and application in reduced-fat acidified milk gel. Int J Biol Macromol 2023:125479. [PMID: 37336374 DOI: 10.1016/j.ijbiomac.2023.125479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Reduced-fat food has become a popular choice among contemporary consumers. This study aims to develop a starch-based fat substitute and incorporate it into reduced-fat milk gel acidified with glucono-δ-lactone (GDL) to achieve similar rheological properties as a full-fat gel. The gel properties of the fat substitute were assessed. The study examined the rheological properties, syneresis, textural properties and microstructure of acidified milk gels while also monitoring acidification process. Starch hydrolysates with low dextrose equivalent (DE) (<5.1 %) can serve as an effective fat substitute due to their excellent gelling properties The rheological and textural properties of the reduced-fat acidified milk gel with DE at 3.1 % of starch hydrolysate and 30 % fat substitution are similar to those of the full-fat milk gel. The syneresis and confocal laser scanning microscopy (CLSM) results indicated that the microstructure of the reduced-fat acidified milk gel was similar to the full-fat version. Moreover, the sensory properties of the reduced-fat acidified milk gel were acceptable when the DE was 3.1 %, and 30 % fat was replaced. In our study, we utilized hydrolyzed starch to produce reduced-fat acidified milk gels, which could potentially be used in the development of reduced-fat yogurt formulations.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Xin Chi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Hui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Hao Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Wang Y, Salonen A, Jian C. Can prebiotics help tackle the childhood obesity epidemic? Front Endocrinol (Lausanne) 2023; 14:1178155. [PMID: 37305030 PMCID: PMC10253620 DOI: 10.3389/fendo.2023.1178155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Globally, excess weight during childhood and adolescence has become a public health crisis with limited treatment options. Emerging evidence suggesting the involvement of gut microbial dysbiosis in obesity instills hope that targeting the gut microbiota could help prevent or treat obesity. In pre-clinical models and adults, prebiotic consumption has been shown to reduce adiposity partially via restoring symbiosis. However, there is a dearth of clinical research into its potential metabolic benefits in the pediatric population. Here, we provide a succinct overview of the common characteristics of the gut microbiota in childhood obesity and mechanisms of action of prebiotics conferring metabolic benefits. We then summarize available clinical trials in children with overweight or obesity investigating the effects of prebiotics on weight management. This review highlights several controversial aspects in the microbiota-dependent mechanisms by which prebiotics are thought to affect host metabolism that warrant future investigation in order to design efficacious interventions for pediatric obesity.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Piao X, Huang J, Sun Y, Zhao Y, Zheng B, Zhou Y, Yu H, Zhou R, Cullen PJ. Inulin for surimi gel fortification: Performance and molecular weight-dependent effects. Carbohydr Polym 2023; 305:120550. [PMID: 36737199 DOI: 10.1016/j.carbpol.2023.120550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.
Collapse
Affiliation(s)
- Xinyue Piao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiabao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Sun
- School of Nursing, Zhejiang Pharmaceutical University, Ningbo 315500, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Haixia Yu
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, China
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Bergamini C, Hynes E, Trujillo AJ, Perotti MC. Editorial: Low-fat and low-salt cheeses: Technological strategies to improve the nutritional profile and sensory characteristics. Front Nutr 2023; 10:1155604. [PMID: 37063311 PMCID: PMC10098314 DOI: 10.3389/fnut.2023.1155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Affiliation(s)
- Carina Bergamini
- Instituto de Lactología Industrial, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- *Correspondence: Carina Bergamini
| | - Erica Hynes
- Instituto de Lactología Industrial, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Antonio-José Trujillo
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), CERTA-TECNIO, Department of Animal and Food Science, Faculty of Veterinary Sciences, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - María Cristina Perotti
- Instituto de Lactología Industrial, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
19
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
20
|
Abstract
Inulin, a dietary fibre found in the roots of many plants, has positive effects on health. It is particularly noteworthy due to its positive impact on calcium metabolism. Inulin has significant functions, such as improving calcium absorption through passive diffusion, bolstering calcium absorption via ion exchange and expanding the absorption surface of the colon by stimulating cell growth. In addition, inulin boosts calcium absorption by increasing calcium solubility, stimulating levels of calcium-binding protein expression and increasing useful microorganisms. It increases calbindin levels and stimulates transcellular active calcium transport. An inulin intake of least 8-10 g/day supports calcium absorption and total body bone mineral content/density in adolescents through its known mechanisms of action. It also significantly enhances calcium absorption and improves bone health in postmenopausal women and adult men. Sustained and sufficient inulin supplementation in adults has a positive effect on calcium metabolism and bone mineral density.
Collapse
Affiliation(s)
- Hande Bakirhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Efsun Karabudak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sanko University, Gaziantep, Turkey
| |
Collapse
|
21
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Inulin-type fructans and short-chain fructooligosaccharides-their role within the food industry as fat and sugar replacers and texture modifiers-what needs to be considered! Food Sci Nutr 2023; 11:17-38. [PMID: 36655109 PMCID: PMC9834882 DOI: 10.1002/fsn3.3040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
Inulin and oligofructose are classes of prebiotics belonging to a group of nondigestible carbohydrates referred to as inulin-type fructans. While short-chain fructooligosaccharides are enzymatically synthesized from the hydrolysis and transglycosylation of sucrose. Inulin-type fructans and short-chain fructooligosaccharides act as carbon sources for selective pathways supporting digestive health including altering the composition of the gut microbiota along with improving transit time. Due to their physicochemical properties, inulin-type fructans and short-chain fructooligosaccharides have been widely used in the food industry as partial replacements for both fat and sugar. Yet, levels of replacement need to be carefully considered as it may result in changes to physical and sensory properties that could be detected by consumers. Furthermore, it has been reported depending on the processing parameters used during production that inulin-type fructans and short-chain fructooligosaccharides may or may not undergo structural alterations. Therefore, this paper reviews the role of inulin-type fructans and short-chain fructooligosaccharides within the food industry as fat and sugar replacers and texture modifiers, their impact on final sensory properties, and to what degree processing parameters are likely to impact their functional properties.
Collapse
|
22
|
Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose - innovative biopolymer and possibilities of its applications in dairy industry. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Aslan Türker D, Göksel Saraç M, Doğan M. Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η
50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (η
i) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
Collapse
Affiliation(s)
- Duygu Aslan Türker
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| | - Meryem Göksel Saraç
- Food Technology Department , Cumhuriyet University, Yıldızeli Vocational College , 58500 Sivas , Türkiye
| | - Mahmut Doğan
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| |
Collapse
|
24
|
Bhanja A, Sutar PP, Mishra M. Inulin-A polysaccharide: Review on its functional and prebiotic efficacy. J Food Biochem 2022; 46:e14386. [PMID: 36166490 DOI: 10.1111/jfbc.14386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
The intake of dietary fibers in the regular diet results in boosting the gut microbiome and health of the host in several ways. The misapprehension about such dietary fibers of being only an indigestible product has changed into indispensable ingredient that has to be included in every healthy diet. Inulin is considered to be an important naturally occurring fructan classified under such dietary fibers. The present review intends to provide a thorough knowledge on inulin in maintaining the gut microbiome of the human, supported by several studies conducted on the Drosophila melanogaster, mice, rat models as well as effect on human being. The extraction process of inulin has also been described in this review that would provide a brief knowledge about its stability and the conditions that have been optimized by the researchers in order to obtain a stable product. PRACTICAL APPLICATIONS: In order to meet the consumers demand, the food industries are trying to come up with new products that could eventually replace or lower the utilization of medically avail drugs and satisfy consumers by providing them with health benefits. The availability of functional food is the new trend that can improve health of the consumers with minimal use of the drugs. Therefore, inulin as a prebiotic can be utilized to produce several functional food products that could promote health benefits to the consumers. Apart from this, the review also justifies the efficacy of inulin as a fat replacer, stabilizer, and humectant in cosmetic industries. Research also suggests that inulin has also been used as nanoparticles in pharmaceutical industries. The overall review also depicts the different extraction process of inulin from different sources.
Collapse
Affiliation(s)
- Amrita Bhanja
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
25
|
Mefleh M, Pasqualone A, Caponio F, De Angelis D, Natrella G, Summo C, Faccia M. Spreadable plant-based cheese analogue with dry-fractioned pea protein and inulin-olive oil emulsion-filled gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5478-5487. [PMID: 35355256 PMCID: PMC9543666 DOI: 10.1002/jsfa.11902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Consumer demand for plant-based cheese analogues (PCA) is growing because of the easy and versatile ways in which they can be used. However, the products available on the market are nutritionally poor. They are low in protein, high in saturated fat and sodium, and often characterized by a long list of ingredients. RESULTS A clean label spreadable plant-based cheese analogue was developed using dry-fractionated pea protein and an emulsion-filled gel composed of extra virgin olive oil and inulin, added in different concentrations as fat replacer (10%, 13% and 15% of the formulation). First, nutritional and textural analyses were performed, and the results were compared with two commercial products. The products were high in protein (134 g kg-1 ) and low in fat (52.2 g kg-1 ). The formulated PCAs had similar spreadability index to the dairy cheese but lower hardness (15.1 vs. 19.0 N) and a higher elasticity (0.60 vs. 0.35) consequent to their lower fat content (52.2 vs. 250 g kg-1 ). Then, dry oregano and rosemary (5 g kg-1 ) were added to the PCA, and sensory evaluation and analysis of volatile compounds were conducted. The addition of spices masked the legume flavor and significantly enriched the final product with aromatic compounds. CONCLUSION The use of dry-fractioned pea protein and of the emulsion-filled gel allowed us to develop a clean label and nutritionally valuable spreadable plant-based cheese analogue. Overall, the ingredients and product concepts developed could be used to upgrade the formulation of plant-based cheese on a larger scale. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DiSSPA)University of Bari Aldo MoroBariItaly
| |
Collapse
|
26
|
Kamal T, Ul-Islam M, Fatima A, Ullah MW, Manan S. Cost-Effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels 2022; 8:552. [PMID: 36135264 PMCID: PMC9498321 DOI: 10.3390/gels8090552] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials and Research, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Lin Y, Xu Q, Li X, Shao P. Tremella fuciformis polysaccharides as a fat substitute on the rheological, texture and sensory attributes of low-fat yogurt. Curr Res Food Sci 2022; 5:1061-1070. [PMID: 35783666 PMCID: PMC9241049 DOI: 10.1016/j.crfs.2022.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of Tremella fuciformis polysaccharides (TFPS) as a fat substitute in low-fat yogurt was evaluated in this study. The effects of adding different concentrations of TFPS solution on the physical and chemical properties, texture, rheology, microstructure and sensory properties of low-fat yogurt were evaluated. Compared with control, the addition of TFPS not only increased the solid content and water holding capacity of yogurt, but also reduced syneresis losses in low-fat yogurt. In fact, the addition of TFPS did not affect the color of yogurt but had a positive effect on the texture and sensory of yogurt. In terms of rheology, all low-yogurt samples exhibited rheological to the weak gel-like structures (G' > G″), and the storage modulus and loss modulus of the yogurt added with TFPS were higher than those of the low-fat yogurt control group. Compared with the low-fat yogurt control group, yogurt added TFPS makes the cross-linking of polysaccharides and casein more compact. In conclusion, TFPS has potential as a fat substitute in dairy products. TFPS with Medicine Food Homology can be used as a fat substitute for low-fat yogurt. TFPS significantly improved the physical and chemical properties of low-fat yogurt. 0.025% TFPS in low-fat yoghurt was most acceptable in the sensory score. Polysaccharide-protein interactions enhanced protein network structure. TFPS improved overall organoleptic quality of low-fat yogurt.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Qiaolian Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangdong, 510070, PR China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
- Corresponding author.
| |
Collapse
|
28
|
Mudannayake DC, Jayasena DD, Wimalasiri KM, Ranadheera CS, Ajlouni S. Inulin fructans as functional food ingredients‐ food applications and alternative plant sources: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deshani C. Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Dinesh D. Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture Uva Wellassa University Badulla Sri Lanka
| | - Kuruppu M.S. Wimalasiri
- Department of Food Science and Technology, Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka
| | - C. S. Ranadheera
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne VIC 3010 Australia
| |
Collapse
|
29
|
Liu N, Wang H, Yang Z, Zhao K, Li S, He N. The role of functional oligosaccharides as prebiotics in ulcerative colitis. Food Funct 2022; 13:6875-6893. [PMID: 35703137 DOI: 10.1039/d2fo00546h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence rate of ulcerative colitis (UC) has increased significantly over the past decades and it places an increasing burden on health and social systems. The current studies on UC implicate a strong correlation between host gut microbiota immunity and the pathogenesis of UC. Meanwhile, more and more functional oligosaccharides have been reported as prebiotics to alleviate UC, since many of them can be metabolized by gut microbiota to produce short-chain fatty acids (SCFAs). The present review is focused on the structure, sources and specific applications of various functional oligosaccharides related to the prevention and treatment of UC. The available evidence for the usage of functional oligosaccharides in UC treatment are summarized, including fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), chito-oligosaccharides (COS), alginate-oligosaccharides (AOS), xylooligosaccharides (XOS), stachyose and inulin.
Collapse
Affiliation(s)
- Nian Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Kunyi Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Martínez-Tomé M, Cedeño-Pinos C, Bañón S, Jiménez-Monreal AM. Rosemary Extracts Improved the Antioxidant Status of Low-Fat Yoghurt Sauces Enriched with Inulin. Antioxidants (Basel) 2022; 11:antiox11040789. [PMID: 35453474 PMCID: PMC9032990 DOI: 10.3390/antiox11040789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Yoghurt sauces are considered fatty products which are quite susceptible to oxidation and must be stabilised using antioxidants. Novel formulations for yoghurt sauces often involve replacement of fat with dietary fibres and use of natural preservatives. The aim of the present research was to design healthier formulations for yoghurt sauces based on the replacement of sunflower oil (SO) with chicory inulin (IN) and the use of rosemary extracts (RE) as natural antioxidants. Different sauces were developed by adding IN at 2 and 5% w: w and/or 300 mg/kg lipo- and/or water-soluble rosemary extracts (RLE and/or RWE) containing 120 and 146 mg polyphenols per g extract, respectively. Nutritional value (proximate composition and caloric contribution), some physical properties (pH and CIELab colour) and antioxidant status (deoxyribose, DPPH radical scavenging, Rancimat, lipid peroxidation and linoleic acid assays) were assessed in the sauces. Replacement of SO with IN (5%) reduced fat content by 30%, roughly 15% low calories, thereby obtaining healthier sauces. As expected, the RLE was more effective than the RWE in improving antioxidant activity in lipidic environment. Using RLE enhanced the antioxidant capacity of lipid peroxidation by 44%. In the Rancimat test, this increased the oxidative protection of the sauce made with and without IN (5%) by around 20% or 45%, respectively. Similarly, using RLE doubled protection against linoleic acid oxidation. Application of IN in yoghurt sauce has nutritional (replacement of lipids with dietary fibre) and technological interest (foaming agent) and can be combined with RE of high polyphenol content as a potential functional ingredient capable of stabilising the sauces against oxidation.
Collapse
Affiliation(s)
- Magdalena Martínez-Tomé
- Department of Food Science, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
- CIBER, CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28013 Madrid, Spain
- Correspondence: ; Tel.: +34-868-884797; Fax: +34-868-884147
| | - Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (S.B.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (S.B.)
| | - Antonia M. Jiménez-Monreal
- Department of Food Science, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
- CIBER, CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28013 Madrid, Spain
| |
Collapse
|
31
|
Schädle CN, Bader-Mittermaier S, Sanahuja S. The Effect of Corn Dextrin on the Rheological, Tribological, and Aroma Release Properties of a Reduced-Fat Model of Processed Cheese Spread. Molecules 2022; 27:molecules27061864. [PMID: 35335227 PMCID: PMC8955635 DOI: 10.3390/molecules27061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Low-calorie and low-fat foods have been introduced to the market to fight the increasing incidence of overweightness and obesity. New approaches and high-quality fat replacers may overcome the poor organoleptic properties of such products. A model of processed cheese spread (PCS) was produced as a full-fat version and with three levels of fat reduction (30%, 50%, and 70%). Fat was replaced by water or by corn dextrin (CD), a dietary fiber. Additionally, in the 50% reduced-fat spreads, fat was replaced by various ratios of CD and lactose (100:0, 75:25, 50:50, 25:75, and 0:100). The effect of each formulation was determined by measuring the textural (firmness, stickiness, and spreadability), rheological (flow behavior and oscillating rheology), tribological, and microstructural (cryo-SEM) properties of the samples, as well as the dynamic aroma release of six aroma compounds typically found in cheese. Winter’s critical gel theory was a good approach to characterizing PCS with less instrumental effort and costs: the gel strength and interaction factors correlated very well with the spreadability and lubrication properties of the spreads. CD and fat exhibited similar interaction capacities with the aroma compounds, resulting in a similar release pattern. Overall, the properties of the sample with 50% fat replaced by CD were most similar to those of the full-fat sample. Thus, CD is a promising fat replacer in PCS and, most likely, in other dairy-based emulsions.
Collapse
Affiliation(s)
- Christopher N. Schädle
- Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
- Correspondence:
| | - Stephanie Bader-Mittermaier
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
| | - Solange Sanahuja
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences, Länggasse 85, 3052 Zollikofen, Switzerland;
| |
Collapse
|
32
|
Hanlon M, Choi J, Goddik L, Park SH. Microbial and chemical composition of Cheddar cheese supplemented with prebiotics from pasteurized milk to aging. J Dairy Sci 2022; 105:2058-2068. [PMID: 34998558 DOI: 10.3168/jds.2021-21167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Microbial and chemical properties of cheese is crucial in the dairy industry to understand their effects on cheese quality. Microorganisms within this fat, protein, and water matrix are largely responsible for physiochemical characteristics and associated quality. Prebiotics can be used as an energy source for lactic acid bacteria in cheese by altering the microbial community and provide the potential for value-added foods, with a more stable probiotic population. This research focuses on the addition of fructooligosaccharides (FOS) or inulin to the Cheddar cheese-making process to evaluate the effects on microbial and physicochemical composition changes. Laboratory-scale Cheddar cheese produced in 2 replicates was supplemented with 0 (control), 0.5, 1.0, and 2.0% (wt/wt) of FOS or inulin using 18 L of commercially pasteurized milk. A total of 210 samples (15 samples per replicate of each treatment) were collected from cheese-making procedure and aging period. Analysis for each sample were performed for quantitative analysis of chemical and microbial composition. The prevalence of lactic acid bacteria (log cfu/g) in Cheddar cheese supplemented with FOS (6.34 ± 0.11 and 8.99 ± 0.46; ± standard deviation) or inulin (6.02 ± 0.79 and 9.08 ± 1.00) was significantly higher than the control (5.84 ± 0.27 and 8.48 ± 0.06) in whey and curd, respectively. Fructooligosaccharides supplemented cheeses showed similar chemical properties to the control cheese, whereas inulin-supplemented cheeses exhibited a significantly higher moisture content than FOS and the control groups. Streptococcus and Lactococcus were predominant in all cheeses and 2% inulin and 2% FOS-supplemented cheeses possessed significant amounts of nonstarter lactic acid bacteria found to be an unidentified group of Lactobacillaceae, which emerged after 90 d of aging. In conclusion, this study demonstrates that prebiotic supplementation of Cheddar cheese results in differing microbial and chemical characteristics.
Collapse
Affiliation(s)
- Melanie Hanlon
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Jungmin Choi
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Lisbeth Goddik
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331.
| |
Collapse
|
33
|
Jackson PPJ, Wijeyesekera A, Theis S, van Harsselaar J, Rastall RA. Food for thought! Inulin-type fructans: Does the food matrix matter? J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Zou YF, Li CY, Fu YP, Feng X, Peng X, Feng B, Li LX, Jia RY, Huang C, Song X, Lv C, Ye G, Zhao L, Li YP, Zhao XH, Yin LZ, Yin ZQ. Restorative Effects of Inulin From Codonopsis pilosula on Intestinal Mucosal Immunity, Anti-Inflammatory Activity and Gut Microbiota of Immunosuppressed Mice. Front Pharmacol 2022; 13:786141. [PMID: 35237158 PMCID: PMC8882912 DOI: 10.3389/fphar.2022.786141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| |
Collapse
|
35
|
Recent trends in the development of healthy and functional cheese analogues-a review. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Mohd Shukri A, Alias AK, Murad M, Yen K, Cheng L. A review of natural cheese and imitation cheese. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Afirah Mohd Shukri
- Division of Food Technology School of Industrial Technology Universiti Sains Malaysia Minden Malaysia
| | - Abdul Karim Alias
- Division of Food Technology School of Industrial Technology Universiti Sains Malaysia Minden Malaysia
| | - Maizura Murad
- Division of Food Technology School of Industrial Technology Universiti Sains Malaysia Minden Malaysia
| | - Kin‐Sam Yen
- School of Mechanical Engineering Universiti Sains Malaysia Nibong Tebal Malaysia
| | - Lai‐Hoong Cheng
- Division of Food Technology School of Industrial Technology Universiti Sains Malaysia Minden Malaysia
| |
Collapse
|
37
|
Illippangama AU, Jayasena DD, Jo C, Mudannayake DC. Inulin as a functional ingredient and their applications in meat products. Carbohydr Polym 2022; 275:118706. [PMID: 34742431 DOI: 10.1016/j.carbpol.2021.118706] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Inulin, a fructan-type non-digestible carbohydrate, is a natural functional dietary fiber found in selected plants including chicory, garlic, onion, leeks and asparagus. Due to increasing popularity of inulin and rising awareness toward its low calorie value and prebiotic related health implications, consumers are becoming more conscious on consuming inulin incorporated foods. In this review, the scientific studies published in recent years regarding potential applications of inulin in meat products; and their effects on physicochemical and sensory properties, and health implications are discussed. Meat based functional foods with inulin can lead to enhance digestive health by reducing the risk of diseases like constipation, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Inulin can be an interesting prebiotic ingredient in healthier meat formulations, apart from being a fat replacer and dietary fiber enhancer.
Collapse
Affiliation(s)
| | - Dinesh D Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
38
|
Hegab OW, Abdel-Latif EF, Zaki HMBA, Moawad AA. Fundamental role of Lactobacillus plantarum and inulin in improving safety and quality of Karish cheese. Open Vet J 2021; 11:356-363. [PMID: 34722196 PMCID: PMC8541708 DOI: 10.5455/ovj.2021.v11.i3.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/27/2021] [Indexed: 11/03/2022] Open
Abstract
Background Karish cheese manufactured traditionally from raw milk may harbor many biological health hazards. Aim Production of safe pasteurized Karish cheese with improved sensory characteristics using probiotics and prebiotics (synbiotic Karish cheese). Methods Laboratory Karish cheese was made to study the effect of Lactobacillus plantarum with and without inulin on cheese quality. Treatments were examined for sensory, chemical, and microbial quality, shelf life, and survival of L. plantarum were also monitored. The antimicrobial effect of L. plantarum and inulin against Enterobacter aerogenes in cheese was evaluated. Results Sensory, chemical, and microbial quality of Karish cheese supplemented with L. plantarum and inulin were positively affected; moreover, the shelf life was extended up to 28 days. Karish cheese contained L. plantarum showed the highest flavor score, while treatment contained both L. plantarum and inulin attained the best body and texture score. Moreover, L. plantarum and inulin significantly reduced E. aerogenes count during Karish cheese chilled storage; the reduction log reached 3.76 log10cfu/g on the seventh day of storage compared to control. Additionally, Inulin significantly increased the survival of L. plantarum throughout the storage period. Conclusion This study concluded that using probiotics and prebiotics in Karish cheese synergistically improved its sensory properties, safety, and hygienic quality.
Collapse
Affiliation(s)
- Ola W Hegab
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman F Abdel-Latif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy M B A Zaki
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ashraf A Moawad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Luo W, Long Y, Feng Z, Li R, Huang X, Zhong J, Liu D, Zhao H. A γ-glutamylcysteine ligase AcGCL alleviates cadmium-inhibited fructooligosaccharides metabolism by modulating glutathione level in Allium cepa L. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126255. [PMID: 34157465 DOI: 10.1016/j.jhazmat.2021.126255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Fructooligosaccharides (FOS) are important carbohydrates in plants. Cadmium (Cd) toxicity limits growth and development in several plant species. Whether FOS metabolism is affected by Cd and the molecular mechanisms of tolerance of the effects of Cd toxicity in plants remain enigmatic. In the present study, FOS metabolism was analyzed under Cd stress in onion (Allium cepa L.). Results showed that Cd stress can inhibit FOS accumulation in onion, followed by the upregulation of a putative onion γ-glutamylcysteine ligase gene AcGCL. Heterologous expression of the AcGCL protein in Escherichia coli revealed that this recombinant enzyme has GCL activity. Furthermore, overexpressing AcGCL significantly increased glutathione (GSH) accumulation in young onion roots under Cd treatment, accompanied by increased phytochelatin (PC) amount, and increased transcript expression of GSH synthetase (GS), and phytochelatin synthase (PCS) genes. Notably, compared with control, overexpressing AcGCL ameliorated Cd phytotoxicity on onion FOS metabolism, which correlated with increased FOS synthesis. Taken together, these results suggest that the function of AcGCL as a γ-glutamylcysteine ligase can alleviate Cd inhibited FOS metabolism by modulating GSH levels in onion.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zili Feng
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Rui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Zhong
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, Heidelberg 69120, Germany
| | - Dongyun Liu
- The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Zielińska D, Marciniak-Lukasiak K, Karbowiak M, Lukasiak P. Effects of Fructose and Oligofructose Addition on Milk Fermentation Using Novel Lactobacillus Cultures to Obtain High-Quality Yogurt-like Products. Molecules 2021; 26:molecules26195730. [PMID: 34641276 PMCID: PMC8510434 DOI: 10.3390/molecules26195730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of prebiotics in fermented milk products is one of the best ways to promote health benefits while improving their sensory characteristics at the same time. The aim of this study was to evaluate the effects of the addition of fructose and oligofructose (1% and 2%) on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products inoculated with indigenous probiotic starter cultures of Lactobacillus isolated from Polish traditional fermented foods. The samples were evaluated during 35 days of refrigerated storage. The oligofructose and fructose caused increases in the populations of bacteria in comparison to the control fermented milk products without the addition of saccharides. The degrees of acidification in different fermented milk samples, as well as their viscosity, firmness, syneresis, and color attributes, changed during storage. The highest overall sensory quality levels were observed for the samples supplemented with L. brevis B1 and oligofructose. This study is the first attempt to compare the influences of different sugar sources on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
- Correspondence: (D.Z.); (K.M.-L.); Tel.: +48-22-59-37067 (D.Z.); +48-22-59-37548 (K.M.-L.)
| | - Katarzyna Marciniak-Lukasiak
- Department of Food Technology and Assessment, Division of Fat and Oils and Food Concentrates Technology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence: (D.Z.); (K.M.-L.); Tel.: +48-22-59-37067 (D.Z.); +48-22-59-37548 (K.M.-L.)
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Piotr Lukasiak
- Faculty of Computing and Telecommunications, Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland;
- Laboratory of Bioinformatics, Institute of Biochemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
41
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
42
|
Amador-Espejo GG, Ruiz-Lopez II, Gibbens-Bandala PJ, Delgado-Macuil RJ, Ruiz-Espinosa H. Thermosonicated whey protein concentrate blends on quality attributes of reduced fat Panela cheese. ULTRASONICS SONOCHEMISTRY 2021; 76:105621. [PMID: 34144445 PMCID: PMC8217677 DOI: 10.1016/j.ultsonch.2021.105621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Aiming at producing a reduced fat cheese (RFC) as an alternative to full-fat Panela cheese, a highly consumed fresh Mexican dairy product, thermosonication (TS) processes (24 kHz, 400 W nominal power, 2, 4 and 6 min; 50, 55 and 60 °C) were evaluated to treat WPC (80% protein) blended with reduced-fat milk (1 and 2% fat), which were later LTLT pasteurized. TS blends were compared in terms of their technological properties (water holding capacity-WPC, gel firmness- GF, color, pH and titratable acidity) with those of a regular full fat (3%) LTLT pasteurized milk used as a control. Afterwards, a regression analysis was carried out with the obtained data in order to select the most appropriate conditions for cheesemaking purposes (similar GF, higher WHC with respect to the control), minimize both fat content and TS treatment duration to minimize energy expenses. According to these restrictions, the selected conditions were 1.5% fat milk-WPC blend, TS treated at 60 °C for 120 s; 1% fat milk-WPC blend, TS treated at 50 °C for 120 s and 1% fat milk-WPC blend, 50 °C for 144 s, which allowed preparing low fat cheeses (LFCs). These TS treatments were applied in a larger scale to elaborate Panela-type LFCs comparing different technological properties (cheese yield, syneresis, water content, texture profile analysis, color and titratable acidity) with those of a full fat variety, at day 1 and during 14 days of refrigerated storage. Results showed similar texture profiles of LFC cheeses and full fat milk cheeses throughout their storage period with significant changes in composition parameters (higher moisture, protein and salt contents, with low fat percentages), syneresis, selected color parameters (hue, b*), with no observed changes in cheese yield, TA and pH during cheese storage. These promising results are encouraging to develop LFCs with no physicochemical or technological defects using novel processing techniques that may help reducing calorie consumption without compromising sensory acceptability.
Collapse
Affiliation(s)
- Genaro G Amador-Espejo
- CONACYT-Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala 90700, Mexico
| | - Irving I Ruiz-Lopez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla 72570, Mexico
| | - Paola J Gibbens-Bandala
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla 72570, Mexico
| | - Raúl J Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala 9070, Mexico
| | - Hector Ruiz-Espinosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla 72570, Mexico.
| |
Collapse
|
43
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
44
|
Yokoi KJ, Tsutsui S, Arakawa GY, Takaba M, Fujii K, Kaneko S. Molecular and biochemical characteristics of inulosucrase InuBK from Alkalihalobacillus krulwichiae JCM 11691. Biosci Biotechnol Biochem 2021; 85:1830-1838. [PMID: 34021568 DOI: 10.1093/bbb/zbab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Information about the inulosucrase of nonlactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the Gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0-9.0 and 50-55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multiangle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3-27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.
Collapse
Affiliation(s)
- Ken-Ji Yokoi
- Toyama Prefectural Food Research Institute, Toyama, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Gen-Ya Arakawa
- Toyama Prefectural Food Research Institute, Toyama, Japan
| | | | | | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
45
|
Moon K, Choi KO, Jeong S, Kim YW, Lee S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods 2021; 10:foods10061351. [PMID: 34208054 PMCID: PMC8230639 DOI: 10.3390/foods10061351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Canola oil was structured into oleogels with different amounts of carnauba wax, and their processing performances were assessed as an alternative to solid fat for imitation cheese low in saturated fat. The contents of solid fat in the oleogels were less vulnerable to the change in temperature than the palm oil. The replacement of palm oil with oleogels produced cheese samples with harder and more cohesive/chewy textures. Dynamic and transient viscoelastic measurements demonstrated that the use of oleogels was effective in increasing the elastic nature of the cheeses. Two distinct components with different proton mobilities were observed in the imitation cheeses, and longer T2 relaxation times were detected in the oleogel samples. The meltability of the cheese with palm oil was not significantly different from those with 3% and 6% oleogels. The saturated fat level of the oleogel cheese was significantly reduced from 45.70 to 5.20%. The application of canola oil-carnauba wax oleogels could successfully produce imitation cheese high in unsaturated fat and low in saturated fat. This study thus demonstrated that the health-functional properties of imitation cheese could be enhanced by using oleogels.
Collapse
Affiliation(s)
- Kyungwon Moon
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
| | - Kyeong-Ok Choi
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea;
| | - Sungmin Jeong
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University (Sejong), Sejong 30019, Korea;
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
- Correspondence: ; Tel.: +82-2-3408-3227
| |
Collapse
|
46
|
Świąder K, Florowska A, Konisiewicz Z. The Sensory Quality and the Textural Properties of Functional Oolong Tea-Infused Set Type Yoghurt with Inulin. Foods 2021; 10:1242. [PMID: 34072488 PMCID: PMC8229014 DOI: 10.3390/foods10061242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/04/2023] Open
Abstract
Set type yoghurts are characterised by a semi-solid texture, which is created during the fermentation process. The tea infusion in this type of yoghurt production can influence the quality of the final product. Therefore, the aim of the experiment was to evaluate the influence of the addition of 3, 6 and 9% inulin to oolong tea-infused yoghurts on the sensory quality. It has been evaluated by trained experts using a Quantitative Descriptive Profile analysis and by consumers using hedonic scaling, as well as on instrumentally evaluated features such as texture, stability and visual parameters. The addition of oolong tea to yoghurt resulted in positive changes in the perception of sweet, peach and nectar odours and flavours, and also creaminess, as well as negative changes in the presence of a bitter taste, the whey presence and a colour intensification towards dark cream (p ≤ 0.05). The addition of inulin to the tested oolong tea yogurts caused a decrease in the whey presence and brightened the yoghurt's colour (6% and 9%, p ≤ 0.05, respectively), as well as an improved creaminess and an increase in the sweet taste of the yoghurt. It was also observed that the addition of oolong tea deteriorated the instrumentally evaluated texture of the set yoghurts, while inulin at a higher concentration (9%, p ≤ 0.05) increased the firmness and adhesiveness. Moreover, the addition of inulin also had a positive effect on the yoghurt's stability. The addition of inulin to oolong tea-infused set yoghurts may be valuable both as a source of prebiotic fibre in functional products and as a factor improving the quality of these products.
Collapse
Affiliation(s)
- Katarzyna Świąder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW–WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland;
| | - Anna Florowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences (SGGW–WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland;
| | - Zuzanna Konisiewicz
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW–WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland;
| |
Collapse
|
47
|
Melilli MG, Costa C, Lucera A, Padalino L, Del Nobile MA, Conte A. Fiordilatte Cheese Fortified with Inulin from Cichorium intybus or Cynara cardunculus. Foods 2021; 10:1215. [PMID: 34072142 PMCID: PMC8228856 DOI: 10.3390/foods10061215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
The influence of two different types of inulin added to fiordilatte cheese was assessed on product quality during the proper refrigerated storage period. To this aim, the fresh cheese was produced by a pilot plant, adding inulin, either from chicory (low degree of polymerization) or from cardoon (high degree of polymerization), during the stretching phase of the production process. Microbiological stability, sensory acceptability, texture and color changes of fortified dairy food during storage were measured and compared to the control cheese. Results suggest that inulin from different sources, even if characterized by a different degree of polymerization, can keep the texture and color of fiordilatte during storage. Microbiological analyses highlight that inulin seemed to promote a faster Pseudomonas spp. growth; however, the viable cell concentrations were found to be comparable in all the samples after one week. Enterobacteriaceae growth was faster when inulin from chicory was used. Sensory analysis shows that inulin addition to fiordilatte promoted the sensory quality preservation during storage; in fact, the fortified cheese overall quality was found to be always higher (p < 0.05) than that of the control sample, thus suggesting that inulin addition to fiordilatte represents a valid strategy for its fiber fortification.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of BioEconomy, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Cristina Costa
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 71121 Foggia, Italy; (C.C.); (A.L.); (L.P.); (A.C.)
| | - Annalisa Lucera
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 71121 Foggia, Italy; (C.C.); (A.L.); (L.P.); (A.C.)
| | - Lucia Padalino
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 71121 Foggia, Italy; (C.C.); (A.L.); (L.P.); (A.C.)
| | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 71121 Foggia, Italy; (C.C.); (A.L.); (L.P.); (A.C.)
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 71121 Foggia, Italy; (C.C.); (A.L.); (L.P.); (A.C.)
| |
Collapse
|
48
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
49
|
Zhang X, Hao X, Wang H, Li X, Liu L, Yang W, Zhao M, Wang L, Massounga Bora AF. The effects of Lactobacillus plantarum combined with inulin on the physicochemical properties and sensory acceptance of low-fat Cheddar cheese during ripening. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|