1
|
Li T, OuYang K, Qiu Q, Zhao X, Liu C. A lysing polysaccharide monooxygenase from Aspergillus niger effectively facilitated rumen microbial fermentation of rice straw. Anim Biosci 2024; 37:1738-1750. [PMID: 38754847 PMCID: PMC11366511 DOI: 10.5713/ab.24.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE This study investigated the impact of Aspergillus niger lysing polysaccharide monooxygenase (AnLPMO) on in vitro rumen microbial fermentation of rice straw. METHODS AnLPMO was heterologously expressed in Escherichia coli. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyzed the surface structure of rice straw after AnLPMO treatment. Two in vitro experiments, coupled with 16S highthroughput sequencing and quantitative real-time polymerase chain reaction techniques, assessed the influence of AnLPMO on rumen microbial fermentation of rice straw. RESULTS AnLPMO exhibited peak activity at 40°C and pH 6.5, with a preference for rice straw xylan hydrolysis, followed by Avicel. AnLPMO application led to the fractional removal of cellulose and hemicelluloses and a notable reduction in the levels of carbon elements and C-C groups present on the surface of rice straw. Compared to the control (no AnLPMO), supplementing AnLPMO at 1.1 to 2.0 U significantly enhanced in vitro digestibility of dry matter (IVDMD, p<0.01), total gas production (p<0.01), and concentrations of total volatile fatty acids (VFA, p<0.01), acetate (p<0.01), and ammonia-N (p<0.01). Particularly, the 1.4 U AnLPMO group showed a 14.8% increase in IVDMD. In the second experiment, compared to deactivated AnLPMO (1.4 U), supplementing bioactive AnLPMO at 1.4 U increased IVDMD (p = 0.01), total gas production (p = 0.04), and concentrations of total VFA (p<0.01), propionate (p<0.01), and ammonia-N (p<0.01), with a limited 9.6% increase in IVDMD. Supplementing AnLPMO stimulated the growth of ruminal bacterial taxa facilitating fiber degradation, including Proteobacteria, Spirochaetes, Succinivibrio, Rikenellaceae_RC9_ Gut_Group, Prevotelaceae_UCG-003, Desulfovibrio, Fibrobacter succinogenes, Ruminococcus albus, R. flavefaciens, Prevotella bryantii, P. ruminicola, and Treponema bryantii. CONCLUSION These findings highlight AnLPMO's potential as a feed additive for improving rice straw utilization in ruminant production.
Collapse
Affiliation(s)
- Ting Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang Jiangxi 330045,
China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang Jiangxi 330045,
China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang Jiangxi 330045,
China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang Jiangxi 330045,
China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang Jiangxi 330045,
China
| |
Collapse
|
2
|
Jin X, Liu P, Li H, Yu H, Ouyang J, Zheng Z. Sustainable wheat straw pretreatment process by self-produced and cyclical crude lactic acid. BIORESOURCE TECHNOLOGY 2024; 402:130788. [PMID: 38703960 DOI: 10.1016/j.biortech.2024.130788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
The purpose of this study was to investigate an environmentally friendly and recyclable pretreatment approach that would enhance the enzymatic digestibility of wheat straw. Wheat straw was pretreated using self-produced crude lactic acid obtained from enzymatic hydrolysate fermentation by Bacillus coagulans. Experimentally, crude lactic acid at low concentration could achieve a pretreatment effect comparable to that of commercial lactic acid. After pretreatment at 180 °C for 60 min with 2.0 % crude lactic acid, hemicellulose could be effectively separated and high recovery of cellulose was ensured, achieving cellulose recovery rate of 95.5 % and hemicellulose removal rate of 92.7 %. Excellent enzymatic hydrolysis was accomplished with a glucose yield of 99.7 %. Moreover, the crude lactic acid demonstrated acceptable pretreatment and enzymatic hydrolysis performance even after three repeated cycles. This not only effectively utilizes the pretreatment solution, but also offers insights into biomass pretreatment using other fermentable acids.
Collapse
Affiliation(s)
- Xiaohu Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongxiao Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hongxin Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Wang WY, Guo BX, Wang R, Liu HM, Qin Z. Revealing the structural changes of lignin in Chinese quince (Chaenomeles sinensis) fruit as it matures. Int J Biol Macromol 2024; 264:130718. [PMID: 38460651 DOI: 10.1016/j.ijbiomac.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was β-O-4', followed by β-β' and β-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the β-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.
Collapse
Affiliation(s)
- Wen-Yue Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bing-Xin Guo
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Rui Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Zhang H, Zhang W, Wang S, Zhu Z, Dong H. Microbial composition play the leading role in volatile fatty acid production in the fermentation of different scale of corn stover with rumen fluid. Front Bioeng Biotechnol 2024; 11:1275454. [PMID: 38239916 PMCID: PMC10794738 DOI: 10.3389/fbioe.2023.1275454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rumen fluid is a natural and green biocatalyst that can efficiently degrade biomass into volatile fatty acid (VFA) used to produce value-added materials. But the essence of high degradation efficiency in the rumen has not been fully analyzed. This study investigated the contribution of substrate structure and microbial composition to volatile fatty acid production in the fermentation of corn stover. The ball milled corn stover were innovatively applied to ferment with the rumen fluid collected at different digestion times. Exogeneous cellulase was also added to the ruminal fermentation to further reveal the inner mechanism. With prolonged digestion time, the microbial community relative abundance levels of Bacteroidetes and Firmicutes increased from 29.98% to 72.74% and decreased from 51.76% to 22.11%, respectively. The highest VFA production of the corn stover was achieved via treatment with the rumen fluid collected at 24 h which was up to 9508 mg/L. The ball milled corn stover achieved high VFA production because of the more accessible substrate structure. The application of exogenous cellulase has no significant influence to the ruminal fermentation. The microbial community abundance contributed more to the VFA production compared with the substrate structures.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqin Zhang
- China Huadian Engineering Co., Ltd., Beijing, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Cao X, Zuo S, Lin Y, Cai R, Yang F, Wang X, Xu C. Expansion Improved the Physical and Chemical Properties and In Vitro Rumen Digestibility of Buckwheat Straw. Animals (Basel) 2023; 14:29. [PMID: 38200760 PMCID: PMC10777991 DOI: 10.3390/ani14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The hard texture and poor palatability of straw are important factors that hinder its application in feed. Expansion is a technology that can improve the utilization of biomass, but few studies have comprehensively revealed how to change physicochemical characteristics to improve nutritional value. In this study, mechanical and chemical methods were combined to study the texture properties, rheological properties, and physicochemical structures of straw, and its utilization value was evaluated by in vitro rumen digestion. Expansion caused hemicellulose degradation, cellulose separation, and lignin redistribution, resulting in a decrease in crystallinity. The hardness and chewiness of expanded straw were reduced by 55% to 66%, significantly improving palatability. The compressive stress could be reduced by 54-73%, and the relaxation elasticity was reduced by 5% when expanded straw was compressed. The compression deformation of expanded straw was doubled compared to feedstock, and the compacting degree was improved. Expanded straw significantly improved digestibility and gas production efficiency, which was due to the pore structure increasing the attachment of rumen microorganisms; besides that, the reduction of the internal structural force of the straw reduced energy consumption during digestion. The lignin content decreased by 10%, the hardness decreased further in secondary expansion, but the digestibility did not improve significantly.
Collapse
Affiliation(s)
- Xiaohui Cao
- College of Engineering, China Agricultural University, Beijing 100083, China; (X.C.); (S.Z.)
| | - Sasa Zuo
- College of Engineering, China Agricultural University, Beijing 100083, China; (X.C.); (S.Z.)
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China; (Y.L.); (F.Y.)
| | - Rui Cai
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China; (Y.L.); (F.Y.)
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China; (Y.L.); (F.Y.)
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Beijing 100083, China; (X.C.); (S.Z.)
| |
Collapse
|
6
|
Puițel AC, Balan CD, Ailiesei GL, Drăgoi EN, Nechita MT. Integrated Hemicellulose Extraction and Papermaking Fiber Production from Agro-Waste Biomass. Polymers (Basel) 2023; 15:4597. [PMID: 38232013 PMCID: PMC10708159 DOI: 10.3390/polym15234597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The present study deals with the valorization of corn stalks in an integrated processing strategy targeting two products: extracted hemicelluloses (HC) and papermaking fibers. Preliminary trials were conducted to assess the individual or the combined effects of biomass treatment on the quality of the obtained hemicelluloses and papermaking fibers. Depending on the hot alkaline extraction (HAE) conditions, the extracted HC had a xylan content between 44-63%. The xylan removal yield ranged between 19-35%. The recovery of HC from the extraction liquor and final black liquor was significantly affected by process conditions. The experimental approach continued with the study of HAE conditions on the obtained paper's mechanical properties. The optimization approach considered conserving paper strength properties while achieving an equilibrium with the highest possible HC extraction yield. The optimal values are sodium hydroxide concentration (1%), process time (33 min), and temperature (100 °C). The xylan content in the separated HC sample was ~55%. An extended extraction of HC from the resulting pulp under hot alkaline conditions with 5% NaOH was performed to prove the HC influence on paper strength. The xylan content in HC samples was 65%. The consequence of xylan content reduction in pulp leads to 30-50% mechanical strength loss.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iasi, Romania; (A.C.P.); (C.D.B.); (E.N.D.)
| | - Cătălin Dumitrel Balan
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iasi, Romania; (A.C.P.); (C.D.B.); (E.N.D.)
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Elena Niculina Drăgoi
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iasi, Romania; (A.C.P.); (C.D.B.); (E.N.D.)
| | - Mircea Teodor Nechita
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University Iasi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iasi, Romania; (A.C.P.); (C.D.B.); (E.N.D.)
| |
Collapse
|
7
|
Fu W, Wu S, Wang C, Thangalazhy-Gopakumar S, Kothari U, Shi S, Han L. Enhanced Enzymatic Sugar Recovery of Dilute-Acid-Pretreated Corn Stover by Sodium Carbonate Deacetylation. Bioengineering (Basel) 2023; 10:1197. [PMID: 37892926 PMCID: PMC10604515 DOI: 10.3390/bioengineering10101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The prehydrolysate from dilute acid pretreatment of lignocellulosic feedstocks often contains inhibitory compounds that can seriously inhibit the subsequent enzymatic and fermentation processes. Acetic acid is one of the most representative toxic compounds. In this research, alkaline deacetylation of corn stover was carried out using sodium carbonate under mild conditions to selectively remove the acetyl groups of the biomass and reduce the toxicity of the prehydrolysate. The deacetylation process was optimized by adjusting factors such as temperature, treatment time, and sodium carbonate concentration. Sodium carbonate solutions (2~6 wt%) at 30~50 °C were used for the deacetylation step, followed by dilute acid pretreatment with 1.5% H2SO4 at 121 °C. Results showed that the acetyl content of the treated corn stover could be reduced up to 87%, while the hemicellulose loss remained low. The optimal deacetylation condition was found to be 40 °C, 6 h, and 4 wt% Na2CO3, resulting in a removal of 80.55% of the acetyl group in corn stover and a hemicellulose loss of 4.09%. The acetic acid concentration in the acid prehydrolysate decreased from 1.38 to 0.34 g/L. The enzymatic hydrolysis of solid corn stover and the whole slurry after pretreatment increased by 17% and 16%, respectively.
Collapse
Affiliation(s)
- Weng Fu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; (W.F.); (S.W.); (C.W.); (L.H.)
| | - Shengbo Wu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; (W.F.); (S.W.); (C.W.); (L.H.)
| | - Chun Wang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; (W.F.); (S.W.); (C.W.); (L.H.)
| | - Suchithra Thangalazhy-Gopakumar
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selanggor, Malaysia;
| | - Urvi Kothari
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Suan Shi
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; (W.F.); (S.W.); (C.W.); (L.H.)
| | - Lujia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; (W.F.); (S.W.); (C.W.); (L.H.)
| |
Collapse
|
8
|
Ariaeenejad S, Kavousi K, Zolfaghari B, Roy S, Koshiba T, Hosseini Salekdeh G. Efficient bioconversion of lignocellulosic waste by a novel computationally screened hyperthermostable enzyme from a specialized microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114587. [PMID: 36758508 DOI: 10.1016/j.ecoenv.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A large amount of lignocellulosic waste is generated every day in the world, and their accumulation in the agroecosystems, integration in soil compositions, or incineration for energy production has severe environmental pollution effects. Using enzymes as biocatalysts for the biodegradation of lignocellulosic materials, especially in harsh processing conditions, is a practical step towards green energy and environmental biosafety. Hence, the current study focuses on enzyme computationally screened from camel rumen metagenomics data as specialized microbiota that have the capacity to degrade lignocellulosic-rich and recalcitrant materials. The novel hyperthermostable xylanase named PersiXyn10 with the performance at extreme conditions was proper activity within a broad temperature (30-100 ℃) and pH range (4.0-11.0) but showed the maximum xylanolytic activity in severe alkaline and temperature conditions, pH 8.0 and temperature 90 ℃. Also, the enzyme had highly resistant to metals, surfactants, and organic solvents in optimal conditions. The introduced xylanase had unique properties in terms of thermal stability by maintaining over 82% of its activity after 15 days of incubation at 90 ℃. Considering the crucial role of hyperthermostable xylanases in the paper industry, the PersiXyn10 was subjected to biodegradation of paper pulp. The proper performance of hyperthermostable PersiXyn10 on the paper pulp was confirmed by structural analysis (SEM and FTIR) and produced 31.64 g/L of reducing sugar after 144 h hydrolysis. These results proved the applicability of the hyperthermostable xylanase in biobleaching and saccharification of lignocellulosic biomass for declining the environmental hazards.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Behrouz Zolfaghari
- CSE Department, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India; Department of Computer Engineering, Faculty of Engineering, Haliç University Eyüpsultan, Istanbul
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, USA
| | - Takeshi Koshiba
- Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda University, Japan
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, 2109 NSW, Australia
| |
Collapse
|
9
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
10
|
Structural characterizations of lignins extracted under same severity using different acids. Int J Biol Macromol 2022; 194:204-212. [PMID: 34863836 DOI: 10.1016/j.ijbiomac.2021.11.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As the vital renewable feedstock originated from carbon-neutral resources, due to prominent aromaticity lignin owns the potential to produce high value-added products. Multi-functional lignin valorization demands efficient lignin extraction at milder conditions to keep its structure intact to substitute petroleum-based reactants. Lignin extraction severity (LES) is considered as the primary factor affecting the structure of extracted lignin and ultimately determines its applications. Except for the LES, the selection of suitable reagents for lignin extraction concerned with specific applications is crucially important. To explore the influence of different reagents, this study focused on lignin extraction employing the commonly used strong acids at the same LES. Four lignin preparations were extracted using 80% aqueous dioxane with the addition of H2O (L1), HCl, H2SO4 and HNO3 (pH = 1.30 ± 0.01 L2, L3 and L4, respectively). Analytical high-sensitive NMR (31P and 2D-HSQC) together with other characterizations (FTIR and GPC) were successfully employed and quantified while unveiling the structural heterogeneity among extracted lignin preparations. At the same LES, different reagents yielded lignin with varying structural characteristics and were potentially suitable for different applications.
Collapse
|
11
|
Yan X, Li D, Ma X, Li J. Bioconversion of renewable lignocellulosic biomass into multicomponent substrate via pressurized hot water pretreatment for bioplastic polyhydroxyalkanoate accumulation. BIORESOURCE TECHNOLOGY 2021; 339:125667. [PMID: 34332180 DOI: 10.1016/j.biortech.2021.125667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The pretreatment of lignocellulosic biomass (LB) has become an important process to reduce the cost of polyhydroxyalkanoate (PHA) production. In this study, an economical and effective pressurized hot water pretreatment was used to investigate on bioconversion of four typical LB (rubber wood, sugarcane bagasse, sorghum stalk, cassava stalk) into reducing sugar, then as feedstock to accumulate PHA by mixed microbial cultures. The results showed that pretreatment changed the surface morphology of LB and further improved saccharification efficiency. The maximum reducing sugar yield of 620.7 mg·g-1 (438.7 mg·g-1 glucose and 178.0 mg·g-1 xylose) was obtained by rubber wood. The conversion of cellulose and hemicellulose reached 83.10% and 78.22%. Moreover, PHA content reached the maximum of 773.2 mg COD·L-1 in the operation cycle of 24 h. The results demonstrated that hot water pretreatment was an effective physical process to improve the saccharification efficiency of LB for reducing the cost of PHA.
Collapse
Affiliation(s)
- Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China; Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China; Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| |
Collapse
|
12
|
Liu L, Sim SF, Lin S, Wan J, Zhang W, Li Q, Peng C. Integrated structural and chemical analyses for HCl-supported hydrochar and their adsorption mechanisms for aqueous sulfachloropyridazine removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126009. [PMID: 34229376 DOI: 10.1016/j.jhazmat.2021.126009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, various HCl-supported hydrochar made from root powder of long-root Eichhornia crassipes were applied to adsorb aqueous sulfachloropyridazine (SCP). Adsorption capacity (qe μg g-1) was positively correlated with combined severity-CS. With CS increasing, carbonization degree, hydrophobicity, porosity and isoelectric point of hydrochar increased, but content of polar functional groups decreased. Hydrophobic interaction was important for SCP adsorption. A 24 × 36 peak area table was generated from 24 FT-IR absorbance spectra computed by peak detection algorithm. Afterwards, correlation analysis between qe μg g-1 and FT-IR peak area were conducted, indicating that wavenumbers at 555.4, 1227.47, 1374.51, 1604.5, 2901.4/2919.2 and 3514.63 cm-1 were helpful for SCP adsorption. Further, multivariate linear regression analyses showed that aromatic skeleton and phenolic hydroxyl were the two biggest contributors. Electrostatic attraction did not exist during the SCP adsorption process. Under strong acid condition, protonated amino groups in cationic SCP acting as a hydrogen donator interacted with electron-rich functional groups onto hydrochar by Hydrogen interaction. Under weak acid condition, neutral SCP served as an π electron donor to bond with hydrochar by π-π electron donator-acceptor interaction. This work could guide the functional groups modification strategy of hydrochar to make better use of it in water purification field.
Collapse
Affiliation(s)
- Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siong Fong Sim
- University Malaysia Sarawak, Faculty of Resource Science and Technology, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Liu T, Ding K, Zhou X, Pan ZH, Zhao G, Yao Y. Steam explosion pretreatment of soy sauce residue for improving the soybean paste flavor. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Chai CY, Tan IS, Foo HCY, Lam MK, Tong KTX, Lee KT. Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. BIORESOURCE TECHNOLOGY 2021; 330:124930. [PMID: 33735730 DOI: 10.1016/j.biortech.2021.124930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Managing plastic waste remains an urgent environmental concern and switching to biodegradable plastics can reduce the dependence on depleting fossil fuels. This study emphasises the efficacy of macroalgae wastes, Eucheuma denticulatum residues (EDRs), as potential alternate feedstock to produce l-lactic acid (l-LA), the monomer of polylactic acid, through fermentation. An innovative environmental friendly strategy was explored in this study to develop a glucose platform from EDRs: pretreatment with microwave-assisted autohydrolysis (MAA) applied to enhance enzymatic hydrolysis of EDRs. The results indicate that MAA pretreatment significantly increased the digestibility of EDRs during the enzymatic hydrolysis process. The optimum pretreatment conditions were 120 °C and 50 min, resulting in 96.5% of enzymatic digestibility after 48 h. The high l-LA yield of 98.6% was obtained using pretreated EDRs and supplemented with yeast extract. The energy analysis implies that MAA pretreatment could further improve the overall energy efficiency of the process.
Collapse
Affiliation(s)
- Choi Yan Chai
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Kevin Tian Xiang Tong
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
15
|
Cui X, Sun H, Wen X, Sobhi M, Guo J, Dong R. Urea-assisted ensiling process of wilted maize stover for profitable biomethane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143751. [PMID: 33250259 DOI: 10.1016/j.scitotenv.2020.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Low contents of water-soluble carbohydrates and/or low indigenous microbial activity in wilted maize stover (WMS) usually hinder the establishment of the ensiling process, thereby resulting in a low biogas production because of high loss of dry matter (DM). To enhance the biological activity and substrate biodegradability, this study applied the synergistic regulation of sucrose (carbon source) and increasing levels of urea (nitrogen source) during the ensiling process of WMS. Compared with the application of only sucrose, a higher organic acid content (lactic acid (85 g/kg-DM) and acetic acid (14 g/kg-DM)) and higher degradation ratios for lignocellulose (hemicellulose (28%), cellulose (22%), and lignin (17%)) were observed with urea applications of 1.7% (DM) and 3.9% (DM), respectively. This was caused by the enhanced activities of the hetero-fermenter (Weissella) and cellulolytic bacteria (Cellulosimicrobium). A simultaneous addition of urea and sucrose during the ensiling of WMS increased the specific methane yield by 11.2%-21.1% in comparison to raw WMS. Moreover, an economic cost estimation revealed that this approach could be an effective storage strategy for the efficient production of methane when employing a 1.7% (DM) urea application.
Collapse
Affiliation(s)
- Xian Cui
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Xiaoyu Wen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
16
|
Feng C, Du J, Wei S, Qin C, Liang C, Yao S. Effect of p-TsOH pretreatment on separation of bagasse components and preparation of nanocellulose filaments. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200967. [PMID: 33047055 PMCID: PMC7540794 DOI: 10.1098/rsos.200967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The efficient separation of bagasse components was achieved by p-toluenesulfonic acid (p-TsOH) pretreatment. The effects of p-TsOH dosage, reaction temperature and reaction time on cellulose, hemicellulose and lignin contents were studied. Eighty-five per cent of lignin was dissolved, whereas the cellulose loss was minimal (less than 8.1%). Cellulose-rich water-insoluble residual solids were obtained. The degree of polymerization of cellulose decreased slightly, but the crystallinity index (CrI) increased from 52.0% to 68.1%. It indicated that the highly efficient delignification of bagasse was achieved by p-TsOH pretreatment. The nanocellulose filaments (CNFs) were produced by the treated samples. The physico-chemical properties of CNFs were characterized by transmission electron microscopy and thermogravimetric analysis. The results show that the CNFs have smaller average size and higher thermal stability. It provides a new method for CNFs.
Collapse
Affiliation(s)
- Chengqi Feng
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| | - Juan Du
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| | - Shuai Wei
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| | - Chengrong Qin
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| | - Chen Liang
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| | - Shuangquan Yao
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, People's Republic of China
| |
Collapse
|
17
|
Zhang W, Pan K, Liu C, Qu M, OuYang K, Song X, Zhao X. Recombinant Lentinula edodes xylanase improved the hydrolysis and in vitro ruminal fermentation of soybean straw by changing its fiber structure. Int J Biol Macromol 2020; 151:286-292. [PMID: 32084470 DOI: 10.1016/j.ijbiomac.2020.02.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
Soybean straw cannot be efficiently degraded and utilized by ruminants due to the complex cross-linked structure among cellulose, hemicellulose, and lignin in its cell wall. Xylanase can degrade the xylan component of hemicellulose, destroy the xylan-lignin matrix and, consequently, would theoretically improve the hydrolysis effectiveness of cellulose. Therefore, this study was performed to investigate the effects of recombinant Lentinula edodes xylanase (rLeXyn11A) on fiber structure, hydrolysis, and in vitro ruminal fermentation of soybean straw. Treatment with rLeXyn11A enhanced the hydrolysis of soybean straw with an evident increase in productions of ribose, rhamnose, and xylose. Soybean straw treated by rLeXyn11A had lower hemicellulose content and greater cellulose and lignin contents. The rLeXyn11A could remove xylan, loosen unordered fibrous networks, enhance substrate porosity, and rearrange lignin, consequently increasing the exposure of cellulose and improving the cellulase hydrolysis of soybean straw. Supplemental rLeXyn11A stimulated the dry matter digestion, volatile fatty acids production, and microbial protein synthesis during in vitro ruminal incubation. This paper demonstrated that rLeXyn11A could strengthen the cellulase hydrolysis and in vitro ruminal fermentation of soybean straw by degrading xylan and changing fiber structure, showing its potential for improving the utilization of soybean straw in ruminants.
Collapse
Affiliation(s)
- Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
18
|
Wang H, Liu Z, Zheng X, Pan X, Hui L, Li J, Zhang H. Assessment on temperature-pressure severally controlled explosion pretreatment of poplar. Carbohydr Polym 2020; 230:115622. [PMID: 31887866 DOI: 10.1016/j.carbpol.2019.115622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
Abstract
In this work, temperature-pressure severally controlled explosion pretreatment (TPE) was proposed to pretreat poplar chips to improve the cellulase hydrolysis yield. In TPE process, native poplar chips (NP) were mixed with steam and N2 under pressure of 2.6, 2.8 and 3.0 MPa at 209 °C for 7 min. Meanwhile, steam explosion (SE) was also used to pretreat poplar chips for comparison at 209 °C (1.9 MPa) for 7 min. Results showed that the contents of hemicellulose and lignin were decreased from 19.4 % to 4.6 % and from 27.8 %-19.5 % with increasing pressure, respectively. For cellulase hydrolysis process, TPE was more advantageous than SE due to lower contents of hemicellulose and lignin, resulting in a higher cellulose conversion (40.7 %) in relation to SE sample (34.9 %). The Langmuir isothermal- type equation expressed the factors related to the hydrolysis capacity, and the results showed that this model can well describe the kinetics of the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Huimei Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xu Zheng
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingzhi Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Comparative Evaluation of Organic Acid Pretreatment of Eucalyptus for Kraft Dissolving Pulp Production. MATERIALS 2020; 13:ma13020361. [PMID: 31940949 PMCID: PMC7014399 DOI: 10.3390/ma13020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Pretreatment is an essential process for the extensive utilization of lignocellulose materials. The effect of four common organic acid pretreatments for Kraft dissolving pulp production was comparatively investigated. It was found that under acidic conditions, hemicellulose can be effectively removed and more reducing sugars can be recovered. During acetic acid pretreatment, lignin that was dissolved in acetic acid could form a lignin-related film which would alleviate cellulose hydrolysis, while other organic acids caused severe cellulose degradation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD) were used to characterize the pretreated chips in the process. Lignin droplets were attached to the surface of the treated wood chips according to the SEM results. The FTIR spectrum showed that the lignin peak signal becomes stronger, and the hemicellulose peak signal becomes weaker with acid pretreatment. The XRD spectrum demonstrated that the crystallinity index of the wood chips increased. The acetic acid pretreatment process-assisted Kraft process achieved higher yield (31.66%) and higher α-cellulose (98.28%) than any other organic acid pretreatment. Furthermore, extensive utilization of biomass was evaluated with the acetic acid pretreatment-assisted Kraft process. 43.8% polysaccharide (12.14% reducing sugar and 31.66% dissolving pulp) and 22.24% lignin (0.29% acetic acid lignin and 21.95% sulfate lignin) were recovered during the process. Biomass utilization could reach 66.04%. Acetic acid pretreatment is a promising process for extensive biomass utilization.
Collapse
|
20
|
Li J, Zhang H, Lu M, Han L. Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments. BIORESOURCE TECHNOLOGY 2019; 293:122016. [PMID: 31473375 DOI: 10.1016/j.biortech.2019.122016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Pretreatment is a key step in the energy utilization of lignocellulosic biomass. Different types of pretreatments (ultrafine grinding pretreatment, alkaline hydroxide peroxide pretreatment, dilute acid pretreatment, and ammonia fiber expansion pretreatment) were conducted on corn stover. The lignocellulosic composition, microstructural parameters, and glucose yield of differently pretreated corn stover were characterized and compared. Then qualitative and quantitative correlation analyses of the parameters were carried out to explore the correlations among the composition, microstructure properties, and enzymatic hydrolysis efficacy of corn stover after different types of pretreatments and identify the main properties affecting enzymatic hydrolysis. Qualitative correlation analysis found that cellulose content, specific surface area, pore volume, enzyme-accessible pore volume, and surface area of cellulose had significant positive correlations with glucose yield. The results of quantitative correlation analysis were GY = 15.01 × cellulose content-339.05, GY = 13.06 × SSA + 172.35, GY = 7226.27 × PV + 129.14, GY = 8628.61 × EAPV + 125.61, and GY = 1.18 × SAC-287.21.
Collapse
Affiliation(s)
- Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
21
|
Zoghlami A, Refahi Y, Terryn C, Paës G. Multimodal characterization of acid-pretreated poplar reveals spectral and structural parameters strongly correlate with saccharification. BIORESOURCE TECHNOLOGY 2019; 293:122015. [PMID: 31454737 DOI: 10.1016/j.biortech.2019.122015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Lignocellulose biomass can be transformed into sustainable chemicals, materials and energy but its natural recalcitrance requires the use of pretreatment to enhance subsequent catalytic steps. Dilute acid pretreatment is one of the most common and efficient ones, however its impact has not yet been investigated simultaneously at nano- and cellular-scales. Poplar samples have been pretreated by dilute acid at different controlled severities, then characterized by combined structural and spectral techniques (scanning electron microscopy, confocal microscopy, autofluorescence, fluorescence lifetime, Raman). Results show that pretreatment favours lignin depolymerization until severity of 2.4-2.5 while at severity of 2.7 lignin seems to repolymerize as revealed by broadening of autofluorescence spectrum and strong decrease in fluorescence lifetime. Importantly, both nano-scale and cellular-scale markers can predict hydrolysis yield of pretreated samples, highlighting some connections in the multiscale recalcitrance of lignocellulose.
Collapse
Affiliation(s)
- Aya Zoghlami
- FARE Laboratory, INRA, Université de Reims Champagne Ardenne, Reims, France
| | - Yassin Refahi
- FARE Laboratory, INRA, Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne Ardenne, Reims, France.
| |
Collapse
|
22
|
Kashcheyeva EI, Gismatulina YA, Budaeva VV. Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis. Polymers (Basel) 2019; 11:polym11101645. [PMID: 31658767 PMCID: PMC6835985 DOI: 10.3390/polym11101645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Pretreatment of biomass is a key step in the production of valuable products, including high-tech bacterial cellulose. The efficiency of five different pretreatment methods of Miscanthus and oat hulls for enzymatic hydrolysis and subsequent synthesis of bacterial cellulose (BC) was evaluated herein: Hydrothermobaric treatment, single-stage treatments with dilute HNO3 or dilute NaOH solution, and two-stage combined treatment with dilute HNO3 and NaOH solutions in direct and reverse order. The performance of enzymatic hydrolysis of pretreatment products was found to increase by a factor of 4−7. All the resultant hydrolyzates were composed chiefly of glucose, as the xylose percentage in total reducing sugars (RS) was 1−9%. The test synthesis of BC demonstrated good quality of nutrient media prepared from all the enzymatic hydrolyzates, except the hydrothermobaric treatment hydrolyzate. For biosynthesis of BC, single-stage pretreatments with either dilute HNO3 or dilute NaOH are advised due their simplicity and the high performance of enzymatic hydrolysis of pretreatment products (RS yield 79.7−83.4%).
Collapse
Affiliation(s)
- Ekaterina I Kashcheyeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia.
| | - Yulia A Gismatulina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia.
| | - Vera V Budaeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia.
| |
Collapse
|
23
|
Zhang H, Fan Z, Li J, Han L. A comparative study on enzyme adsorption and hydrolytic performance of different scale corn stover by two-step kinetics. BIORESOURCE TECHNOLOGY 2019; 282:384-389. [PMID: 30884458 DOI: 10.1016/j.biortech.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
To investigate the effect of two-step kinetics on enzyme adsorption and hydrolytic properties of different structural substrates at low enzyme doses. The two-step kinetic experiments of ultrafine grinding (UGCS) and sieve-based grinding corn stover (SGCS) were performed respectively with enzyme loading of 2.5 + 2.5 FPU/g and 5 + 5 FPU/g. The different performance of these two samples were illustrated by characterizing the particle size distribution, SEM and XPS. The results showed that ultrafine grinding can promote the structural properties which is beneficial to adsorption and hydrolysis. The main factors influencing adsorption kinetics are enzyme concentration and the surface cellulose amount. Pre-adsorbed enzyme has no effects on the subsequent enzyme adsorption quantity but produces some small competitive and impeditive effects. The hydrolysis kinetics mainly depend on the structure of the substrate and its complexity of hydrolysis. The two-step hydrolysis didn't promote the total sugar yield under the same enzyme concentration, but the first step contributed more to the total sugar yield.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Zhiliang Fan
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
24
|
Lu M, Li J, Han L, Xiao W. An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. BIORESOURCE TECHNOLOGY 2019; 273:1-7. [PMID: 30368157 DOI: 10.1016/j.biortech.2018.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 05/22/2023]
Abstract
This study evaluated the effects of physicochemical properties of a series of ball-milled cellulose on cellulase adsorption and glucose yield. The relationship between cellulase adsorption and initial hydrolysis rate was also discussed. We found that hydrophobicity and surface charge are the key factors affecting cellulase adsorption on ball-milled cellulose. The results demonstrated that glucose yield had a positive correlation with specific surface area, while showed a negative correlation with particle size, degree of polymerization and crystallinity. Among these properties, specific surface area and crystallinity are the key factors affecting glucose yield. As ball milling progressed, cellulose showed lower enzyme adsorption capacity/amount of bound enzyme during initial stage of hydrolysis, but had higher initial hydrolysis rate. The enhanced rate is attributed to the fact that the amorphous region produced by ball milling reduces the free energy required for decrystallization thus increases the catalytic efficiency of the bound enzyme.
Collapse
Affiliation(s)
- Minsheng Lu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Junbao Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weihua Xiao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
25
|
Singh JK, Sharma RK, Ghosh P, Kumar A, Khan ML. Imidazolium Based Ionic Liquids: A Promising Green Solvent for Water Hyacinth Biomass Deconstruction. Front Chem 2018; 6:548. [PMID: 30519555 PMCID: PMC6258793 DOI: 10.3389/fchem.2018.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
Water hyacinth (WH) is a troublesome aquatic weed of natural and artificial water bodies of India and other tropical countries and causing severe ecological problems. The WH biomass is low in lignin content and contains high amount of cellulose and hemicellulose, making it suitable material for conversion into liquid fuels for energy production. This study highlighted that, how different imidazolium based ionic liquids (ILs) [1-alkyl-3-methylimidazolium bromide, [Cnmim]Br (n = 2, 4, 6, 8, and 10)] with tunable properties can be employed for the degradation of WH biomass. Different characterizations techniques, such as XRD, FT-IR, SEM, and DSC are used to unravel the interplay between ILs and the biomass. In this study, it is observed that [Emim][Br] pretreated samples have maximum crystalline value (Crl = 26.38%) as compared to other ionic liquids pretreatments. FTIR data showed the removal of lignin from WH biomass by 12.77% for [Emim][Br] and 10.74% for [Edmim][Br]. SEM images have proven that [Emim][Br] pretreatment have altered the structure of biomass the most. Our results proved that IL pretreatment is a promising approach for effective treatment of WH biomass and causes high levels disruption of cellulose structure.
Collapse
Affiliation(s)
- Jitendra Kumar Singh
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Rahul Kumar Sharma
- Department of Chemistry, School of Chemical Sciences and Technology, Dr. Harisingh Gour Central University, Sagar, India
| | - Pushpal Ghosh
- Department of Chemistry, School of Chemical Sciences and Technology, Dr. Harisingh Gour Central University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| | - Mohammed Latif Khan
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
26
|
Li J, Lu M, Guo X, Zhang H, Li Y, Han L. Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses. BIORESOURCE TECHNOLOGY 2018; 265:1-7. [PMID: 29860078 DOI: 10.1016/j.biortech.2018.05.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The alkaline hydrogen peroxide (AHP) pretreatment (0.5 g H2O2/g corn stover, 30 °C, 24 h) removed 91.53% of the initial lignin and 55.77% of the initial hemicellulose in corn stover and afforded a considerable glucose yield (88.34%) through enzymatic hydrolysis. A combination of chemical and microstructural analyses was used to illustrate the mechanism of the effect of AHP pretreatment on enzymatic hydrolysis. During pretreatment, H2O2-derived radicals effectively spread into and destroyed the cell wall of various parts (vascular bundle sheath, xylem vessels, tracheid, phloem, and parenchyma) of corn stover to remove most of the lignin, acetyl group, and partial hemicellulose. They destroyed the compact structure of the cellulose-hemicellulose-lignin network, increased the cellulase-accessible pore volume by 6 times, doubled the area of exposed cellulose, and decreased the unproductive adsorption of enzymes onto lignin. Combining all the effects, AHP pretreatment effectively improved the cellulose accessibility to enhance the subsequent enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Xiaomiao Guo
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Yaping Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
27
|
Zhang H, Li J, Huang G, Yang Z, Han L. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment. BIORESOURCE TECHNOLOGY 2018; 264:327-334. [PMID: 29885582 DOI: 10.1016/j.biortech.2018.05.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/26/2023]
Abstract
A thorough assessment of the microstructural changes and synergistic effects of hydrothermal and/or ultrafine grinding pretreatment on the subsequent enzymatic hydrolysis of corn stover was performed in this study. The mechanism of pretreatment was elucidated by characterizing the particle size, specific surface area (SSA), pore volume (PV), average pore size, cellulose crystallinity (CrI) and surface morphology of the pretreated samples. In addition, the underlying relationships between the structural parameters and final glucose yields were elucidated, and the relative significance of the factors influencing enzymatic hydrolyzability were assessed by principal component analysis (PCA). Hydrothermal pretreatment at a lower temperature (170 °C) combined with ultrafine grinding achieved a high glucose yield (80.36%) at a low enzyme loading (5 filter paper unit (FPU)/g substrate) which is favorable. The relative significance of structural parameters in enzymatic hydrolyzability was SSA > PV > average pore size > CrI/cellulose > particle size. PV and SSA exhibited logarithmic correlations with the final enzymatic hydrolysis yield.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Guangqun Huang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Zengling Yang
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
28
|
Zuo S, Niu D, Zheng M, Jiang D, Tian P, Li R, Xu C. Effect of Irpex lacteus, Pleurotus ostreatus and Pleurotus cystidiosus pretreatment of corn stover on its improvement of the in vitro rumen fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4287-4295. [PMID: 29427334 DOI: 10.1002/jsfa.8951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The present work investigated changes in corn stover pretreated with different white rot fungi. Corn stover was inoculated with Irpex lacteus, Pleurotus ostreatus and Pleurotus cystidiosus prior to incubation under solid-state fermentation conditions at 28 °C for 42 days. Changes in the chemical composition, in vitro rumen degradability, lignocellulolytic enzyme activity and multi-scale structure of the corn stover were analysed. RESULTS Content of all lignocellulose components decreased to a certain extent after fungal pretreatment. The total gas production of sterilized corn stover treated with I. lacteus for 42 days increased from 200 to 289 mL g-1 organic matter. Moreover, the cellulase activity was highest at the later stage of I. lacteus pretreatment. Multi-scale structural analysis indicated that white rot fungal pretreatment, and in particular that of I. lacteus, increased and enlarged substrate porosity and caused changes in the structure of corn stover. CONCLUSION Irpex lacteus pretreatment improved the nutritional value of corn stover as a ruminant feed by degrading both cellulose and acid-insoluble lignin as well as changing the structure of the cell walls. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sasa Zuo
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Dongze Niu
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Mingli Zheng
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Di Jiang
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Pengjiao Tian
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Rongrong Li
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
29
|
Effective lactic acid production from waste paper using Streptococcus thermophilus at low enzyme loading assisted by Gleditsia saponin. Carbohydr Polym 2018; 200:122-127. [PMID: 30177148 DOI: 10.1016/j.carbpol.2018.07.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/23/2022]
Abstract
Waste paper has considerable potential as a raw material for lactic acid (LA) production due to high cellulose content, abundance and low cost. In this study, four kinds of waste papers were used for LA production through simultaneous saccharification and fermentation (SSF) by Streptococcus thermophilus. The SSF of office paper achieved the highest LA concentration (39.71 g/L), while the highest LA yield was observed for magazine (99.56%), followed by office paper (82.85%). High LA concentration is unfavorable to total LA conversion because of product inhibition. However, the addition of Gleditsia saponin (GS) could obtain both high yield and high concentration of LA at a low enzyme loading, indicating that product inhibition could be moderated. A lactic acid yield of 86.30% was obtained from office paper at an enzyme loading of 9 FPU/g-cellulose with GS, which was higher than that of without GS at a higher loading of 18 FPU/g-cellulose.
Collapse
|
30
|
Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep 2018; 8:1321. [PMID: 29358729 PMCID: PMC5778052 DOI: 10.1038/s41598-018-19517-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Wheat straw (WS) is a potential biomass for production of monomeric sugars. However, the enzymatic hydrolysis ratio of cellulose in WS is relatively low due to the presence of lignin and hemicellulose. To enhance the enzymatic conversion of WS, we tested the impact of three different pretreatments, e.g. sulfuric acid (H2SO4), sodium hydroxide (NaOH), and hot water pretreatments to the enzymatic digestions. Among the three pretreatments, the highest cellulose conversion rate was obtained with the 4% NaOH pretreatment at 121 °C (87.2%). In addition, NaOH pretreatment was mainly effective in removing lignin, whereas the H2SO4 pretreatment efficiently removed hemicellulose. To investigate results of pretreated process for enhancement of enzyme-hydolysis to the WS, we used scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to analyze structural changes of raw and treated materials. The structural analysis indicated that after H2SO4 and NaOH pretreatments, most of the amorphous cellulose and partial crystalline cellulose were hydrolyzed during enzymatic hydrolysis. The findings of the present study indicate that WS could be ideal materials for production of monomeric sugars with proper pretreatments and effective enzymatic base hydrolysis.
Collapse
|
31
|
Zhang X, Qu T, Mosier NS, Han L, Xiao W. Cellulose modification by recyclable swelling solvents. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:191. [PMID: 30008804 PMCID: PMC6043973 DOI: 10.1186/s13068-018-1191-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The invention of efficient systems for lignocellulose conversion is essential for economically feasible production of bio-based chemicals and biofuels. One limiting step is highly selective processes to quickly decrystallize the compact cellulose structure for efficient hydrolysis. We evaluated the impact of trifluoroacetic acid (TFA) and phosphorous acid (PA)-induced swelling of crystalline cellulose on enhancement of enzymatic digestion. RESULTS In this study, two swelling agents, TFA and PA, are compared and found to be highly efficient for cellulose decrystallization at low temperatures within 1 h. After treatment, the microfibril structure of swollen celluloses was observed to develop distinct microscopic morphology and subsequent enzymatic hydrolysis resulted over 90% cellulose conversion within 24 h. The crystalline cellulose change was determined by reduction of loss of X-ray diffractability, and loss of resistance to enzymatic hydrolysis. NMR results suggest that both TFA and PA efficiently converted most of the crystalline cellulose regions to amorphous regions through cellulose chain relocation that inhibits recrystallization. It was found that the swelling mechanism is different between TFA and PA. To the best of our knowledge, it is the first time to compare and quantify the cellulose regions transformation by swelling agents. CONCLUSION This study shows the low-temperature swelling of different celluloses in TFA and PA reduces recalcitrance of crystalline cellulose to enzymatic hydrolysis. TFA and PA are both ideal candidate swelling agents for a closed system for ease of solvent recovery by either simple distillation or filtration. This study provides potentially useful agents in large-scale deconstruction of biomass.
Collapse
Affiliation(s)
- Ximing Zhang
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Tianjiao Qu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083 People’s Republic of China
| | - Nathan S. Mosier
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083 People’s Republic of China
| | - Weihua Xiao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083 People’s Republic of China
| |
Collapse
|
32
|
Enzymatic hydrolysis of pretreated Alfa fibers ( Stipa tenacissima ) using β- d -glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation. Int J Biol Macromol 2017; 103:543-553. [DOI: 10.1016/j.ijbiomac.2017.05.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/19/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022]
|
33
|
Variations in Physicochemical Properties and Bioconversion Efficiency of Ulva lactuca Polysaccharides After Different Biomass Pretreatment Techniques. Appl Biochem Biotechnol 2017; 184:777-793. [DOI: 10.1007/s12010-017-2588-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023]
|
34
|
Kapoor M, Soam S, Agrawal R, Gupta RP, Tuli DK, Kumar R. Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings. BIORESOURCE TECHNOLOGY 2017; 224:688-693. [PMID: 27864133 DOI: 10.1016/j.biortech.2016.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 05/05/2023]
Abstract
The aim of this work was to study the dilute acid pretreatment of rice straw (RS) and fermentable sugar recovery at high solid loadings at pilot scale. A series of pretreatment experiments were performed on RS resulting in >25wt% solids followed by enzymatic hydrolysis without solid-liquid separation at 20 and 25wt% using 10FPU/g of the pretreated residue. The overall sugar recovery including the sugars released in pretreatment and enzymatic hydrolysis was calculated along with a mass balance. Accordingly, the optimized conditions, i.e. 0.35wt% acid, 162°C and 10min were identified. The final glucose and xylose concentrations obtained were 83.3 and 31.9g/L respectively resulting in total concentration of 115.2g/L, with a potential to produce >50g/L of ethanol. This is the first report on pilot scale study on acid pretreatment of RS in a screw feeder horizontal reactor followed by enzymatic hydrolysis at high solid loadings.
Collapse
Affiliation(s)
- Manali Kapoor
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Shveta Soam
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravindra Kumar
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India.
| |
Collapse
|
35
|
Shiga TM, Xiao W, Yang H, Zhang X, Olek AT, Donohoe BS, Liu J, Makowski L, Hou T, McCann MC, Carpita NC, Mosier NS. Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:310. [PMID: 29299060 PMCID: PMC5744396 DOI: 10.1186/s13068-017-0999-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. RESULTS Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 °C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability, and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. CONCLUSIONS Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.
Collapse
Affiliation(s)
- Tânia M. Shiga
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
- Present Address: Department of Food Science and Experimental Nutrition, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 14, São Paul, SP 05508-000 Brazil
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Haibing Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Ximing Zhang
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Anna T. Olek
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Jiliang Liu
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 USA
- Present Address: Center for Functional Nanomaterials, Brookhaven National Laboratory, Shirley, New York, USA
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 USA
| | - Tao Hou
- College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 USA
| | - Nicholas C. Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 USA
| | - Nathan S. Mosier
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|