1
|
Zhang H, Jia C, Xiao Y, Zhang J, Yu J, Li X, Hamid N, Sun A. Enhanced stability and bioavailability of mulberry anthocyanins through the development of sodium caseinate-konjac glucomannan nanoparticles. Food Chem 2024; 439:138150. [PMID: 38100879 DOI: 10.1016/j.foodchem.2023.138150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
This study was carried out to improve the stability of anthocyanins (ACNs) by developing MA-SC-KGM nanoparticles using a self-assembly method that involved the combination of sodium caseinate (SC) and konjac glucomannan (KGM) with mulberry anthocyanin extract (MA). Atomic force microscopy (AFM) analysis showed SC encapsulated MA successfully. Multispectral techniques demonstrated the presence of hydrogen bonds and hydrophobic interactions in the nanoparticles. MA-SC-KGM ternary mixture improved storage stability, color stability and anthocyanin retention better compared to the MA-SC binary mixture. Notably, MA-SC-KGM nanoparticles significantly inhibited the thermal degradation of ACNs, improved pH stability, and showed stability and a slow-release effect in gastrointestinal digestion experiments. In addition, MA-SC-KGM nanoparticles were effective in scavenging DPPH· and ABTS+ free radicals, with enhanced stability and antioxidant capacity even during the heating process. This study successfully developed a novel MA-SC-KGM protein-polysaccharide composite material that effectively stabilized natural ACNs, expanding the application of ACNs in various industries.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Chengli Jia
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Yuhang Xiao
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Jingyue Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Jingwen Yu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Xinran Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Aidong Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100091, China.
| |
Collapse
|
2
|
Cui F, Zheng S, Wang D, Ren L, Wang T, Meng Y, Ma R, Wang S, Li X, Li T, Li J. Preparation of multifunctional hydrogels based on co-pigment-polysaccharide complexes and establishment of a machine learning monitoring platform. Int J Biol Macromol 2024; 259:129258. [PMID: 38218291 DOI: 10.1016/j.ijbiomac.2024.129258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Shiwei Zheng
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shulin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
3
|
Dong R, Huang Z, Ma W, Yu Q, Xie J, Tian J, Li B, Shan J, Chen Y. Fabrication of nanocomplexes for anthocyanins delivery by ovalbumin and differently dense sulphate half-ester polysaccharides nanocarriers: Enhanced stability, bio-accessibility, and antioxidant properties. Food Chem 2024; 432:137263. [PMID: 37657340 DOI: 10.1016/j.foodchem.2023.137263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study aimed to fabricate novel nanocomplexes for delivery of anthocyanins (ACN) utilizing ovalbumin (OVA) and sulphated-polysaccharides with varying linear charge density (κ-,ι-, λ-carrageenan and dextran sulfate: κC < ιC < λC < DS). Influence of OVA-sulphated-polysaccharides on ACN stability, antioxidant capacity, and bioaccessibility was investigated. Fabricated nanoparticlecosmeticsed superior encapsulation efficiency (94.11-96.2%) and loaded capacity (9.05-9.54%) for ACN. OVA-DS displayed the smallest particle size and turbidity, while OVA-κC-ACN exhibited the largest ones. ζ-Potential of nanoparticles raised with increasing ester-sulfate level in sulphated-polysaccharides. FT-IR, Raman and OVA conformational alterations revealed existence of intermolecular-interactions between ACN and OVA-polysaccharides. DSC and TGA showed considerable thermo-stability of self-assembled (ACN-loaded) OVA-polysaccharides. Spheroid-nanoparticles size increased after ACN-loading in SEM and CLSM. Composite nanocomplexes enhanced ACN stability and antioxidant properties under accelerated degradation conditions and simulated digestion, particularly, OVA-DS-ACN and OVA-λC-ACN. We provide a choice for reinforcing stability of hydrophilic nutraceuticals and improving its applications.
Collapse
Affiliation(s)
- Ruihong Dong
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Huang
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wenjie Ma
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jialuo Shan
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Bao Y, Yang X, Li J, Li Z, Cheng Z, Wang M, Li Z, Si X, Li B. Structural homeostasis and controlled release for anthocyanin in oral film via sulfated polysaccharides complexation. Int J Biol Macromol 2024; 256:128473. [PMID: 38029913 DOI: 10.1016/j.ijbiomac.2023.128473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Oral film is a novel functional carrier, which can provide a new pathway for the efficient absorption of anthocyanin. However, anthocyanin homeostasis in oral film is a prerequisite for achieving efficient absorption and utilization of anthocyanin. Herein, three sulfated polysaccharides, including chondroitin sulfate (CS), fucoidin (FU) and λ-carrageenan (λ-CG), were complexed with blueberry anthocyanin (BA) to prepare oral film formulations using hydroxypropyl methylcellulose (HPMC) as a film-forming matrix. The addition of three sulfated polysaccharides improved the stability of BA in content and color, which were associated with interactions between BA and polysaccharides. The BA retention rate of CS-BA/HPMC system increased 5.5-fold after 8 d of light-accelerated storage compared with the control group, showing the best homeostasis effect. CS and λ-CG enhanced the elongation at break and prolonged disintegration time of oral films. The addition of FU made the oral film denser and smoother, and had the highest BA release (75.72 %) in the simulated oral cavity system. In addition, the oral films of three sulfated polysaccharides complexed with BA showed superior antioxidant capacity. The present study provides new insights into the application of anthocyanin in film formulation carriers.
Collapse
Affiliation(s)
- Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhongxia Li
- BYHEALTH institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Tan C, Sun Y, Yao X, Zhu Y, Jafari SM, Sun B, Wang J. Stabilization of anthocyanins by simultaneous encapsulation-copigmentation via protein-polysaccharide polyelectrolyte complexes. Food Chem 2023; 416:135732. [PMID: 36878116 DOI: 10.1016/j.foodchem.2023.135732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
This study prepared a series of polyelectrolyte complexes (PECs) composed of heated whey protein isolate (HWPI) and different polysaccharides for simultaneous encapsulation and copigmentation of anthocyanins (ATC) and their ultimate stabilization. Four polysaccharides including chondroitin sulfate, dextran sulfate, gum arabic, and pectin were chosen due to their abilities to simultaneously complex with HWPI and copigment ATC. At pH 4.0, these PECs were formed with an average particle size of 120-360 nm, the ATC encapsulation efficiency of 62-80%, and the production yield of 47-68%, depending on the type of polysaccharides. The PECs effectively inhibited the degradation of ATC during storage and when exposed to neutral pH, ascorbic acid, and heat. Pectin had the best protection, followed by gum arabic, chondroitin sulfate, and dextran sulfate. The stabilizing effects were associated with the hydrogen bonding, hydrophobic and electrostatic interactions between HWPI and polysaccharides, conferring dense internal network and hydrophobic microenvironment in the complexes.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yan Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xueqing Yao
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Dong R, Tian J, Huang Z, Yu Q, Xie J, Li B, Li C, Chen Y. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chem 2023; 410:135375. [PMID: 36610086 DOI: 10.1016/j.foodchem.2022.135375] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
This study investigated the protective effect of β-glucan (BG), konjac glucomannan (KGM) and xanthan gum (XG) on thermo-stability and antioxidant capacities of blueberry anthocyanins (ACN) and their interaction mechanisms. Twenty-six glycosylated and acylated ACN were identified, and malvidin-3-O-galactose was predominant (36.78 %) in ACN extracts. Three polysaccharides retained colour and stability and antioxidant capabilities of ACN under thermal-treatments (XG > KGM > BG). Rheological properties (shear stress, apparent viscosity) of three polysaccharides were enhanced in presence of ACN. UV-visible spectra, SEM and DLS results indicated that co-aggregation between ACN and specific zones of these polysaccharides was formed. TGA and DSC studies confirmed that introductionof three polysaccharides, especially XG could improve thermostability of ACN. FTIR, and molecular dynamics simulations revealed that thermo-stabilization of polysaccharides-ACN conjugates might be attributedto their intermolecular interactions mainly via hydrogen bindings. The protection by water-soluble polysaccharides foresees novel anthocyanins in food products with increased heat-resistant stability.
Collapse
Affiliation(s)
- Ruihong Dong
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ziyan Huang
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chang Li
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
7
|
Dai J, Ruan Y, Feng Y, Li B. Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes. Foods 2022; 11:3665. [PMID: 36429257 PMCID: PMC9689758 DOI: 10.3390/foods11223665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, pectin (PC), whey protein isolate (WPI), and chitosan (CS) were combined with purple corn cob anthocyanins (PCCA). Four complexes, PC-PCCA, WPI-PCCA, WPI-PC-PCCA, and CS-PC-PCCA were prepared to evaluate the improvement in the α-glucosidase inhibitory activity and digestive stability of PCCA. The encapsulation efficiency (EE), particle size, physical properties, and mode of action of the synthesized PCCA complexes were evaluated. Among them, CS-PC-PCCA had the highest EE (48.13 ± 2.73%) except for WPI-PC-PCCA; furthermore, it had a medium size (200-300 nm), the lowest hygroscopicity (10.23 ± 0.28%), lowest solubility (10.57 ± 1.26%), and highest zeta potential (28.20 ± 1.14). CS-PC-PCCA was multigranular and irregular in shape; x-ray diffraction showed that it was amorphous; and Fourier transform infrared spectroscopy confirmed that it was joined with PCCA through hydrogen bonds and electrostatic interactions. Compared with PCCA, the four complexes showed a higher α-glucosidase inhibition activity and digestive stability, except for WPI-PC-PCCA. Furthermore, CS-PC-PCCA exhibited the best α-glucosidase inhibition and simulated digestion stability.
Collapse
Affiliation(s)
- Jialin Dai
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Liao M, Chen F, Hu X, Liao X, Miao S, Ma L, Ji J. Controlled gastrointestinal digestion of micellar casein loaded anthocyanins: The chelating and complexing effect of dextran sulfate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Jovanović MS, Krgović N, Živković J, Stević T, Zdunić G, Bigović D, Šavikin K. Ultrasound-Assisted Natural Deep Eutectic Solvents Extraction of Bilberry Anthocyanins: Optimization, Bioactivities, and Storage Stability. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202680. [PMID: 36297704 PMCID: PMC9609731 DOI: 10.3390/plants11202680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 05/14/2023]
Abstract
Bilberry fruits (Vaccinium myrtillus L.) are one of the richest natural sources of anthocyanins and are widely used due to their pharmacological and nutritional properties. To ensure their maximum application potential, it is necessary to overcome the limitations of conventional extraction solvents and techniques. This study aimed to develop a green method for bilberry anthocyanin extraction using natural deep eutectic solvents (NaDES) integrated with ultrasound-assisted extraction (UAE) in order to define extraction conditions that will prevent decomposition of the anthocyanins or the loss of bioactivity. After a screening of ten different NaDES, choline chloride:sorbitol (1:1) was selected as the most effective. Furthermore, the influence analysis and optimization of the NaDES-UAE extraction conditions were carried out employing response surface methodology. The optimal conditions were found to be an extraction time of 37.63 min, a temperature of 48.38 °C, and 34.79% (w/w) water in NaDES. The extraction yields of target compounds under optimized extraction conditions were 0.27 mg/g DW of cyanidin-3-O-glucoside and 2.12 mg CGE/g DW of TAC. The obtained optimized extract showed promising radical scavenging and antimicrobial activity. A stability study with the optimized extract revealed that refrigerated storage at 4 °C in the dark provided the best anthocyanins preservation. Overall, the developed NaDES-UAE method showed promising application potential and can be considered as a high-efficiency green alternative to conventional anthocyanins extraction methods, enabling the preservation of active ingredients and the bioactivity of extracts.
Collapse
Affiliation(s)
- Miloš S. Jovanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-64-867-4921
| | - Tatjana Stević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dubravka Bigović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Santos SSD, Magalhães FDS, Paraíso CM, Ogawa CYL, Sato F, Santos Junior ODO, Visentainer JV, Madrona GS, Reis MHM. Enhanced conditions for anthocyanin extraction from blackberry pomace under ultrasound irradiation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Suelen Siqueira dos Santos
- Faculdade de Engenharia Química Universidade Federal de Uberlândia Uberlândia Brazil
- Programa de pós‐graduação em Ciência de Alimentos Universidade Estadual de Maringá Paraná Brazil
| | | | - Carolina Moser Paraíso
- Programa de pós‐graduação em Ciência de Alimentos Universidade Estadual de Maringá Paraná Brazil
| | | | - Francielle Sato
- Departamento de Física Universidade Estadual de Maringá Paraná Brazil
| | | | | | | | | |
Collapse
|
12
|
Zannou O, Koca I. Greener extraction of anthocyanins and antioxidant activity from blackberry (Rubus spp) using natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Shen K, Long J, Li X, Hua Y, Chen Y, Kong X, Zhang C. Complexation of pea protein isolate with dextran sulphate and interfacial adsorption behaviour and O/W emulsion stability at acidic conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kejie Shen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Jie Long
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| |
Collapse
|
14
|
Katasonov A. Anthocyanins for the prevention and treatment of neurodegenerative diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:16-22. [DOI: 10.17116/jnevro202212204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Xue B, Wang Y, Tian J, Zhang W, Zang Z, Cui H, Zhang Y, Jiang Q, Li B, Hai Liu R. Effects of chitooligosaccharide-functionalized graphene oxide on stability, simulated digestion, and antioxidant activity of blueberry anthocyanins. Food Chem 2021; 368:130684. [PMID: 34391099 DOI: 10.1016/j.foodchem.2021.130684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
In this study, we tested the in vitro efficacy of a graphene oxide-chitooligosaccharide (GO-COS) complex developed to protect blueberry anthocyanins (An) from degradation by various physicochemical factors and the digestive process. We prepared a GO-COS complex to adsorb An and protect them from the destructive effects of their ambient environment. The complex protected the An under various temperature, pH, light, oxidant, and reductant conditions. We evaluated An content and composition in a simulated digestive system using the pH differential method and the high performance liquid chromatography-mass spectrometry (HPLC-MS). The GO-COS carrier stabilized An in the intestine and protected their peroxyl radical-scavenging capacity. Additionally, we observed a dose-response relationship between An content and cellular antioxidant activity, and simultaneous improvement of An bioavailability when the An were encapsulated in the complex. The complex inhibited HepG2 cell proliferation at the tested dose range. This study provides valuable information for stability of An-rich products.
Collapse
Affiliation(s)
- Bo Xue
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Rui Hai Liu
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Department of Food Science, Cornell University, Ithaca, NY 14850-7201, United States.
| |
Collapse
|
18
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
19
|
Osvaldt Rosales TK, Pessoa da Silva M, Lourenço FR, Aymoto Hassimotto NM, Fabi JP. Nanoencapsulation of anthocyanins from blackberry (Rubus spp.) through pectin and lysozyme self-assembling. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat. Food Chem 2021; 356:129699. [PMID: 33873144 DOI: 10.1016/j.foodchem.2021.129699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Anthocyanins and selenium have vital biological functions for human and plants, they were investigated thoroughly and separately in plants. Previous studies indicated pigmented fruits and vegetables had higher selenium concentration, but whether there is a relationship between anthocyanins and selenium is unclear. In this study, a combined phenotypic and genotypic methodological approach was undertaken to explore the potential relationship between anthocyanins and selenium accumulation by using phenotypic investigation and RNA-seq analysis. The results showed that pigmented cultivars enrichment in Se is a general phenomenon observed for these tested species, this due to pigmented cultivars have higher Se efficiency absorption. Se flow direction mainly improve concentration of S-rich proteins of LMW-GS. This may be a result of the MYB and bHLH co-regulate anthocyanins biosynthesis and Se metabolism at the transcriptional level. This thesis addresses a neglected aspect of the relevant relationship between anthocyanins and selenium.
Collapse
|
21
|
Fernandes A, Raposo F, Evtuguin DV, Fonseca F, Ferreira-da-Silva F, Mateus N, Coimbra MA, de Freitas V. Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydr Polym 2020; 255:117432. [PMID: 33436231 DOI: 10.1016/j.carbpol.2020.117432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Grape pectic polysaccharides-malvidin-3-O- β -d-glucoside binding was studied, aiming to unveil the impact of structural diversity of polysaccharides on anthocyanins-polysaccharides interactions. Polysaccharides were extracted with solutions of imidazole (ISP) and carbonate at 4 °C (CSP-4 °C) and room temperature (CSP-RT) and also recovered from the dialysis supernatant of the remaining cellulosic residue after the aqueous NAOH extraction of hemicellulosic polysaccharides (Sn-CR). Polysaccharides richer in homogalacturonan domains, like those present in the CSP-4 °C fraction had approximately 50-fold higher binding affinity to malvidin-3-O- β-d-glucoside, than polysaccharides with side chains (as ISP and CSP-RT extractable polysaccharides). CSP-4 °C polysaccharides showed a positive effect on malvidin-3-O- β-d-glucoside colour fading. Hydration equilibrium constant of malvidin-3-O- β-d-glucoside in the presence of CSP-4 °C polysaccharides was higher, showing the preferential stabilization of the flavylium cation. The results showed that anthocyanins colour stabilization can be promoted by pectic polysaccharide structures such as those extracted by cold carbonate.
Collapse
Affiliation(s)
- Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Filomena Raposo
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Dmitry V Evtuguin
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Fátima Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| |
Collapse
|
22
|
Liudvinaviciute D, Rutkaite R, Bendoraitiene J, Klimaviciute R, Dagys L. Formation and characteristics of alginate and anthocyanin complexes. Int J Biol Macromol 2020; 164:726-734. [PMID: 32698067 DOI: 10.1016/j.ijbiomac.2020.07.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/01/2022]
|
23
|
Effect of amylose/amylopectin content and succinylation on properties of corn starch nanoparticles as encapsulants of anthocyanins. Carbohydr Polym 2020; 250:116972. [DOI: 10.1016/j.carbpol.2020.116972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 01/13/2023]
|
24
|
Zhang Y, Deng Z, Li H, Zheng L, Liu R, Zhang B. Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11817-11828. [PMID: 32975408 DOI: 10.1021/acs.jafc.0c05224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A model food system was designed with dietary fiber and crude anthocyanins from purple eggplant peel to explore the degradation mechanism of anthocyanins during microwave and frying treatments. Our results found that delphinidin-3-O-rutinoside was either hydrolyzed into delphinidin or condensed with p-coumaric acid to form p-coumaroyl-delphinidin-3-O-glucoside. Delphinidin was cleaved into gallic acid and phloroglucinaldehyde, which might be further oxidized into pyrogallol and phloroglucinol, respectively. The total anthocyanin degradation followed the first-order kinetics in fried and microwaved solid matrix samples as well as microwaved liquid matrix samples. However, the total anthocyanin degradation followed the second-order kinetics in the heated liquid matrix samples at the frying temperature. The brown/polymeric color index, which negatively correlated with the anthocyanin content, increased faster in the liquid matrix samples than in the solid matrix samples. Compared with frying treatment, a higher rate of anthocyanin degradation in solution was observed under microwave treatment. However, anthocyanins were subject to much more damage under frying treatment than microwave treatment in a solid food system.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
25
|
Gullón P, Eibes G, Lorenzo JM, Pérez-Rodríguez N, Lú-Chau TA, Gullón B. Green sustainable process to revalorize purple corn cobs within a biorefinery frame: Co-production of bioactive extracts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136236. [PMID: 31927433 DOI: 10.1016/j.scitotenv.2019.136236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Purple corn (Zea mays L.) is used for the preparation of traditional drinks and desserts, generating great quantities of residues. The scarce information about purple corn cob (PCC) is encouraging an interest in exploring its potential as a valuable source of bioactive compounds with benefits for human health. In this study, a green method based on hydrothermal processing was used for the simultaneous extraction of oligosaccharides and phenolic compounds from PCC. For this purpose, the effects of three factors (time, temperature and pH) on the oligosaccharide content (OSC), total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), as well as on the antioxidant activity measured with three different methods (DPPH, ABTS and FRAP) were evaluated. The bioactive extract obtained under optimal conditions presented a high content of bioactive compounds exhibiting a notable antioxidant capacity and moderate inhibitory activities towards xanthine oxidase. This extract was also structurally characterized by FTIR, HPAEC-DAD, MALDI-TOF-MS and TGA, and the HPLC-ESI-MS analysis led to the tentative identification of 15 antioxidant phenolic compounds. Thus, this research demonstrated that this residue from the food industry has a high potential for obtaining several bioactive compounds that can be utilized as multi-functional ingredients in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Patricia Gullón
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Noelia Pérez-Rodríguez
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thelmo A Lú-Chau
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Gullón
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| |
Collapse
|
26
|
Jiang X, Guan Q, Feng M, Wang M, Yan N, Wang M, Xu L, Gui Z. Preparation and pH Controlled Release of Fe 3O 4/Anthocyanin Magnetic Biocomposites. Polymers (Basel) 2019; 11:E2077. [PMID: 31842398 PMCID: PMC6960501 DOI: 10.3390/polym11122077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Anthocyanins are a class of antioxidants extracted from plants, with a variety of biochemical and pharmacological properties. However, the wide and effective applications of anthocyanins have been limited by their relatively low stability and bioavailability. In order to expand the application of anthocyanins, Fe3O4/anthocyanin magnetic biocomposite was fabricated for the storage and release of anthocyanin in this work. The magnetic biocomposite of Fe3O4 magnetic nanoparticle-loaded anthocyanin was prepared through physical intermolecular adsorption or covalent cross-linking. Scanning electron microscopy (SEM), Dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and thermal analysis were used to characterize the biocomposite. In addition, the anthocyanin releasing experiments were performed. The optimized condition for the Fe3O4/anthocyanin magnetic biocomposite preparation was determined to be at 60 °C for 20 h in weak alkaline solution. The smooth surface of biocomposite from SEM suggested that anthocyanin was coated on the surface of the Fe3O4 particles successfully. The average size of the Fe3O4/anthocyanin magnetic biocomposite was about 222 nm. Under acidic conditions, the magnetic biocomposite solids could be repeatable released anthocyanin, with the same chemical structure as the anthocyanin before compounding. Therefore, anthocyanin can be effectively adsorbed and released by this magnetic biocomposite. Overall, this work shows that Fe3O4/anthocyanin magnetic biocomposite has great potential for future applications as a drug storage and delivery nanoplatform that is adaptable to medical, food and sensing.
Collapse
Affiliation(s)
- Xizhi Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
| | - Min Feng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Mengyang Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Nina Yan
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Min Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Lei Xu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| |
Collapse
|
27
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
28
|
Feng J, Wu Y, Zhang L, Li Y, Liu S, Wang H, Li C. Enhanced Chemical Stability, Intestinal Absorption, and Intracellular Antioxidant Activity of Cyanidin-3- O-glucoside by Composite Nanogel Encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10432-10447. [PMID: 31466447 DOI: 10.1021/acs.jafc.9b04778] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A composite nanogel was developed for cyanidin-3-O-glucoside (C3G) delivery by combining Maillard reaction and heat gelation. The starting materials utilized were ovalbumin, dextran, and pectin. C3G-loaded nanogel was spherical with a diameter of ∼185 nm, which was maintained over a wide range of pH and NaCl concentrations. The composite nanogel enhanced the chemical stability of C3G under accelerated degradation models and a simulated gastrointestinal tract. Clathrin-mediated, caveolae-mediated, and macropinocytosis-related endocytosis contributed to the higher cellular uptake of nano-C3G than that of free-C3G. The apparent permeability coefficients of C3G increased 2.16 times after nanoencapsulation. The transcytosis of the C3G-bearing nanogel occurred primarily through the clathrin-related pathway and macropinocytosis and followed the "common recycling endosomes-endoplasmic reticulum-Golgi complex-basolateral plasma membrane" route. Moreover, nano-C3G was more efficient in restoring the viability of cells and activities of endogenous antioxidant enzymes than free-C3G in oxidative models, which may be attributed to the former's high cellular absorption.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Yinghui Wu
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Lixia Zhang
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Ying Li
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | | | | | - Chunyang Li
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| |
Collapse
|
29
|
Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Dangles O, Fenger JA. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018; 23:molecules23081970. [PMID: 30087225 PMCID: PMC6222895 DOI: 10.3390/molecules23081970] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022] Open
Abstract
Owing to their specific pyrylium nucleus (C-ring), anthocyanins express a much richer chemical reactivity than the other flavonoid classes. For instance, anthocyanins are weak diacids, hard and soft electrophiles, nucleophiles, prone to developing π-stacking interactions, and bind hard metal ions. They also display the usual chemical properties of polyphenols, such as electron donation and affinity for proteins. In this review, these properties are revisited through a variety of examples and discussed in relation to their consequences in food and in nutrition with an emphasis on the transformations occurring upon storage or thermal treatment and on the catabolism of anthocyanins in humans, which is of critical importance for interpreting their effects on health.
Collapse
|
31
|
Tan C, Selig MJ, Abbaspourrad A. Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydr Polym 2018; 181:124-131. [DOI: 10.1016/j.carbpol.2017.10.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/05/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
|
32
|
Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.029] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Tan C, Selig MJ, Lee MC, Abbaspourrad A. Polyelectrolyte microcapsules built on CaCO 3 scaffolds for the integration, encapsulation, and controlled release of copigmented anthocyanins. Food Chem 2017; 246:305-312. [PMID: 29291853 DOI: 10.1016/j.foodchem.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The all-polysaccharide based polyelectrolyte microcapsules combining copigmentation for anthocyanin encapsulation and stabilization were fabricated. Copigmented complexes of chondroitin sulfate and anthocyanin were preloaded in CaCO3 scaffold, and then microcapsules were created by coating the sacrificial CaCO3 using layer-by-layer technique. It was observed that the preloading of copigmented complex affected the precipitation reaction of CaCO3 and the subsequent entrapment of anthocyanin. With addition of anthocyanin from 0.125 to 0.75 mg, copigmentation can significantly increase the encapsulation efficiency of anthocyanin in CaCO3, whereas such effect was not obvious at higher loadings. The leakage of anthocyanin during CaCO3 core dissolution and storage was also inhibited by two polysaccharide layers coupled with copigmentation, which may be related to the formation of interconnecting networks. Additionally, a higher anthocyanin antioxidant activity was provided by carbohydrate matrix. These findings may allow for the encapsulation of large amounts of water-soluble components; particularly natural colorant by copigmented complex-polyelectrolyte structures.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michael Joseph Selig
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
34
|
Kanokpanont S, Yamdech R, Aramwit P. Stability enhancement of mulberry-extracted anthocyanin using alginate/chitosan microencapsulation for food supplement application. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:773-782. [DOI: 10.1080/21691401.2017.1339050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sorada Kanokpanont
- Department of Chemical Engineering, Chemical Engineering Research Unit for Value Adding of Bioresources, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapha Yamdech
- Department of Pharmacy Practice, Bioactive Resources for Innovative Clinical Applications Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Bioactive Resources for Innovative Clinical Applications Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
35
|
Wang Y, Li J, Li B. Chitin microspheres: A fascinating material with high loading capacity of anthocyanins for colon specific delivery. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
He B, Ge J, Yue P, Yue X, Fu R, Liang J, Gao X. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem 2016; 221:1671-1677. [PMID: 27979145 DOI: 10.1016/j.foodchem.2016.10.120] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022]
Abstract
The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles.
Collapse
Affiliation(s)
- Bo He
- College of Tea & Food Science, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jiao Ge
- College of Tea & Food Science, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory for Extracting & Processing Technology of Edible Plant, Zhangzhou, Fujian, People's Republic of China
| | - XueYang Yue
- Department of Nutrition and Food Sciences, Technische Universität München, Freising, München, Germany
| | - Ruiyan Fu
- College of Tea & Food Science, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jin Liang
- College of Tea & Food Science, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xueling Gao
- College of Tea & Food Science, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
37
|
Navikaite V, Simanaviciute D, Klimaviciute R, Jakstas V, Ivanauskas L. Interaction between κ- and ι-carrageenan and anthocyanins from Vaccinium myrtillus. Carbohydr Polym 2016; 148:36-44. [DOI: 10.1016/j.carbpol.2016.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
38
|
de Morais W, Silva G, Nunes J, Wanderley Neto A, Pereira M, Fonseca J. Interpolyelectrolyte complex formation: From lyophilic to lyophobic colloids. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Karakaya S, Simsek S, Eker AT, Pineda-Vadillo C, Dupont D, Perez B, Viadel B, Sanz-Buenhombre M, Rodriguez AG, Kertész Z, Hegyi A, Bordoni A, El SN. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food Funct 2016; 7:3488-96. [DOI: 10.1039/c6fo00567e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects.
Collapse
Affiliation(s)
- Sibel Karakaya
- Ege University
- Department of Food Engineering
- Nutrition Section
- İzmir
- Turkey
| | - Sebnem Simsek
- Ege University
- Department of Food Engineering
- Nutrition Section
- İzmir
- Turkey
| | - Alper Tolga Eker
- Ege University
- Department of Food Engineering
- Nutrition Section
- İzmir
- Turkey
| | | | - Didier Dupont
- INRA
- UMR 1253
- Science et Technologie du Lait et de l'Oeuf
- 35042 Rennes
- France
| | - Beatriz Perez
- Ainia Technology Center
- Technology Park of Valencia
- 46980 Paterna
- Spain
| | - Blanca Viadel
- Ainia Technology Center
- Technology Park of Valencia
- 46980 Paterna
- Spain
| | | | | | | | | | | | - Sedef Nehir El
- Ege University
- Department of Food Engineering
- Nutrition Section
- İzmir
- Turkey
| |
Collapse
|
40
|
Yang FX, Xu P, Yang JG, Liang J, Zong MH, Lou WY. Efficient separation and purification of anthocyanins from saskatoon berry by using low transition temperature mixtures. RSC Adv 2016. [DOI: 10.1039/c6ra22912c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Separation of anthocyanins from saskatoon berry by using low transition temperature mixtures.
Collapse
Affiliation(s)
- Fu-Xi Yang
- Laboratory of Applied Biocatalysis
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Pei Xu
- Laboratory of Applied Biocatalysis
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ji-Guo Yang
- Laboratory of Applied Biocatalysis
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jing Liang
- Laboratory of Applied Biocatalysis
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|