1
|
Pang Z, Li M, Tong F, McClements DJ, Tan W, Chen C, Liu X. Impact of lecithin on the lubrication properties of konjac glucomannan gels. Int J Biol Macromol 2024; 279:135582. [PMID: 39270902 DOI: 10.1016/j.ijbiomac.2024.135582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The effects of lecithin addition on the properties of konjac glucomannan (KGM) hydrogels prepared by controlled heating were investigated. Weak hydrogels were formed at 1 % KGM, which contained relatively thick strands. The shear viscosity and shear modulus of the hydrogels increased with increasing KGM concentration. The pure KGM hydrogels exhibited relatively poor boundary lubrication at all polysaccharide concentrations studied. The inclusion of lecithin (0.001 % to 0.20 %) in the KGM hydrogels appreciably altered their rheological properties, which could be modulated by varying the lecithin/KGM ratio. Microstructural analysis showed that lecithin caused a substantial restructuring of the strands in the hydrogel network. Lecithin was also found to be a highly effective lubricant in the KGM hydrogels. Incorporation of trace amounts of lecithin led to a significant improvement in the lubricating properties of the KGM hydrogels, especially boundary lubrication. Fourier transform infrared (FTIR) and differential canning calorimetry (DSC) analyses provided information about the molecular interactions between the lecithin and KGM molecules. The ability of lecithin to increase the lubricating performance of the KGM hydrogels was mainly attributed to the adsorption of phospholipid-biopolymer complexes onto solid surfaces, which reduced the friction between them.
Collapse
Affiliation(s)
- Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Mengfei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Tong
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Wenyan Tan
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Cunshe Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Lee D, Noh J, Moon SY, Shin TJ, Choi YK, Park J. Pectin Nanoporous Structures Prepared via Salt-Induced Phase Separation and Ambient Azeotropic Evaporation Processes. Biomacromolecules 2024; 25:1709-1723. [PMID: 38377481 DOI: 10.1021/acs.biomac.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Polysaccharide nanoporous structures are suitable for various applications, ranging from biomedical scaffolds to adsorption materials, owing to their biocompatibility and large surface areas. Pectin, in particular, can create 3D nanoporous structures in aqueous solutions by binding with calcium cations and creating nanopores by phase separation; this process involves forming hydrogen bonds between alcohols and pectin chains in water and alcohol mixtures and the resulting penetration of alcohols into calcium-bound pectin gels. However, owing to the dehydration and condensation of polysaccharide chains during drying, it has proven to be challenging to maintain the 3D nanoporous structure without using a freeze-drying process or supercritical fluid. Herein, we report a facile method for creating polysaccharide-based xerogels, involving the co-evaporation of water with a nonsolvent (e.g., a low-molecular-weight hydrophobic alcohol such as isopropyl or n-propyl alcohol) at ambient conditions. Experiments and coarse-grained molecular dynamics simulations confirmed that salt-induced phase separation and hydrogen bonding between hydrophobic alcohols and pectin chains were the dominant processes in mixtures of pectin, water, and hydrophobic alcohols. Furthermore, the azeotropic evaporation of water and alcohol mixed in approximately 1:1 molar ratios was maintained during the natural drying process under ambient conditions, preventing the hydration and aggregation of the hydrophilic pectin chains. These results introduce a simple and convenient process to produce 3D polysaccharide xerogels under ambient conditions.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Chemical Engineering, Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Juran Noh
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Su-Young Moon
- Gas & Carbon Convergent Research Center, Chemical & Process Technology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeol Kyo Choi
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Juhyun Park
- Department of Chemical Engineering, Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
4
|
Nguyen VCN, Phan HVT, Nguyen VK, Vo DT, Tran TN, Dao MT, Hoang LTTT. A Comparison of a Conventional Chemical Coagulant and a Natural Coagulant Derived from Cassia fistula Seeds for the Removal of Heavy Metal Ions. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:324-331. [PMID: 37249609 DOI: 10.1007/s00244-023-01005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cassia fistula seed-derived coagulant has been reported to exhibit high coagulating-flocculating activity, environmental friendliness, and cost-effectiveness for the wastewater treatment, especially of textile wastewater. For heavy metal removal, however, research focusing on evaluating the feasibility of this material is still limited. Therefore, this study reports jar-test experiments in which the Zn2+ and Ni2+ removal efficiency of C. fistula coagulant was assessed. Moreover, a comparison of coagulation performance using a conventional chemical coagulant and the natural coagulant was performed. Characterization of the C. fistula seed-derived coagulant revealed the presence of important functional groups and fibrous networks with rough surfaces. A bench-scale study indicated that the coagulation performance of the two coagulants depends strongly on the initial concentration of metal ions, pH level, and coagulant dosage. The C. fistula seed-derived coagulant was found to possess higher removal efficiency than polyaluminum chloride. This natural coagulant removed over 80% of metal ions at the optimal conditions of pH 5.0, a metal ion concentration of 25 ppm, and a dosage of 0.8 and 1.6 g/L for Zn2+ and Ni2+, respectively. This study shows that C. fistula seed-derived coagulant is a potential alternative to chemical coagulants and could be developed to provide an environmentally friendly, economical, and efficient wastewater treatment.
Collapse
Affiliation(s)
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Duc-Thuong Vo
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam.
| | - Le-Thuy-Thuy-Trang Hoang
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot, Binh Duong, 820000, Vietnam.
| |
Collapse
|
5
|
Karim A, Raji Z, Karam A, Khalloufi S. Valorization of Fibrous Plant-Based Food Waste as Biosorbents for Remediation of Heavy Metals from Wastewater-A Review. Molecules 2023; 28:molecules28104205. [PMID: 37241944 DOI: 10.3390/molecules28104205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mobilization of heavy metals in the environment has been a matter of concern for several decades due to their toxicity for humans, environments, and other living organisms. In recent years, use of inexpensive and abundantly available biosorbents generated from fibrous plant-based food-waste materials to remove heavy metals has garnered considerable research attention. The aim of this review is to investigate the applicability of using fibrous plant-based food waste, which comprises different components such as pectin, hemicellulose, cellulose, and lignin, to remove heavy metals from wastewater. This contribution confirms that plant-fiber-based food waste has the potential to bind heavy metals from wastewater and aqueous solutions. The binding capacities of these biosorbents vary depending on the source, chemical structure, type of metal, modification technology applied, and process conditions used to improve functionalities. This review concludes with a discussion of arguments and prospects, as well as future research directions, to support valorization of fibrous plant-based food waste as an efficient and promising strategy for water purification.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antoine Karam
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Hasanin M, Abdel Kader AH, Abd El‐Sayed ES, Kamel S. Green Chitosan‐Flaxseed Gum Film Loaded with ZnO for Packaging Applications. STARCH-STARKE 2023; 75. [DOI: 10.1002/star.202200132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 09/02/2023]
Abstract
AbstractThe possibility of manufacturing edible packaging materials with tailored properties and low cost has attracted much interest. This work presents a new material for edible packaging made from flaxseed gum (FSG) and chitosan (Ch) loaded with zinc oxide nanoparticles (ZnO‐NPs). ZnO‐NPs are synthesized in situ during the preparation of the edible film. The Ch/FSG/ZnO‐NPs films are prepared by casting Ch in different ratios of FSG (12.5%, 25%, 37.5%, and 50%). The resulting films are evaluated for their physicochemical, mechanical, and barrier properties to determine their suitability for coating or packaging food or bioproducts. By studying the antimicrobial activities of the ZnO‐NPs loaded films, we can see that ZnO‐NP's concentration highly affects these activities. In addition, the FSG improves mechanical properties. Films developed by incorporating ZnO‐NPs are proposed to be appropriate for low‐moisture food and pharmaceutical products, which can reduce environmental problems associated with synthetic packaging. Consequently, Ch/FSG composite films have the potential to replace conventional packaging.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| | | | | | - Samir Kamel
- Cellulose and Paper Department National Research Centre Cairo 12622 Egypt
| |
Collapse
|
7
|
Sahoo JK, Somu P, Narayanasamy S, Sahoo SK, Lee YR, Baalakrishnan DR, RajaSekhar Reddy NV, Rajendiran S. WITHDRAWN: Heavy metal ions and dyes removal from aqueous solution using Aloevera-based biosorbent: A systematic review. ENVIRONMENTAL RESEARCH 2023; 216:114669. [PMID: 36404520 DOI: 10.1016/j.envres.2022.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the authors, editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. The publisher apologizes to the readers for this unfortunate erro
Collapse
Affiliation(s)
- Jitendra Kumar Sahoo
- Department of Chemistry, GIET University, Gunupur, Rayagada, Odisha, 765022, India
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Shraban Kumar Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - D R Baalakrishnan
- Institute for Science, Engineering and Technology Research, Tamil Nadu, India.
| | - N V RajaSekhar Reddy
- Department of Information Technology, MLR Institute of Technology, Hyderabad, Telangana, India
| | - S Rajendiran
- Institute for Science, Engineering and Technology Research, Tamil Nadu, India
| |
Collapse
|
8
|
Wang R, Li Y, Shuai X, Chen J, Liang R, Liu C. Development of Pectin-Based Aerogels with Several Excellent Properties for the Adsorption of Pb 2. Foods 2021; 10:3127. [PMID: 34945678 PMCID: PMC8700957 DOI: 10.3390/foods10123127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Traditional aerogels lack specific functional groups for the adsorption of Pb2+, which results in a low adsorption capacity and limits the application scope. Novel porous pectin-based aerogels (PPEAs) were prepared by incorporating polyethylenimine (PEI) using ethylene glycol diglycidyl ether (EGDE) as a cross-linker for the removal of Pb2+ from water. The cross-linking mechanism, morphology, mechanical strength, thermal stability, adsorption properties, and mechanism of the aerogels were investigated. The aerogels possessed several desirable features, such as a large maximum Pb2+ adsorption capacity (373.7 mg/g, tested at pH 5.0), ultralight (as low as 63.4 mg/cm3), high mechanical strength (stress above 0.24 MPa at 50% strain), and easy recyclability. Meanwhile, the equilibrium adsorption data was well described by the Langmuir-Freundlich (Sips) model and the kinetic adsorption process was well fitted using the pseudo-second-order model. The donor groups, such as -NH2, and oxygen-containing functional groups were responsible for the Pb2+ adsorption, which was confirmed by the FTIR and XPS analysis. The excellent characteristics mean that PPEAs are highly effective adsorbents in the remediation of lead-containing wastewater.
Collapse
Affiliation(s)
- Risi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (R.W.); (X.S.); (J.C.); (R.L.)
| | - Ya Li
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (R.W.); (X.S.); (J.C.); (R.L.)
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (R.W.); (X.S.); (J.C.); (R.L.)
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (R.W.); (X.S.); (J.C.); (R.L.)
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (R.W.); (X.S.); (J.C.); (R.L.)
| |
Collapse
|
9
|
Racovita S, Lungan M, Vasiliu A, Vasiliu S, Mihai M. Sorption Behavior of Grafted Porous Microparticles Based on Methacrylic Monomers and Chitosan/Gellan Gum towards Copper(II) and Nickel(II) Ions in Aqueous Solutions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Stefania Racovita
- Functional Polymers Petru Poni( Institute of Macromolecular Chemistry Grigore Ghica Voda Alley, No. 41 A 700487 Iasi Romania
| | | | - Ana‐Lavinia Vasiliu
- Functional Polymers Petru Poni( Institute of Macromolecular Chemistry Grigore Ghica Voda Alley, No. 41 A 700487 Iasi Romania
| | - Silvia Vasiliu
- Functional Polymers Petru Poni( Institute of Macromolecular Chemistry Grigore Ghica Voda Alley, No. 41 A 700487 Iasi Romania
| | - Marcela Mihai
- Functional Polymers Petru Poni( Institute of Macromolecular Chemistry Grigore Ghica Voda Alley, No. 41 A 700487 Iasi Romania
| |
Collapse
|
10
|
Pectin/Activated Carbon-Based Porous Microsphere for Pb 2+ Adsorption: Characterization and Adsorption Behaviour. Polymers (Basel) 2021; 13:polym13152453. [PMID: 34372055 PMCID: PMC8347585 DOI: 10.3390/polym13152453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023] Open
Abstract
The development of effective heavy metal adsorbents has always been the goal of environmentalists. Pectin/activated carbon microspheres (P/ACs) were prepared through simple gelation without chemical crosslinking and utilized for adsorption of Pb2+. Scanning electron microscopy (SEM) revealed that the addition of activated carbon increased the porosity of the microsphere. Texture profile analysis showed good mechanical strength of P/ACs compared with original pectin microspheres. Kinetic studies found that the adsorption process followed a pseudo-second-order model, and the adsorption rate was controlled by film diffusion. Adsorption isotherms were described well by a Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 279.33 mg/g. The P/ACs with the highest activated carbon (P/AC2:3) maintained a removal rate over 95.5% after 10 adsorption/desorption cycles. SEM-energy-dispersive X-ray spectrum and XPS analysis suggested a potential mechanism of adsorption are ion exchange between Pb2+ and Ca2+, electronic adsorption, formation of complexes, and physical adsorption of P/ACs. All the above results indicated the P/ACs may be a good candidate for the adsorption of Pb2+.
Collapse
|
11
|
Wang XD, Li Y, Dai TT, He XM, Chen MS, Liu CM, Liang RH, Chen J. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb 2+ removal. Carbohydr Polym 2021; 260:117811. [PMID: 33712156 DOI: 10.1016/j.carbpol.2021.117811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/19/2023]
Abstract
Novel pectin/poly(m-phenylenediamine) (P/PmPDA) microspheres with different content of PmPDA were prepared by assembling PmPDA on the surface of pectin microsphere. The successful preparation was confirmed by the results of Fourier Transform Infrared spectra (FTIR), scanning electron microscopy (SEM) and elemental analysis. Compared with pectin microsphere, the Pb2+ adsorption performance of P/PmPDA microspheres was significantly improved. The results of batch adsorption experiments were in good agreement with the Langmuir isotherm model for Pb2+ adsorption, indicating the adsorption was monolayer. The maximum adsorption capacity of Pb2+ was found to be 390.9 mg/g. The kinetic adsorption process was well described by the pseudo-second-order model and chemical adsorption dominated the adsorption process. The potential mechanisms of Pb2+ adsorption were speculated as ion exchange and chelation, which were supported by X-ray photoelectron spectroscopy (XPS). The P/PmPDA microspheres showed good recyclability after five adsorption/desorption cycles. All these results indicated the potential of P/PmPDA microspheres for removing Pb2+.
Collapse
Affiliation(s)
- Xue-Dong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ya Li
- South Subtropical CropsResearch Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Tao-Tao Dai
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences 530007, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences 530007, Nanning, China
| | - Ming-Shun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cheng-Mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Rui-Hong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
12
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
13
|
Ishwarya S P, R S, Nisha P. Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 2021; 62:4393-4417. [PMID: 33511846 DOI: 10.1080/10408398.2021.1875394] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pectin hydrogel is a soft hydrocolloid with multifaceted utilities in the food sector. Substantial knowledge acquired on the gelation mechanisms and structure-function relationship of pectin has led to interesting functions of pectin hydrogel. Food applications of pectin hydrogels can be categorized under four headings: food ingredients/additives, food packaging, bioactive delivery and health management. The cross-linked and tangly three-dimensional structure of pectin gel renders it an ideal choice of wall material for the encapsulation of biomolecules and living cells; as a fat replacer and texturizer. Likewise, pectin hydrogel is an effective satiety inducer due to its ability to swell under the simulated gastric and intestinal conditions without losing its gel structure. Coating or composites of pectin hydrogel with proteins and other polysaccharides augment its functionality as an encapsulant, satiety-inducer and food packaging material. Low-methoxyl pectin gel is an appropriate food ink for 3D printing applications due to its viscoelastic properties, adaptable microstructure and texture properties. This review aims at explaining all the applications of pectin hydrogels, as mentioned above. A comprehensive discussion is presented on the approaches by which pectin hydrogel can be transformed as a resourceful material by controlling its dimensions, state, and rheology. The final sections of this article emphasize the recent research trends in this discipline, such as the development of smart hydrogels, injectable gels, aerogels, xerogels and oleogels from pectin.
Collapse
Affiliation(s)
- Padma Ishwarya S
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Sandhya R
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - P Nisha
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Araujo FP, Trigueiro P, Honório LMC, Furtini MB, Oliveira DM, Almeida LC, Garcia RRP, Viana BC, Silva-Filho EC, Osajima JA. A novel green approach based on ZnO nanoparticles and polysaccharides for photocatalytic performance. Dalton Trans 2020; 49:16394-16403. [PMID: 32567613 DOI: 10.1039/d0dt01128b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Novel green photocatalysts based on ZnO in the presence of arabic gum (AGZ) or karaya gum (KGZ) were synthesized by a sol-gel method for photocatalytic performance. The materials were characterized by XRD, FTIR spectroscopy, SEM, nitrogen adsorption/desorption, and PL and diffuse reflectance spectroscopy. Photocatalytic test was performed using methylene blue (MB) dye as the target pollutant under visible light. The reuse of photocatalysts and Artemia saline bioassays were investigated. The ZnO nanoparticles showed a hexagonal structure and the values of the band gaps were 2.95 (AGZ) and 2.98 eV (KGZ). The PL results demonstrated emission bands at 440, 473 or 478 and 549 nm. The textural properties indicated the presence of typically mesoporous materials. The MB discoloration efficiency was 81.5% and 91.0% for AGZ and KGZ, respectively. The photocatalytic activity of AGZ and KGZ was maintained after the third run. The ˙OH radicals are the main species involved in the MB discoloration. The MB discoloration from the photocatalysts showed no toxicity; therefore, they are considered to be promising materials for the degradation of the dye in the photocatalytic process.
Collapse
Affiliation(s)
- Francisca P Araujo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering graduate program, UFPI-Federal University of Piaui, 64049-550 Teresina, PI, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Xiong W, Guo W, Wu J, Chen L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121445. [PMID: 31668843 DOI: 10.1016/j.jhazmat.2019.121445] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Novel biochar/pectin/alginate hydrogel beads (BPA) derived from grapefruit peel were synthesized and used for Cu(II) removal from aqueous solution. FTIR, SEM-EDS, XRD, TGA and XPS, etc. were applied for characterization analysis. The synergistic reinforcing effect of polymer matrix and biochar fillers improved the adsorptive, mechanical and thermostabilized performance of BPA. Factors like component contents of biochar and pectin, pH, contact time, Cu(II) concentration and coexisting inorganic salts or organic ligands were systematically investigated in batch mode. The adsorption isotherms were fitted well by the Freundlich model and the experimental maximum adsorption capacity of optimized BPA-9 beads (mass ratio of pectin to alginate = 10:1) with 0.25% biochar, was ∼80.6 mg/g at pH 6. Kinetic process was well described by the pseudo-second-order model and film diffusion primarily governed the overall adsorption rate, followed by intraparticle diffusion. Thermodynamics analysis suggested spontaneous feasibility and endothermic nature of adsorption behavior. Moreover, BPA also showed better environmental adaptability in the presence of NaCl, MgCl2, CaCl2, EDTA-2Na and CA as well as good adsorption potential for other heavy metal [e.g. Pb(III)]. Crucially, the BPA beads showed good regeneration ability after five cycles. All these results indicated the potential of BPA for removing heavy metal from water.
Collapse
Affiliation(s)
- Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Huijuan Feng
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jing Wu
- School of Urban Design, Wuhan University, Wuhan, 430072, China
| | - Ling Chen
- Department of Internal Medicine & Geriatrics, Zhongnan Hospital of Wuhan University, China.
| |
Collapse
|
16
|
Lessa EF, Medina AL, Ribeiro AS, Fajardo AR. Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Gołębiowski A, Kowalkowski T, Buszewski B. Molecular parameters of low methoxylated pectin affected by gelation with copper and cadmium cations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
|
19
|
Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111197] [Citation(s) in RCA: 500] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Ni P, Fox JT. Synthesis and appraisal of a hydroxyapatite/pectin hybrid material for zinc removal from water. RSC Adv 2019; 9:21095-21105. [PMID: 35521314 PMCID: PMC9066029 DOI: 10.1039/c9ra03710a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022] Open
Abstract
A simple method to modify hydroxyapatite and pectin into an efficient zinc sorbent was investigated. Process and formulation modifications enabled the formation of a flower-like hydroxyapatite/pectin hybrid material. The hybrid material was characterized with scanning electron microscopy, elemental analysis, and zeta potential tests. Sorption data were analyzed with different kinetic and isotherm models. The results showed that the pseudo-second order kinetic model and two-staged isotherm curves with Langmuir at the first stage and a Freundlich model the at second stage could best describe the zinc sorption on the hybrid. The maximum experimental sorption capacity was 330.4 mg Zn2+ per gram of sorbent, which was obtained with an initial concentration of 260 mg L-1 Zn2+ at pH 5.0. pH monitoring and Zeta potential tests suggested surface complexation and electrostatic attraction were fundamental in the zinc sorption process.
Collapse
Affiliation(s)
- Pan Ni
- Department of Civil and Environmental Engineering, Lehigh University 1 West Packer Avenue Bethlehem PA 18015 USA +1-610-758-2593
| | - John T Fox
- Department of Civil and Environmental Engineering, Lehigh University 1 West Packer Avenue Bethlehem PA 18015 USA +1-610-758-2593
| |
Collapse
|
21
|
Kumar R, Sharma RK, Singh AP. Grafting of cellulose with N-isopropylacrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
23
|
Jakóbik-Kolon A, Bok-Badura J, Milewski A, Karoń K. Long Term and Large-Scale Continuous Studies on Zinc(II) Sorption and Desorption on Hybrid Pectin-Guar Gum Biosorbent. Polymers (Basel) 2019; 11:polym11010096. [PMID: 30960080 PMCID: PMC6402029 DOI: 10.3390/polym11010096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 11/24/2022] Open
Abstract
Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption–desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for utility in data estimation. Possibility of sorbent reuse and its lifetime was examined in 20 repeated sorption–desorption cycles. Finally, tests were repeated for real wastewater from galvanizing plant, giving satisfactory results. The effectiveness of Zn(II) sorption happened to be dependent on process parameters; tests have proved that it increased with increasing bed height and with decreasing flow rate or grain size. For an initial zinc concentration of 30 mg/L, even 2096 mL of zinc solution could be purified in small scale experiment (2 g of fine grain sorbent and flow rate 60 mL/h) or 5900 L in large-scale (16 kg of large grain sorbent and flow rate 45 L/h). This allowed for 40-fold or 49-fold zinc increases in concentration in one sorption–desorption cycle. The most successful results are meant that at least 20 sorption–desorption cycles could be performed on one portion of biosorbent without loss of its effectiveness, large-scale tests for real wastewater from galvanizing plant gave satisfactory results, and that the form and mechanical stability of our sorbent is suitable for column usage with flow rates applicable in industry.
Collapse
Affiliation(s)
- Agata Jakóbik-Kolon
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Joanna Bok-Badura
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Andrzej Milewski
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Krzysztof Karoń
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland.
| |
Collapse
|
24
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
25
|
Zhang B, Shen B, Guo M, Liu Y. Adsorption of PtCl62− from Hydrochloric Acid Solution by Chemically Modified Lignin Based on Rice Straw. Aust J Chem 2018. [DOI: 10.1071/ch18282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel adsorbent with the properties of selective adsorption based on rice straw was used to adsorb PtCl62− from hydrochloric acid solution by batch sorption. Many influencing factors for PtCl62− adsorption, such as initial concentration of PtCl62−, adsorption time, and concentration of hydrochloric acid, were optimized. The results suggested that the saturation adsorption capacity of PtCl62− was 218.8mgg−1 and the equilibrium adsorption time was 120min. The adsorbent had excellent selectivity on PtCl62− when the concentration of hydrochloric acid was lower than 0.5molL−1. The adsorption fitted well with the Langmuir isotherm model and pseudo-second-order kinetics model. The adsorption mechanism was investigated by FT-IR and X-ray photoelectron spectroscopy analyses and it indicated that PtIV was reduced to PtII by hydroxy groups and then coordinated with N through ion exchange between Cl− and PtCl42−.
Collapse
|
26
|
Jakóbik-Kolon A, Mitko K, Bok-Badura J. Zinc Sorption Studies on Pectin-Based Biosorbents. MATERIALS 2017; 10:ma10070844. [PMID: 28773203 PMCID: PMC5551886 DOI: 10.3390/ma10070844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
The previously-obtained and characterized hybrid pectin-based beads containing agar-agar and guar gum, as well as sole pectin beads (P, for comparison) were examined for zinc ions sorption and desorption properties. The sorption kinetics and equilibrium in the studied system was described by two kinetic models (pseudo-first- and pseudo-second-order) and two isotherms (Langmuir and Freundlich), respectively. The desorption kinetics and equilibrium was also investigated by applying various inorganic acids (nitric, hydrochloric, and sulfuric acid) of various concentrations. In the case of guar gum additive, no significant change in sorption capacity compared to sole pectin beads was observed (q: 37.0 ± 2.6 and 34.7 ± 2.0 mg/g, respectively). Addition of agar-agar significantly decreased the sorption capacity to 22.3 ± 1.0 mg/g, but stripping of zinc(II) ions from this biosorbent was complete even with very diluted acids (0.01 M). Total desorption of zinc from sole pectin and pectin-guar gum beads required acid solution of higher concentration (0.1 M). Sorption rates for all biosorbents are roughly the same and maximum sorption is achieved after 4–5 h. Obtained results and the advantage of our sorbent’s shape formation ability, make the pectin-based biosorbents interesting alternative for zinc(II) ions removal.
Collapse
Affiliation(s)
- Agata Jakóbik-Kolon
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, Gliwice 44-100, Poland.
| | - Krzysztof Mitko
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, Gliwice 44-100, Poland.
| | - Joanna Bok-Badura
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, Gliwice 44-100, Poland.
| |
Collapse
|