1
|
Xie L, Duan H, Chen K, Qi D, Li J. Bio-based flame retardant coatings for polyester/cotton fabrics with high physical properties using ammonium vinyl phosphonate-grafted chitosan complexes. Int J Biol Macromol 2024; 279:135318. [PMID: 39236957 DOI: 10.1016/j.ijbiomac.2024.135318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polyester/cotton (T/C) blended fabrics are widely utilized in textile due to the dimensional stability and high elasticity provided by polyester, combined with the comfort and moisture absorption offered by cotton. However, simultaneously enhancing the flame retardancy and maintaining the physical properties of T/C blended fabrics for clothing and furniture applications remains a big challenge. This study introduces a bio-based flame-retardant coating using polyelectrolyte complexes (PEC) composed of ammonium vinyl phosphonate-grafted chitosan (AMVP-g-CS). The protonation degree of the PEC coating is controlled by adjusting the pH to solidify and stabilize the complex structure, preparing bio-based PEC flame retardant T/C blended fabric. Flame retardant analysis reveals that the coated fabrics achieved a limiting oxygen index of 30.5 % and a char length of 11 mm, indicating significantly improved flame retardancy. The combustible volatile substances are significantly reduced for the coated fabrics, achieving a gas-phase flame retardant effect, and forming an expansive char layer with thermal insulation and oxygen blocking properties. Importantly, physical analysis proves that the PEC deposition improved mechanical properties, satisfactory whiteness index and hand feeling of the fabrics. This work opens up a pragmatic and industrially feasible strategy for the development of CSs in the field of flame retardant coating.
Collapse
Affiliation(s)
- Lijin Xie
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huimin Duan
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kai Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Jiawei Li
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| |
Collapse
|
2
|
Zhang J, Guo XY, Guan JP, Cheng XW, Chen G. In-situ polymerization of phosphorus/nitrogen flame-retardant coating for polyester/cotton blend fabrics with superior durability. Int J Biol Macromol 2024; 277:134458. [PMID: 39098693 DOI: 10.1016/j.ijbiomac.2024.134458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The durable flame-retardant functional coating of polyester/cotton (T/C) blend fabrics is both interesting and challenging. In this study, a novel in-situ polymerization strategy for phosphorus/nitrogen-based flame-retardant on T/C blend samples was developed through the polycondensation of tetramethylolphosphonium sulfate, dicyandiamide, and anionic cyclic phosphate ester. The chemical structure of the polycondensation compounds, as well as the surface morphology, combustion behavior, flame-retardant capacity, washing durability and flame-retardant mechanism of the coated T/C blend fabrics, were investigated. The coated T/C blend fabrics demonstrated excellent self-extinguishing performance, with the damaged length decreasing to as low as 8.0 cm and the LOI reaching 28 %. Moreover, the peak heat release rate of the coated T/C blend fabrics decreased by 39.7 %. The superior flame retardancy can be attributed to the enhanced dehydration and carbonization by phosphate groups in the condensed phase, as well as the quenching effect and diluting effect in the gas phase. Additionally, the coated T/C blend fabrics exhibited remarkable washing durability and still achieved self-extinguishing after 65 washing cycles, and the in-situ deposition of insoluble three-dimensional polycondensation compounds onto the T/C blend fabrics was beneficial. The flame-retardant coating had a minor impact on the whiteness, tensile strength and breathability of the T/C blend fabrics.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xin-Yuan Guo
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jin-Ping Guan
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Xian-Wei Cheng
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Guoqiang Chen
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
3
|
Hu J, Chen K, Xiang M, Wei J, Zeng Y, Qin Y, Zhang L, Zhang W. A novel sponge composite of chitosan-sodium tripolyphosphate-melamine for anionic dye Orange II removal. Int J Biol Macromol 2024; 270:132056. [PMID: 38704070 DOI: 10.1016/j.ijbiomac.2024.132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Since the potential carcinogenic, toxic and non-degradable dyes trigger serious environmental contamination by improper treatment, developing novel adsorbents remains a major challenge. A novel high efficiency and biopolymer-based environmental-friendly adsorbent, chitosan‑sodium tripolyphosphate-melamine sponge (CTS-STPP-MS) composite, was prepared for Orange II removing with chitosan as raw material, sodium tripolyphosphate as cross-linking agent. The composite was carefully characterized by SEM, EDS, FT-IR and XPS. The influence of crosslinking conditions, dosage, pH, initial concentration, contacting time and temperature on adsorption were tested through batch adsorption experiments. CTS-STPP-MS adsorption process was exothermic, spontaneous and agreed with Sips isotherm model accompanying the maximum adsorption capacity as 948 mg∙g-1 (pH = 3). Notably, the adsorption performance was outstanding for high concentration solutions, with a removal rate of 97 % in up to 2000 mg∙L-1 OII solution (100 mg sorbent dosage, 50 mL OII solution, pH = 3, 289.15 K). In addition, the adsorption efficiency yet remained 97.85 % after 5 repeated adsorption-desorption cycles. The driving force of adsorption was attributed to electrostatic attraction and hydrogen bonds which was proved by adsorption results coupled with XPS. Owing to the excellent properties of high-effective, environmental-friendly, easy to separate and regenerable, CTS-STPP-MS composite turned out to be a promising adsorbent in contamination treatment.
Collapse
Affiliation(s)
- Jiani Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kexin Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Minghan Xiang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianxiang Wei
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
4
|
He JL, Luo W, Wang T, He L, Deng JN, Fu ZC, Grunlan JC, Chen MJ. Polyelectrolyte Complex with Controllable Viscosity by Doping Cu 2+ Protects Nylon-Cotton Fabric against Fire. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54225-54232. [PMID: 36441914 DOI: 10.1021/acsami.2c16343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nylon-cotton (NC) blend fabrics are widely used in military and industrial applications, but their high flammability still remains a serious problem. In an effort to effectively and quickly impart flame retardancy to the NC fabric, it was treated by simply blade coating with a Cu2+-doped polyelectrolyte complex (CPEC) that consists of ammonium polyphosphate (APP), polyethylenimine (PEI), and copper sulfate. The viscosity of the CPEC can be adjusted by altering the content of CuSO4, which controls the amount of extrinsic and intrinsic ion pairs. By adjusting the proportion and content of PEI, APP, and CuSO4, CPEC suitable for treating the NC fabric was obtained. Only 0.067 wt % Cu2+ was needed to adjust the viscosity and impart self-extinguishing behavior in a vertical burning test. This simple two-step treatment provides a promising technology to protect flammable polymeric substrates with ultralow metal-doped polyelectrolyte complexes.
Collapse
Affiliation(s)
- Jia-Lin He
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Wei Luo
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Ting Wang
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Lei He
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Jin-Ni Deng
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Zhi-Cheng Fu
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| | - Jaime C Grunlan
- Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
- Department of Materials Science & Engineering, Texas A&M University, 3127 TAMU, College Station, Texas 77843, United States
| | - Ming-Jun Chen
- School of Science, Xihua University, 9999 Hongguang Road, Chengdu 610039, China
| |
Collapse
|
5
|
Flame retardation of polyester/cotton blended fabrics via intumescent sol-gel coatings. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Wang L, Liu X, Qi P, Sun J, Jiang S, Li H, Gu X, Zhang S. Enhancing the thermostability, UV shielding and antimicrobial activity of transparent chitosan film by carbon quantum dots containing N/P. Carbohydr Polym 2022; 278:118957. [PMID: 34973773 DOI: 10.1016/j.carbpol.2021.118957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022]
Abstract
The chitosan (CS) transparent film has attracted much attention in food and medicine packaging areas due to their biodegradability and good availability. A novel carbon quantum dots compound containing nitrogen and phosphorus (NP-CQDs) was obtained by reacting citric acids, with urea and phytic acids. The density of the film was increased, and the water vapor permeation was reduced by the presence of NP-CQDs. The introduction of 4 wt% NP-CQDs increased the water contact angle of the CS film from 79.2° to 105.8°. The shielding on UV-A and UV-B transmittance was increased with the NP-CQDs loading. The film containing 4 wt% NP-CQDs blocked more than 90.2% UV-A and 96.5% UV-B; however, it only blocked 26.8% visible light. It also exhibited better antibacterial activity to both E. coli and S. aureus than the control CS film. This work provided a feasible way to prepare multifunctional bio-safe film.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengling Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
|
8
|
Magovac E, Vončina B, Jordanov I, Grunlan JC, Bischof S. Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles. MATERIALS 2022; 15:ma15020432. [PMID: 35057150 PMCID: PMC8779411 DOI: 10.3390/ma15020432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.
Collapse
Affiliation(s)
- Eva Magovac
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia;
| | - Bojana Vončina
- Laboratory for Chemistry and Environmental Protection, Faculty of Mechanical Engineering, University of Maribor, 2609 Maribor, Slovenia;
| | - Igor Jordanov
- Department of Textiles, Faculty of Technology and Metallurgy, University Ss. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Jaime C. Grunlan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Sandra Bischof
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-14877357
| |
Collapse
|
9
|
Wang R, Chen Y, Liu Y, Ma M, Tong Z, Chen X, Bi Y, Huang W, Liao Z, Chen S, Zhang X, Li Q. Metal‐organic frameworks derived
ZnO
@
MOF
@
PZS
flame retardant for reducing fire hazards of polyurea nanocomposites. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongzhen Wang
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Yan Chen
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Yanyan Liu
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Mingliang Ma
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Zhouyu Tong
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Xilei Chen
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao China
| | - Yuxin Bi
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Weibo Huang
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Zijian Liao
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Shuailiang Chen
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Xinyi Zhang
- School of Civil Engineering Qingdao University of Technology Qingdao China
| | - Qianqian Li
- School of Civil Engineering Qingdao University of Technology Qingdao China
| |
Collapse
|
10
|
Köklükaya O, Karlsson RMP, Carosio F, Wågberg L. The use of model cellulose gel beads to clarify flame-retardant characteristics of layer-by-layer nanocoatings. Carbohydr Polym 2021; 255:117468. [PMID: 33436236 DOI: 10.1016/j.carbpol.2020.117468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/21/2023]
Abstract
Layer-by-Layer (LbL) assembled nanocoatings are exploited to impart flame-retardant properties to cellulosic substrates. A model cellulose material can make it possible to investigate an optimal bilayer (BL) range for the deposition of coating while elucidating the main flame-retardant action thus allowing for an efficient design of optimized LbL formulations. Model cellulose gel beads were prepared by dissolving cellulose-rich fibers followed by precipitation. The beads were LbL-treated with chitosan (CH) and sodium hexametaphosphate (SHMP). The char forming properties were studied using thermal gravimetric analysis. The coating increased the char yield in nitrogen to up to 29 % and showed a distinct pattern of micro intumescent behavior upon heating. An optimal range of 10-20 BL is observed. The well-defined model cellulose gel beads hence introduce a new scientific route both to clarify the fundamental effects of different film components and to optimize the composition of the films.
Collapse
Affiliation(s)
- Oruç Köklükaya
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
| | - Rose-Marie Pernilla Karlsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Site Viale Teresa Michel 5, 15121, Alessandria, Italy
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
11
|
Fang Y, Sun W, Li J, Liu H, Liu X. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int J Biol Macromol 2021; 175:140-146. [PMID: 33556399 DOI: 10.1016/j.ijbiomac.2021.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Polyester/cotton blend fabrics are widely used in clothing and household textiles which combine the comfort of cotton and excellent mechanical strength of polyester. However, their high flammability due to the special "wick effect" resulting from the different thermal decomposition process of cotton and polyester causes greatly potential fire hazards. In this study, fully bio-based intumescent flame retardant (IFR) coating of chitosan/phytic acid (CS/PA) was layer-by-layer (LBL) assembly constructed on polyester/cotton blend fabrics. The LOI value of polyester/cotton blend fabric which was LBL assembly coated by 20 bilayers CS/PA reached 29.2%. And the dripping of coated fabric was eliminated. The results of cone calorimetry test confirmed CS/PA coating greatly improved the flame retardancy of polyester/cotton blend fabrics. Thermogravimetric analysis (TGA) results showed CS/PA coating changed the thermal decomposition process to promote the char formation of polyester/cotton blend fabrics. CS/PA coating on fabric could form the IFR system which acts through both condensed phase action by the catalysis dehydration reaction to forming stable char and gas phase action by the blowing effect. This research provides a new strategy to eco-friendly flame retardant and dripping-resistant for polyester/cotton blend fabrics by bio-based IFR system through facile LBL assembly method.
Collapse
Affiliation(s)
- Yinchun Fang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; Technology Public Service Platform for Textile Industry of Anhui Province, Wuhu 241000, China.
| | - Weihao Sun
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Junwei Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hailong Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Xinhua Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; Technology Public Service Platform for Textile Industry of Anhui Province, Wuhu 241000, China
| |
Collapse
|
12
|
Ur Rehman Z, Niaz AK, Song JI, Heun Koo B. Excellent Fire Retardant Properties of CNF/VMT Based LBL Coatings Deposited on Polypropylene and Wood-Ply. Polymers (Basel) 2021; 13:303. [PMID: 33477966 PMCID: PMC7844820 DOI: 10.3390/polym13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
In this report, layer by layer (LBL) fire retardant coatings were produced on wood ply and Polypropylene Homopolymer/Flax fiber composites. FE-SEM and EDAX analysis was carried out to analyze the surface morphology, thickness, growth rate and elemental composition of the samples. Coatings with a high degree of uniformity were formed on Polypropylene composite (PP/flax), while coatings with highest thickness were obtained on wood ply (wood). FTIR and Raman spectroscopy were further used for the molecular identifications of the coatings, which confirmed the maximum deposition of the solution components on the wood substrate. A physiochemical analysis and model was proposed to explain the forces of adhesion between the substrate and solution molecules. Fire protection and thermal properties were studied using TGA and UL-94 tests. It was explored, that the degradation of the coated substrates was highly protected by the coatings as follows: wood > PP/flax > PP. From the UL-94 test, it was further discovered that more than 83% of the coated wood substrate was protected from burning, compared to the 0% of the uncoated substrate. The flammability resistance of the samples was ranked as wood > PP/flax > PP.
Collapse
Affiliation(s)
| | | | | | - Bon Heun Koo
- College of Mechatronic Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Korea; (Z.U.R.); (A.K.N.); (J.-I.S.)
| |
Collapse
|
13
|
Horrocks AR. The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications-A Review. Polymers (Basel) 2020; 12:polym12092160. [PMID: 32971820 PMCID: PMC7570172 DOI: 10.3390/polym12092160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.The possibility of replacing currently used BrFRs for textiles structures that mimic naturally occurring organobromine-containing species is discussed, noting that of the nearly 2000 such species identified in both marine and terrestrial environments, a significant number are functionalised polybrominated diphenyl ethers, which form part of a series of little understood biosynthetic biodegradation cycles.The continued use of antimony III oxide as synergist and possible replacement by alternatives, such as the commercially available zinc stannates and the recently identified zinc tungstate, are discussed. Both are effective as synergists and smoke suppressants, but unlike Sb203, they have efficiencies dependent on BrFR chemistry and polymer matrix or textile structure. Furthermore, their effectiveness in textile coatings has yet to be more fully assessed.In conclusion, it is proposed that the future of sustainable BrFRs should be based on naturally occurring polybrominated structures developed in conjunction with non-toxic, smoke-suppressing synergists such as the zinc stannates or zinc tungstate, which have been carefully tailored for given polymeric and textile substrates.
Collapse
Affiliation(s)
- A Richard Horrocks
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton, Greater Manchester BL3 6HQ, UK
| |
Collapse
|
14
|
Guerrero-Alburquerque N, Zhao S, Adilien N, Koebel MM, Lattuada M, Malfait WJ. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22037-22049. [PMID: 32302092 DOI: 10.1021/acsami.0c03047] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biopolymer aerogels are an emerging class of materials with potential applications in drug delivery, thermal insulation, separation, and filtration. Chitosan is of particular interest as a sustainable, biocompatible, and abundant raw material. Here, we present urea-modified chitosan aerogels with a high surface area and excellent thermal and mechanical properties. The irreversible gelation of an acidic chitosan solution is triggered by the thermal decomposition of urea at 80 °C through an increase in pH and, more importantly, the formation of abundant ureido terminal groups. The hydrogels are dried using either supercritical CO2 drying (SCD) or ambient pressure drying (APD) methods to elucidate the influence of the drying process on the final aerogel properties. The hydrogels are exchanged into ethanol prior to SCD, and into ethanol and then heptane prior to APD. The surface chemistry and microstructure are monitored by solid-state NMR and Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen sorption. Surprisingly, large monolithic aerogel plates (70 × 70 mm2) can be produced by APD, albeit at a somewhat higher density (0.17-0.42 g/cm3). The as prepared aerogels have thermal conductivities of ∼24 and ∼31 mW/(m·K) and surface areas of 160-170 and 85-230 m2/g, for SCD and APD, respectively. For a primarily biopolymer-based material, these aerogels are exceptionally stable at elevated temperature (TGA) and char and self-extinguish after direct flame exposure. The urea-modified chitosan aerogels display superior mechanical properties compared to traditional silica aerogels, with no brittle rupture up to at least 80% strain, and depending on the chitosan concentration, relatively high E-moduli (1.0-11.6 MPa), and stress at 80% strain values (σ80 of 3.5-17.9 MPa). Remarkably, the aerogel monoliths can be shaped and machined with standard tools, for example, drilling and sawing. This first demonstration to produce monolithic and machinable, mesoporous aerogels from bio-sourced, renewable, and nontoxic precursors, combined with the potential for reduced production cost by means of simple APD, opens up new opportunities for biopolymer aerogel applications and marks an important step toward commercialization of biopolymer aerogels.
Collapse
Affiliation(s)
- Natalia Guerrero-Alburquerque
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Nour Adilien
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Matthias M Koebel
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
15
|
Li P, Wang B, Liu YY, Xu YJ, Jiang ZM, Dong CH, Zhang L, Liu Y, Zhu P. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr Polym 2020; 237:116173. [PMID: 32241447 DOI: 10.1016/j.carbpol.2020.116173] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
In this study, a fully bio-based coating was constructed by layer-by-layer deposition of chitosan (CS) and ammonium phytate (AP), to obtain fire-safety and antibacterial cotton fabrics. With about 8% weight gains of CS/AP coatings, the treated cotton fabrics self-extinguished in the vertical burning test. The data obtained from cone calorimetry showed CS/AP/cotton had much lower smoke and heat production, which indicated the fire safety of the fabrics was significantly improved for the presence of CS/AP coatings. The flame-retardant mechanism of this system was finally proposed according to the analysis of gaseous products and char residues. What is more, CS/AP coatings had higher antibacterial activity in Gram-negative bacteria and did improve the tensile strength of cotton fabrics compared with AP coating. With its ease of operation and use of non-toxic chemicals, this fully bio-based coating can further offer a feasible flame-retardant and antibacterial solution of the inflammable natural fabrics.
Collapse
Affiliation(s)
- Ping Li
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Bin Wang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Yan-Yan Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Ying-Jun Xu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Zhi-Ming Jiang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Chao-Hong Dong
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Lin Zhang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Yun Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| |
Collapse
|
16
|
Jordanov I, Stevens DL, Tarbuk A, Magovac E, Bischof S, Grunlan JC. Enzymatic Modification of Polyamide for Improving the Conductivity of Water-Based Multilayer Nanocoatings. ACS OMEGA 2019; 4:12028-12035. [PMID: 31460315 PMCID: PMC6682087 DOI: 10.1021/acsomega.9b01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Enzymatic modification, using a protease from Bacillus licheniformis (Subtilisin A), was carried out on polyamide 6.6 (PA6.6) fabric to make it more amenable to water-based nanocoatings used to impart electrical conductivity. The modified PA6.6 fibers exhibit a smoother surface, increased hydrophilicity due to more carboxyl and amino groups, and larger ζ-potential relative to unmodified polyamide. With its improved hydrophilicity and surface functionality, the modified textile is better able to accept a water-based nanocoating, composed of multiwalled carbon nanotubes (MWCNT) stabilized by sodium deoxycholate (DOC) and poly(diallyldimethylammonium chloride) (PDDA), deposited via layer-by-layer assembly. Relative to unmodified fabric, the enzymatically modified fibers exhibit lower sheet resistance as a function of PDDA/MWCNT-DOC bilayers deposited. This relatively green technique could be used to impart a variety of useful functionalities to otherwise difficult-to-treat synthetic fibers like polyamide.
Collapse
Affiliation(s)
- Igor Jordanov
- Department
of Textile Engineering, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Ruger Boskovic 16, 1000 Skopje, Republic
of North Macedonia
| | - Daniel L. Stevens
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Anita Tarbuk
- Department
of Textile Chemistry and Ecology, Faculty of Textile Technology, University of Zagreb, Prilaza baruna Filipovica 28a, Zagreb 10000, Croatia
| | - Eva Magovac
- Department
of Textile Chemistry and Ecology, Faculty of Textile Technology, University of Zagreb, Prilaza baruna Filipovica 28a, Zagreb 10000, Croatia
| | - Sandra Bischof
- Department
of Textile Chemistry and Ecology, Faculty of Textile Technology, University of Zagreb, Prilaza baruna Filipovica 28a, Zagreb 10000, Croatia
| | - Jaime C. Grunlan
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, 3003
TAMU, College Station, Texas 77843, United States
- Department
of Mechanical Engineering, Texas A&M
University, 3123 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
18
|
Zhang X, Shi M. Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:9-15. [PMID: 30399488 DOI: 10.1016/j.jhazmat.2018.10.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Superior flame retardant textiles are urgently needed to address high fire and heat risks. This study provides a simple and effective strategy to improve the flame retardancy of textiles through a synergistic effect between the blended fibers, and a system with synergistic in flame retardant vinylon (FRV)/poly(m-phenylene isophthalamide) (PMIA) blended fibers is discovered. The FRV/PMIA 50/50 exhibits a much higher time to ignition and a lower peak heat release rate than those of the neat components, indicating a synergistic flame retardancy between constituents. The corresponding mechanism is explored. The residual char layer formed by blended fibers connects together and keeps the original fiber shape, which acts as a barrier slowing heat transmission and gas diffusion. Concurrently, thermal degradation analysis of blended fibers implies that both components mutually interact with each other, resulting in a higher experimental amount of incombustible gases at an early degradation stage and lower experimental amount of combustible gases at a later degradation stage as compared to the theoretical one. Therefore, the synergistic flame retardancy in FRV/PMIA blended fibers is attributed to the actions in the condensed and gas phases during pyrolysis. This work provides an effective strategy to design fireproof textiles.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, PR China; Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Meiwu Shi
- The Military Engineering Technology Institute of System Engineering Research Institute for Academy of Military Sciences, Beijing 100082, PR China.
| |
Collapse
|
19
|
Carosio F, Ghanadpour M, Alongi J, Wågberg L. Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr Polym 2018; 202:479-487. [DOI: 10.1016/j.carbpol.2018.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
|
20
|
Fire-retardant multilayer assembled on polyester fabric from water-soluble chitosan, sodium alginate and divalent metal ion. Int J Biol Macromol 2018; 119:1083-1089. [DOI: 10.1016/j.ijbiomac.2018.08.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022]
|
21
|
Ghanadpour M, Carosio F, Ruda MC, Wågberg L. Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32543-32555. [PMID: 30148604 DOI: 10.1021/acsami.8b10309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrathin nanocomposite films were prepared by combining cellulose nanofibrils (CNFs) prepared from phosphorylated pulp fibers (P-CNF) with montmorillonite (MMT), sepiolite (Sep) clay, or sodium hexametaphosphate (SHMP). The flame-retardant and heat-protective capability of the prepared films as casings for a polyethylene (PE) film was investigated. Heating the coated PE in air revealed that the polymer film was thoroughly preserved up to at least 300 °C. The P-CNF/MMT coatings were also able to completely prevent the ignition of the PE film during cone calorimetry, but neither the P-CNF/Sep nor the P-CNF/SHMP coating could entirely prevent PE ignition. This was explained by the results from combined thermogravimetry Fourier transform infrared spectroscopy, which showed that the P-CNF/MMT film was able to delay the release of PE decomposition volatiles and shift its thermal degradation to a higher temperature. The superior flame-retardant performance of the P-CNF/MMT films is mainly attributed to the unique compositional and structural features of the film, where P-CNF is responsible for increasing the char formation, whereas the MMT platelets create excellent barrier and thermal shielding properties by forming inorganic lamellae within the P-CNF matrix. These films showed a tensile strength of 304 MPa and a Young's modulus of 15 GPa with 10 wt % clay so that this composite film was mechanically stronger than the previously prepared CNF/clay nanopapers containing the same amount of clay.
Collapse
Affiliation(s)
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia , Politecnico di Torino, Sede di Alessandria , Viale Teresa Michel 5 , 15121 Alessandria , Italy
| | - Marcus C Ruda
- Cellutech AB , Greenhouse Laboratories , Teknikringen 38A , 114 28 Stockholm , Sweden
| | | |
Collapse
|
22
|
Environmentally Sustainable Flame Retardant Surface Treatments for Textiles: The Potential of a Novel Atmospheric Plasma/UV Laser Technology. FIBERS 2018. [DOI: 10.3390/fib6020031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Liu L, Pan Y, Wang Z, Hou Y, Gui Z, Hu Y. Layer-by-Layer Assembly of Hypophosphorous Acid-Modified Chitosan Based Coating for Flame-Retardant Polyester–Cotton Blends. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02303] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Longxiang Liu
- State
Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ying Pan
- State
Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhou Wang
- College
of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yanbei Hou
- State
Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhou Gui
- State
Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuan Hu
- State
Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
24
|
Silva-Santos MC, Oliveira MS, Giacomin AM, Laktim MC, Baruque-Ramos J. Flammability on textile of business uniforms: use of natural fibers. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.proeng.2017.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Recent Advances in the Design of Water Based-Flame Retardant Coatings for Polyester and Polyester-Cotton Blends. Polymers (Basel) 2016; 8:polym8100357. [PMID: 30974632 PMCID: PMC6431996 DOI: 10.3390/polym8100357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/19/2016] [Accepted: 10/01/2016] [Indexed: 11/17/2022] Open
Abstract
Over the last ten years a new trend of research activities regarding the flame retardancy of polymeric materials has arisen. Indeed, the continuous search for new flame retardant systems able to replace the traditional approaches has encouraged alternative solutions, mainly centred on nanotechnology. In this context, the deposition of nanostructured coatings on fabrics appears to be the most appealing and performance suitable approach. To this aim, different strategies can be exploited: from the deposition of a single monolayer consisting of inorganic nanoparticles (single-step adsorption) to the building-up of more complex architectures derived from layer by layer assembly (multi-step adsorption). The present paper aims to review the application of such systems in the field of polyester and polyester-cotton blend fabrics. The results collated by the authors are discussed and compared with those published in the literature on the basis of the different deposition methods adopted. A critical analysis of the advantages and disadvantages exhibited by these approaches is also presented.
Collapse
|
26
|
Yang JC, Liao W, Deng SB, Cao ZJ, Wang YZ. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr Polym 2016; 151:434-440. [DOI: 10.1016/j.carbpol.2016.05.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
27
|
Surface-Engineered Fire Protective Coatings for Fabrics through Sol-Gel and Layer-by-Layer Methods: An Overview. COATINGS 2016. [DOI: 10.3390/coatings6030033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan. Carbohydr Polym 2016; 140:228-32. [DOI: 10.1016/j.carbpol.2015.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 11/23/2022]
|
29
|
Carosio F, Alongi J. Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing. RSC Adv 2015. [DOI: 10.1039/c5ra11856e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the last five years, Layer by Layer (LbL) assembly has proven to be one of the most innovative solutions for conferring flame retardancy to fabrics.
Collapse
Affiliation(s)
- Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia
- Politecnico di Torino
- Alessandria Campus
- 15121 Alessandria
- Italy
| | - Jenny Alongi
- Dipartimento di Scienza Applicata e Tecnologia
- Politecnico di Torino
- Alessandria Campus
- 15121 Alessandria
- Italy
| |
Collapse
|