1
|
Zhou W, Yu J, Zhao L, Wang K, Hu Z, Wu JY, Liu X. Enhancement of chitosan-based film physicochemical and storage properties by interaction with proanthocyanidin and natural deep eutectic solvent. Int J Biol Macromol 2024; 278:134611. [PMID: 39127278 DOI: 10.1016/j.ijbiomac.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Deep eutectic solvent (DES) has been recognized as a promising plasticizer for the preparation of biodegradable food packaging films. In addition, DES-plasticized chitosan (CS) films could also serve as a favorable carrier for loading active components. In this work, a ternary composite film was fabricated by plasticizing chitosan with DES and the active ingredient proanthocyanidin (PA) was used as a cross-linking agent. The incorporation of PAs significantly enhanced the toughness, elasticity, and hydrophobicity of the ternary CS-DES-PA composite films. It achieved antioxidant and bacteriostatic functions. In particular, the ternary CS-DES-PA composite films had a thickness of 0.16 ± 0.01 μm, a tensile strength of 2.63 ± 0.48 MPa, and an elongation about 73.22 %. They also have improved water resistance, UV blocking, with a high-water contact angle of 88.4° and a low water swelling of 5 % on the surface of the film. Meanwhile, the PAs in the film could slow down the browning of litchi fruits. This ternary blended film (CS-DES-PA) achieves better compatibility of the active ingredient in the film-forming substrate. It also provides a green and biodegradable packaging material for food packaging.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers. Polymers (Basel) 2024; 16:501. [PMID: 38399879 PMCID: PMC10892691 DOI: 10.3390/polym16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| | | | | | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| |
Collapse
|
3
|
Li J, Zhu Y, Liu M, Liu Z, Zhou T, Liu Y, Cheng D. Network interpenetrating slow-release nitrogen fertilizer based on carrageenan and urea: A new low-cost water and fertilizer regulation carrier. Int J Biol Macromol 2023; 242:124858. [PMID: 37178883 DOI: 10.1016/j.ijbiomac.2023.124858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Modern agriculture presents new requirements of low cost, high water retention and degradability for superabsorbent and slow-release fertilizers. In this study, carrageenan (CG), acrylic acid (AA), N, N '-methylene diacrylamide (MBA), urea and ammonium persulfate (APS) were used as raw materials. A kind of high water absorption, water retention, nitrogen slow release and biodegradable carrageenan superabsorbent (CG-SA) was prepared by grafting copolymerization. The optimal CG-SA was obtained with a water absorption rate of 680.45 g/g by orthogonal L18(3)7 experiments and single-factor experiments. The water absorption behavior of CG-SA in deionized water and salt solution were studied. The CG-SA was characterized before and after degradation by FTIR, SEM. The nitrogen release behavior and kinetic characteristics of CG-SA were investigated. In addition, CG-SA degraded 58.33 % and 64.35 % in soil at 25 °C and 35 °C after 28 days. All the results indicated that the low-cost and degradable CG-SA can achieve simultaneous slow release of water and nutrients, which is expected to be widely used as a new water-fertilizer integration technology in arid and poor areas.
Collapse
Affiliation(s)
- Jinxi Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mingshang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zihan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dongdong Cheng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
4
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
5
|
Lin L, Su Z, Zhang H, Zhou G, Zhou H, Ren J, Wang X, Liu C, Wang X. Thermo-processable chitosan-based plastic substitute with self-adaptiveness and closed-loop recyclability. Carbohydr Polym 2022; 291:119479. [DOI: 10.1016/j.carbpol.2022.119479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
6
|
Ma X, Men J, Gao T, Liu W, Wang X, Lou T. Electrospinning nanofibrous sodium alginate/β‐cyclodextrin composite membranes for methylene blue adsorption. STARCH-STARKE 2022. [DOI: 10.1002/star.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaolong Ma
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Jinxin Men
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tong Gao
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Wenxia Liu
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tao Lou
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
7
|
Sangeetha E, Narayanan A, Dhamodharan R. Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03641-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Chen J, Wu J, Raffa P, Picchioni F, Koning CE. Superabsorbent Polymers: From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Zhao X, Wang X, Lou T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124054. [PMID: 33265059 DOI: 10.1016/j.jhazmat.2020.124054] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 05/27/2023]
Abstract
Natural polysaccharide is attractive for preparing the environmentally friendly and highly efficient adsorbent. However, to obtain an efficient amphoteric absorbent for dealing with complex wastewater is still challenging. Herein, fibrous chitosan/sodium alginate composite foams were prepared by lyophilization with ternary acetic acid/water/tetrahydrofuran solvents, which had suitable morphology of interconnected pores and microscale fibers for dye adsorption. The amphoteric composite foams showed high adsorption capacities for both anionic Acid Black-172 (817.0 mg/g) and cationic Methylene Blue (1488.1 mg/g), which were far superior to those of the control samples prepared with traditional solvents of acetic acid/water. The adsorption kinetics and isotherm data showed that the adsorption followed the pseudo-second-order and Langmuir model. Further thermodynamics analysis revealed the adsorption was a spontaneous process. Meanwhile, the foams achieved effective adsorption capacity of AB-172 and MB dyes under a wide range of environmental pH, and maintained high adsorption efficiency even after four cycles. The adsorption mechanism is chemisorption, where the adsorption capacities for the anionic and cationic dyes were dependent on the mass ratio of chitosan to sodium alginate. As a novel amphoteric adsorbent, the fibrous chitosan/sodium alginate composite foam shows the potential to remove both cationic and anionic dyes from wastewaters.
Collapse
Affiliation(s)
- Xiaolin Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuejun Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Tao Lou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
10
|
Qureshi MA, Nishat N, Jadoun S, Ansari MZ. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
11
|
Wu C, Yu Z, Li Y, Zhou K, Cao C, Zhang P, Li W. Cryogenically printed flexible chitosan/bioglass scaffolds with stable and hierarchical porous structures for wound healing. ACTA ACUST UNITED AC 2020; 16:015004. [PMID: 33245049 DOI: 10.1088/1748-605x/abb2d7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wound healing is a dynamic and well-orchestrated process that can be promoted by creating an optimal environment with wound dressing. An ideal wound dressing material should possess a suitable matrix, structure and bioactive components, functioning synergistically to accelerate wound healing. Wound dressings that allow reproducibility and customizability are highly desirable in clinical practice. In this study, using chitosan (CS) as the matrix and bioglass (BG) as the biological component, a spatially designed dressing scaffold was fabricated from a home-made cryogenic printing system. The micro- and macro-structures of the scaffold were highly controllable and reproducible. The printed scaffold exhibited interconnected and hierarchical pore structures, as well as good flexibility and water absorption capacity, and these properties were not affected by the content of BG. Nevertheless, when the content of BGs exceeded 20% that of CS, the tension strength and elongation rate reduced, but in vitro antibacterial, cell proliferation and migration performance were enhanced. In vivo examinations revealed that the composite scaffold significantly promoted wound healing process, with the group having 30% bioglass showing better wound closure, neovascularization and collagen deposition than other groups. These results indicate that the 3D printed CS/BG composite scaffold is a promising dressing material that accelerates wound healing.
Collapse
Affiliation(s)
- Chunxuan Wu
- The second Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
do Nascimento EG, de Azevedo EP, Alves-Silva MF, Aragão CFS, Fernandes-Pedrosa MF, da Silva-Junior AA. Supramolecular aggregates of cyclodextrins with co-solvent modulate drug dispersion and release behavior of poorly soluble corticosteroid from chitosan membranes. Carbohydr Polym 2020; 248:116724. [PMID: 32919548 DOI: 10.1016/j.carbpol.2020.116724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023]
Abstract
In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-β-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.
Collapse
Affiliation(s)
- Ednaldo Gomes do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Eduardo Pereira de Azevedo
- Department of Pharmacy, Federal University of Potiguar, UnP, Av. Sen. Salgado Filho, 1610, Lagoa Nova, 59056-000, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Cícero Flávio S Aragão
- Laboratory of Quality Control of Pharmaceuticals, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
13
|
Liu J, Shibata M, Ma Q, Liu F, Lu Q, Shan Q, Hagiwara T, Bao J. Characterization of fish collagen from blue shark skin and its application for chitosan- collagen composite coating to preserve red porgy (Pagrus major) meat. J Food Biochem 2020; 44:e13265. [PMID: 32567143 DOI: 10.1111/jfbc.13265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/24/2020] [Accepted: 03/29/2020] [Indexed: 01/20/2023]
Abstract
Pepsin soluble collagen (PSC) was extracted from blue shark (Prionace glauca) skin and was used for chitosan-collagen composite coating to investigate coating effects on fresh red porgy (Pagrus major) fillet quality during storage at 4°C. Total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), pH, K value, drip loss, and sensory evaluation scores were measured as deterioration indexes. Results show that coating by 1% of chitosan solutions containing 0.0%-0.8% of PSC significantly improved most deterioration indexes. Coating by 1% of chitosan solution containing 0.8% of PSC yielded the best results for K value, drip loss, and sensory evaluation, although the other indexes show no clear PSC concentration dependence. These results indicate 1% of chitosan solution containing 0.8% of PSC as the best coating formulation examined in this study. PRACTICAL APPLICATIONS: Aquatic products have high contents of water and protein. Their qualities are likely to decline because of endogenous chemical and enzyme reactions, and also because of the role of spoilage and pathogenic microorganisms during storage. The edible collagen and chitosan coating suggested by this research is biodegradable, biocompatible, cost effective, and is able to meet the requirements for food quality and storage duration. Pepsin soluble collagen (PSC) is an aquatic product processing by-product that makes the maximum use of resources. As described herein, a composite formulation comprising collagen and chitosan improves preservation effects of different types of coatings. A more high-quality and effective edible coating formulation was obtained, thereby extending the red porgy fillet shelf life.
Collapse
Affiliation(s)
- Jinyan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mario Shibata
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Qingbao Ma
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Fangfang Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qi Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qianyi Shan
- National Food Quality Supervision and Inspection Center, Shanghai Institute of Quality Inspection and Technical Research, Shanghai, China
| | - Tomoaki Hagiwara
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Jianqiang Bao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
14
|
Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104517] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Karakeçili A, Topuz B, Korpayev S, Erdek M. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110098. [DOI: 10.1016/j.msec.2019.110098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
16
|
Optimization of ZnAl/Chitosan Supra-Nano Hybrid Preparation as Efficient Antibacterial Material. Int J Mol Sci 2019; 20:ijms20225705. [PMID: 31739485 PMCID: PMC6888223 DOI: 10.3390/ijms20225705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
The menace of antimicrobial resistance continues to increase and hence the need to discover new antibiotics, especially alternative and effective sources such as hybrid organic-inorganic, organic-organic materials, and other combinations. In this study, an antimicrobial hybrid supra-nano material was prepared by the bi-titration synthesis method of chitosan (CS) and ZnAl layered double hydroxide. Fourier-transform infrared spectrometer (FTIR), thermogravimetric and differential thermal gravimetric (TGA/DTG), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses indicated that the ZnAl/CS hybrid exhibited low crystallinity with high thermal stability. The results of ZnAl/CS characterization showed the characteristic properties of the individual components ZnAl and CS, indicating a successful preparation of the ZnAl/CS hybrid. The antibacterial tests revealed that the ZnAl/CS hybrid possessed an enhanced antimicrobial effect against both Escherichia coli (E. coli, MTCC 739) and Penicilliumcyclopium (P. cyclopium, AS 3.4513). Under the central composite design (CCD) of the response surface methodology (RSM) tool, the parameters of the hybrid synthesis reaction were optimized and the result obtained was as follows: reaction pH was 11.3, reagent Zn/Al ratio was 3.27, and chitosan concentration was 1.07 g/L. After optimization, it was found that the antibacterial activity of ZnAl/CS was strengthened against E. coli as evidenced by a widening of the inhibition zone of about 41.6%. The antibacterial activity of ZnAl/CS was mainly due to the reactivation of the antibacterial activity of CS associated with the release of Zn2+ and Al3+ metal ions in addition to ZnO, Al2O3, and ZnAl2O4 compounds resulting from the method of preparation.
Collapse
|
17
|
Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03016-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Govindaraj P, Abathodharanan N, Ravishankar K, Raghavachari D. Facile preparation of biocompatible macroporous chitosan hydrogel by hydrothermal reaction of a mixture of chitosan-succinic acid-urea. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109845. [DOI: 10.1016/j.msec.2019.109845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
19
|
Gohi BFCA, Zeng HY, Cao XJ, Zou KM, Shuai W, Diao Y. Preparation of the Hybrids of Hydrotalcites and Chitosan by Urea Method and Their Antimicrobial Activities. Polymers (Basel) 2019; 11:polym11101588. [PMID: 31569446 PMCID: PMC6835444 DOI: 10.3390/polym11101588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Hybrid nano-supra molecular structured materials can boost the functionalityof nano- or supra-molecular materials by providing increased reactivity and conductivity, or by simply improving theirmechanical stability. Herein, the studies in materials science exploring hybrid systems are investigated from the perspective of two important related applications: healthcare andfood safety.Interfacing phase strategy was applied, and ZnAl layered double hydroxide-chitosan hybrids, prepared by the urea method (U-LDH/CS), were successfully synthesized under the conditions of different chitosan(CS) concentrations with a Zn/Al molar ratio of 5.0. The structure and surface properties of the U-LDH/CS hybrids were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectrometer(FTIR), scanningelectronmicroscopy(SEM), ultravioletvisible(UV-Vis), and zero point charge (ZPC) techniques, where the effect of CS concentration on the structure and surface properties was investigated. The use of the U-LDH/CS hybrids as antimicrobial agents against Escherichia coli, Staphylococcus aureus,and Penicilliumcyclopiumwasinvestigated in order to clarify the relationship between microstructure and antimicrobial ability. The hybrid prepared in a CS concentration of 1.0 g∙L-1 (U-LDH/CS1) exhibited the best antimicrobial activity and exhibited average inhibition zones of 24.2, 30.4, and 22.3mm against Escherichia coli, Staphylococcus aureus, and Penicilliumcyclopium, respectively. The results showed that the appropriate addition of CS molecules could increase antimicrobial ability against microorganisms.
Collapse
Affiliation(s)
- Bi Foua Claude Alain Gohi
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (B.F.C.A.G.)
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China;
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (B.F.C.A.G.)
- Correspondence: ; Tel.: +86-731-58298175
| | - Xiao-Ju Cao
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (B.F.C.A.G.)
| | - Kai-Min Zou
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (B.F.C.A.G.)
| | - Wenlin Shuai
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China;
| | - Yi Diao
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China;
| |
Collapse
|
20
|
Liang J, Wang R, Chen R. The Impact of Cross-linking Mode on the Physical and Antimicrobial Properties of a Chitosan/Bacterial Cellulose Composite. Polymers (Basel) 2019; 11:polym11030491. [PMID: 30960475 PMCID: PMC6474070 DOI: 10.3390/polym11030491] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bacteriostatic performance of a chitosan film is closely related to its ionic and physical properties, which are significantly influenced by the mode of cross-linking. In the current work, chitosan with or without bacterial cellulose was cross-linked with borate, tripolyphosphate, or the mixture of borate and tripolyphosphate, and the composite films were obtained by a casting of dispersion. Mechanical measurements indicated that different modes of cross-linking led to varying degrees of film strength and elongation increases, while the films treated with the borate and tripolyphosphate mixture showed the best performance. Meanwhile, changes in the fractured sectional images showed a densified texture induced by cross-linkers, especially for the borate and tripolyphosphate mixture. Measurements of Fourier transform infrared showed the enhanced interaction between the matrix polymers treated by borate, confirmed by a slight increase in the glass transitional temperature and a higher surface hydrophobicity. However, the reduced antimicrobial efficiency of composite films against E. coli, B. cinerea, and S. cerevisiae was obtained in cross-linked films compared with chitosan/bacterial cellulose films, indicating that the impact on the antimicrobial function of chitosan is a noteworthy issue for cross-linking.
Collapse
Affiliation(s)
- Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Rui Wang
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Ruipeng Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
| |
Collapse
|
21
|
Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydr Polym 2018; 198:69-75. [DOI: 10.1016/j.carbpol.2018.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/12/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
|
22
|
Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption. Carbohydr Polym 2018; 191:152-160. [DOI: 10.1016/j.carbpol.2018.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
|
23
|
Lou T, Wang X, Song G, Cui G. Synthesis and flocculation performance of a chitosan-acrylamide-fulvic acid ternary copolymer. Carbohydr Polym 2017; 170:182-189. [DOI: 10.1016/j.carbpol.2017.04.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/21/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
|
24
|
Zhang D, Cao Y, Ma C, Chen S, Li H. Development of Water-Triggered Chitosan Film Containing Glucamylase for Sustained Release of Resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2503-2512. [PMID: 28198191 DOI: 10.1021/acs.jafc.6b05380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is a paradox when incorporating enzyme into an edible chitosan film that chitosan is dissolved in acid solution and enzyme activity is maintained under mild conditions. A method for maintaining the pH of the chitosan solution at 4-6 to prepare a chitosan film containing β-cyclodextrin, resveratrol-β-cyclodextrin inclusion (RCI), was developed, using glucamylase and acetic acid. A considerable amount of resveratrol was released by the glucamylase-incorporated film within 15 days, and the maximum amount released was 46% of the total resveratrol content. The highest resveratrol release ratio (released resveratrol/total resveratrol) was obtained in the film with 6 mL of RCI. Scratches and spores were generated on the surface of the glucamylase-added film immersed in water (GAFW) for 7 days because of β-cyclodextrin hydrolysis during film drying and water immersion. RCI and β-cyclodextrin were extruded from the film surface and formed teardrops, which were erased by water on the GAFW surface but appeared on the glucamylase-added film without water immersion (GAF). The bubbles generated by the reaction of acetic acid and residual sodium bicarbonate were observed in both glucamylase-free films immersed in water (GFFW) for 7 days and without water immersion (GFF). The FT-IR spectra illustrated that the covalent bond was not generated during water immersion and β-cyclodextrin hydrolysis. The crystal structure of chitosan was destroyed by water immersion and β-cyclodextrin hydrolysis, resulting in the lowest chitosan crystallization peak at 22°. The increasing of water holding capacity determined by EDX presented the following order: GAF, GFFW, GFF, and GAFW.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Yanfei Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| |
Collapse
|
25
|
Abstract
Superabsorbent hydrogels (SHs) have been used in many fields in recent years.
Collapse
Affiliation(s)
- Baoxiao Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Boying Pei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|