1
|
Uyarcan M, Güngör SC. Improving functional properties of starch-based films by ultraviolet (UV-C) technology: Characterization and application on minced meat packaging. Int J Biol Macromol 2024; 282:137085. [PMID: 39481730 DOI: 10.1016/j.ijbiomac.2024.137085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
This study aimed to utilize UV-C technology to improve the functional properties of starch-based films for minced meat packaging. Starch film solutions were exposed to UV-C light for varying durations (15, 30, 60, and 120 min). Results revealed significant reductions in the water solubility, swelling degree, and elongation at break values of films following treatment (P < 0.05). Opacity values consistently increased with prolonged UV exposure time, particularly in films treated for 30, 60, and 120 min (P < 0.05). Also, the water contact angle of films significantly increased (P < 0.05) while their water vapor permeability decreased. SEM observations showed that UV-C treatment resulted in excellent miscibility, compatibility, and strong intermolecular bonding in starch films. FTIR, X-ray diffraction, and thermogravimetric analysis further confirmed the excellent compatibility of UV-C-treated films within the film matrix. Notably, starch films treated with UV-C for 60 min exhibited the best characteristics for minced meat packaging. Minced meat packaged with these treated films showed lower thiobarbituric acid values (0.033 mg MDA/kg sample) and total viable counts (5.93 log CFU/g) than those packaged with untreated films throughout storage. These findings highlight the significant potential of UV-C-treated starch-based films, particularly those treated for 60 min, as functional packaging solutions for minced meat preservation.
Collapse
Affiliation(s)
- Müge Uyarcan
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey.
| | - Sude Cansın Güngör
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey
| |
Collapse
|
2
|
Zhang S, Zhong X, Chen J, Nilghaz A, Yun X, Wan X, Tian J. Manufacturing biodegradable lignocellulosic films with tunable properties from spent coffee grounds: A sustainable alternative to plastics. Int J Biol Macromol 2024; 273:132918. [PMID: 38844282 DOI: 10.1016/j.ijbiomac.2024.132918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Manufacturing biodegradable lignocellulosic films from spent coffee grounds (SCG) as an alternative to commercial plastics is a viable solution to address plastic pollution. Here, the biodegradable lignocellulosic films from SCG were fabricated via a sequential alkaline treatment and ionic liquid-based dissolution process. The alkaline treatment process could swell the cell wall of SCG, change its carbohydrates and lignin contents, and enhance its solubility in ionic liquids. The prepared SCG films with different lignin contents exhibited outstanding UV blocking capability (42.07-99.99 % for UVB and 20.96-99.99 % for UVA) and light scattering properties, good surface hydrophobicity (water contact angle = 63.2°-88.7°), enhanced water vapor barrier property (2.28-6.79 × 10-12 g/m·s·Pa), and good thermal stability. Moreover, the SCG films exhibit excellent mechanical strength (50.10-81.56 MPa, tensile strength) and biodegradability (fully degraded within 30 days when buried in soil) compared to commercial plastic. The SCG films represent a promising alternative that can replace non-biodegradable plastics.
Collapse
Affiliation(s)
- Shaokai Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Zhong
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyu Chen
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaofang Wan
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junfei Tian
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Cruz RMS, Rainer B, Wagner I, Krauter V, Janalíková M, Vicente AA, Vieira JM. Valorization of Cork Stoppers, Coffee-Grounds and Walnut Shells in the Development and Characterization of Pectin-Based Composite Films: Physical, Barrier, Antioxidant, Genotoxic, and Biodegradation Properties. Polymers (Basel) 2024; 16:1053. [PMID: 38674972 PMCID: PMC11053454 DOI: 10.3390/polym16081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The development of sustainable materials from the valorization of waste is a good alternative to reducing the negative environmental impact of plastic packaging. The objectives of this study were to develop and characterize pectin-based composite films incorporated with cork or cork with either coffee grounds or walnut shells, as well as to test the films' genotoxicity, antioxidant properties, and biodegradation capacity in soil and seawater. The addition of cork, coffee grounds, or walnut shells modified the films' characteristics. The results showed that those films were thicker (0.487 ± 0.014 mm to 0.572 ± 0.014 mm), more opaque (around 100%), darker (L* = 25.30 ± 0.78 to 33.93 ± 0.84), and had a higher total phenolic content (3.17 ± 0.01 mg GA/g to 4.24 ± 0.02 mg GA/g). On the other hand, the films incorporated only with cork showed higher values of elongation at break (32.24 ± 1.88% to 36.30 ± 3.25%) but lower tensile strength (0.91 ± 0.19 MPa to 1.09 ± 0.08 MPa). All the films presented more heterogeneous and rougher microstructures than the pectin film. This study also revealed that the developed films do not contain DNA-reactive substances and that they are biodegradable in soil and seawater. These positive properties could subsequently make the developed films an interesting eco-friendly food packaging solution that contributes to the valorization of organic waste and by-products, thus promoting the circular economy and reducing the environmental impact of plastic materials.
Collapse
Affiliation(s)
- Rui M. S. Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bernhard Rainer
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria; (B.R.); (I.W.); (V.K.)
| | - Isabella Wagner
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria; (B.R.); (I.W.); (V.K.)
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria; (B.R.); (I.W.); (V.K.)
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic;
| | - António A. Vicente
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.A.V.); (J.M.V.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Jorge M. Vieira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.A.V.); (J.M.V.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Massijaya SY, Lubis MAR, Nissa RC, Nurhamiyah Y, Kusumaningrum WB, Marlina R, Ningrum RS, Sutiawan J, Hidayat I, Kusumah SS, Karlinasari L, Hartono R. Thermal Properties' Enhancement of PLA-Starch-Based Polymer Composite Using Sucrose. Polymers (Basel) 2024; 16:1028. [PMID: 38674948 PMCID: PMC11053613 DOI: 10.3390/polym16081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Polylactic-acid-starch-based polymer composite (PLA/TPS) has good thermal stability for biocomposites. However, the physical and mechanical properties of PLA/TPS do not meet the standards. It needed additives to enhance its physical and mechanical properties. The aim was to improve the physical and mechanical properties of PLA/thermoplastic starch using sucrose. In addition, this study evaluated the enhancement of thermal properties of PLA/thermoplastic starch using sucrose. This study used sucrose as an additive to enhance the PLA/TPS composite. The addition of sucrose inhibits the degradation of biocomposites. This means that thermal stability increases. The thermal stability increased because the degree of crystallinity increased with the addition of sucrose, which was also proven in the XRD result. The addition of sucrose caused the morphology of the biocomposite to have pores. The FESEM results showed that biocomposites with the addition of sucrose had pores and gaps. These gaps result from low adhesion between polymers, causing a decrease in the mechanical and physical properties of the sample. Based on the FTIR spectra, biocomposite PLA/TPS blends with the addition of sucrose still have many hydroxyl groups that will lead to attracting other molecules or ions, such as oxygen or water. This phenomenon affects the physical and mechanical properties of materials. The physical and mechanical properties increased with sucrose addition. The best composite was prepared using 3% sucrose. This is because sucrose has a crystalline structure that affects the properties of biocomposites. However, the addition of 3% sucrose was not as effective as that of neat PLA.
Collapse
Affiliation(s)
- Sri Yustikasari Massijaya
- Forest Products Department, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (S.Y.M.); (L.K.)
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Rossy Choerun Nissa
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Yeyen Nurhamiyah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Wida Banar Kusumaningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Resti Marlina
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Riska Surya Ningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Jajang Sutiawan
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Iman Hidayat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Sukma Surya Kusumah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Lina Karlinasari
- Forest Products Department, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (S.Y.M.); (L.K.)
| | - Rudi Hartono
- Forest Products Department, Faculty of Forestry, Universitas Sumatera Utara, Medan 20353, Indonesia
| |
Collapse
|
5
|
Wang J, Zhang K, Zhou Y, Shang P, Yang S, Zhang B, Liu A, Liu J, Xie J, Xu J. POSS (epoxy)8 reinforced poly (butylene adipate-co-terephthalate)/lignin biodegradable films: Fabrication, enhanced mechanical properties and UV aging resistance. Int J Biol Macromol 2024; 255:127921. [PMID: 37944741 DOI: 10.1016/j.ijbiomac.2023.127921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
To reduce the white pollution, the eco-friendly biodegradable poly (butylene adipate-co-terephthalate) (PBAT)-based films had attracted increasing interests worldwide. However, the high-cost of the PBAT had limited the large-scale development and application. In this work, 10 wt% low-cost lignin was introduced into the PBAT to prepare composite films by melt blending and blow molding, and the POSS(epoxy)8 was selected as the compatibilizer to improve the compatibility of PBAT and lignin. The maximum tensile strength and the nominal strain at break subsequently increased by 48.2 % and 21.4 % respectively, while the water vapor permeability enhanced by 9.9 %. Furthermore, the UV aging resistance of PBAT/lignin films were significantly improved, with only 1 wt% POSS(epoxy)8 content. This work provides an efficient strategy to foster the end-user confidence in the low-cost and eco-friendly biodegradable polymer materials with efficient performance.
Collapse
Affiliation(s)
- Jiayin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Kun Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China
| | - Yikai Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengpeng Shang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China
| | - Shangshan Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bing Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Anran Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiahuan Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiazhuo Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Zheng NC, Chien HW. UV-crosslinking of chitosan/spent coffee ground composites for enhanced durability and multifunctionality. Int J Biol Macromol 2024; 255:128215. [PMID: 37992943 DOI: 10.1016/j.ijbiomac.2023.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Spent coffee grounds (SCGs) have numerous applications and are often blended with polymers to create composites. However, SCGs are physically trapped within the polymer matrix, lacking strong chemical bonding. Therefore, this study has developed a new method for UV crosslinking composites using phenyl azide to address the issue of SCG leakage and limited durability of the composites. The main approach involves grafting phenyl azide onto chitosan, which is then combined with SCGs. When exposed to UV light, the SCGs become covalently linked to the chitosan chains. This method not only resolves the problem of chitosan's porous material fragility but also prevents SCG detachment, surpassing the performance of glutaraldehyde-crosslinked composites. Regarding applications, CS/SCG composites exhibit rapid heating and photothermal stability, making them suitable for use as thermal pads in evaporative water purification, enabling for the collection of pure water from contaminated sources. Furthermore, SCGs have the ability to adsorb metal ions, significantly enhancing the Cu2+ adsorption capacity of CS/SCG composites compared to pure CS, with an increase of more than twofold. This research not only presents a practical solution for stabilizing fillers within polymer matrices but also demonstrates the reusability of SCGs.
Collapse
Affiliation(s)
- Nai-Ci Zheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| |
Collapse
|
7
|
Sharaby MR, Soliman EA, Abdel-Rahman AB, Osman A, Khalil R. Novel pectin-based nanocomposite film for active food packaging applications. Sci Rep 2022; 12:20673. [PMID: 36450774 PMCID: PMC9712656 DOI: 10.1038/s41598-022-25192-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Novel pectin-based films reinforced with crystalline nanocellulose (CNC) and activated with zinc oxide nanoparticles (ZnO NPs) were prepared by solvent-casting method. Film ingredients enhanced UV-blocking, thermal, and antibacterial properties of active films against well-known foodborne pathogens. Optimal active films exhibited higher mechanical, water vapor barrier properties compared to pristine pectin films. SEM confirmed the even distribution of CNC and ZnO NPs in pectin matrix and their interactions were proven using FTIR. Wrapping hard cheese samples artificially contaminated with Staphylococcus aureus and Salmonella enterica with the ternary nanocomposite film at 7 °C for 5 days significantly reduced the total population counts by at least 1.02 log CFU/g. Zn2+ migrating to wrapped cheese samples was below the specific limit (5 mg/kg), confirming their safety for food contact. Overall, ZnO/CNC/pectin nanocomposite films represent promising candidates for active food packaging as safe, eco-friendly alternatives for synthetic packaging materials.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Adel B Abdel-Rahman
- Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed Osman
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
8
|
Boccalon E, Gorrasi G. Functional bioplastics from food residual: Potentiality and safety issues. Compr Rev Food Sci Food Saf 2022; 21:3177-3204. [PMID: 35768940 DOI: 10.1111/1541-4337.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Plastic pollution and food waste are two global issues with much in common. Plastic containers were introduced as a practical and easy remedy to improve food preservation and reduce the risk of creating waste, but ironically, to address one problem, another has been made worse. The spread of single-use containers has dramatically increased the amount of plastic that has to be discarded, and the most urgent task is now to find a solution to what has become part of the problem. An innovative way around it consists of promoting the valorization of food residues by turning them into novel materials for packaging. Although the results are promising, the aim of completely replacing plastics with biodegradable materials still seems far from being achieved. This review illustrates the main strategies adopted thus far to produce new bioplastic materials and composites from waste resources and focuses on the pros and cons of the food recovery process to look for the aspects that represent an obstacle to the development of the circular food economy on an industrial scale.
Collapse
Affiliation(s)
- Elisa Boccalon
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| |
Collapse
|
9
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
10
|
Kandah MI. Production of Biodegradable Bioplastics filled with Jordanian Olive Tree Leaves. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Munther Issa Kandah
- Chemical Engineering Department Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 Jordan
| |
Collapse
|
11
|
Kristensen K, Warne G, Agarwal D, Foster TJ. Effects of different moisture contents on the structural and functional properties of cellulose with cell wall components in different citrus fibres. Food Funct 2022; 13:2756-2767. [PMID: 35171166 DOI: 10.1039/d1fo02808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research used a multi-method approach to analyse the influence of different moisture levels (low, medium and high) on the structural and functional properties of cellulose with cell wall materials such as pectin, lignin, and hemicellulose present in citrus fibres. The influence of the drying and purification processes and the source of the citrus fibres on these interactions were also considered. A fluidized bed dryer results in a higher aggregation of cellulose fibres, which limits their interactions with water, pectin, lignin, and hemicellulose. Citrus fibre suspension produce by a alcohol washing in combination with a centrifugal drying process showed higher storage modulus (G'), loss modulus (G'') and water retention capacity. The compositions of the citrus fibres and the type of hydrogen bonding (analysed by FTIR) play a key role in generating stable rheological and thermal properties as well as controlling the moisture sorption behaviour of the citrus fibres.
Collapse
Affiliation(s)
- Kaja Kristensen
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - George Warne
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Deepa Agarwal
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. .,The New Zealand Institute of Plant and Food Research, Plant & Food Research Canterbury Agriculture & Science Centre, Gerald St, Lincoln 7608, New Zealand
| | - Tim J Foster
- Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
12
|
Roadmap of Effects of Biowaste-Synthesized Carbon Nanomaterials on Carbon Nano-Reinforced Composites. Catalysts 2021. [DOI: 10.3390/catal11121485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sustainable growth can be achieved by recycling waste material into useful resources without affecting the natural ecosystem. Among all nanomaterials, carbon nanomaterials from biowaste are used for various applications. The pyrolysis process is one of the eco-friendly ways for synthesizing such carbon nanomaterials. Recently, polymer nanocomposites (PNCs) filled with biowaste-based carbon nanomaterials attracted a lot of attention due to their enhanced mechanical properties. A variety of polymers, such as thermoplastics, thermosetting polymers, elastomers, and their blends, can be used in the formation of composite materials. This review summarizes the synthesis of carbon nanomaterials, polymer nanocomposites, and mechanical properties of PNCs. The review also focuses on various biowaste-based precursors, their nanoproperties, and turning them into proper composites. PNCs show improved mechanical properties by varying the loading percentages of carbon nanomaterials, which are vital for many defence- and aerospace-related industries. Different synthesis processes are used to achieve enhanced ultimate tensile strength and modulus. The present review summarizes the last 5 years’ work in detail on these PNCs and their applications.
Collapse
|
13
|
Guo Z, Ge X, Li W, Yang L, Han L, Yu QL. Active-intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Chen ZJ, Tsou CH, Tsai ML, Guo J, De Guzman MR, Yang T, Gao C, Lei Y, Gan PW, Chen S, Tu LJ, Qu CL, Wang RY, Wu CS. Barrier Properties and Hydrophobicity of Biodegradable Poly(lactic acid) Composites Reinforced with Recycled Chinese Spirits Distiller's Grains. Polymers (Basel) 2021; 13:polym13172861. [PMID: 34502903 PMCID: PMC8434313 DOI: 10.3390/polym13172861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Adding natural biomass to poly(lactic acid) (PLA) as a reinforcing filler is a way to change the properties of PLA. This paper is about preparing PLA/biomass composites by physically melting and blending Chinese Spirits distiller's grains (CSDG) biomass and PLA to optimize the composite performance. Composites of modified PLA (MPLA) with varying amounts of CSDG were also prepared by the melt-mixing method, and unmodified PLA/CSDG composites were used as a control group for comparative analysis. The functional groups of MPLA enhanced the compatibility between the polymer substrate and CSDG. The composite water vapor/oxygen barrier and mechanical properties were studied. It was found that the barrier and mechanical properties of MPLA/CSDG composites were significantly improved. SEM was adopted to examine the tensile section structure of the composites, and the compatibility between the filler and the matrix was analyzed. An appropriate amount of CSDG had a better dispersibility in the matrix, and it further improved the interfacial bonding force, which in turn improved the composite mechanical properties. X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were conducted to determine the crystalline properties and to analyze the stability of the composites. It was found that the CSDG content had a significant effect on the crystallinity. Barrier and biodegradation mechanisms were also discussed.
Collapse
Affiliation(s)
- Zhi-Jun Chen
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
- Sichuan Yibin Plastic Packaging Materials Co. Ltd., Yibin 644007, China
- Sichuan Golden-Elephant Sincerity Chemical Co. Ltd., Meishan 620010, China
- Sichuan Zhixiangyi Technology Co. Ltd., Chengdu 610051, China
- Correspondence: (C.-H.T.); (C.-S.W.)
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (M.-L.T.); (R.-Y.W.)
| | - Jipeng Guo
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Manuel Reyes De Guzman
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Tao Yang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Chen Gao
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Yan Lei
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Pei-Wen Gan
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Shuang Chen
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Lian-Jie Tu
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Chang-Lei Qu
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (Z.-J.C.); (J.G.); (M.R.D.G.); (T.Y.); (C.G.); (Y.L.); (P.-W.G.); (S.C.); (L.-J.T.); (C.-L.Q.)
| | - Ruo-Yao Wang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (M.-L.T.); (R.-Y.W.)
| | - Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan
- Correspondence: (C.-H.T.); (C.-S.W.)
| |
Collapse
|
15
|
Sani IK, Geshlaghi SP, Pirsa S, Asdagh A. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106719] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Figueroa-Velarde V, Diaz-Vidal T, Cisneros-López EO, Robledo-Ortiz JR, López-Naranjo EJ, Ortega-Gudiño P, Rosales-Rivera LC. Mechanical and Physicochemical Properties of 3D-Printed Agave Fibers/Poly(lactic) Acid Biocomposites. MATERIALS 2021; 14:ma14113111. [PMID: 34198954 PMCID: PMC8201365 DOI: 10.3390/ma14113111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
In order to provide a second economic life to agave fibers, an important waste material from the production of tequila, filaments based on polylactic acid (PLA) were filled with agave fibers (0, 3, 5, 10 wt%), and further utilized to produce biocomposites by fused deposition modeling (FDM)-based 3D printing at two raster angles (−45°/45° and 0°/90°). Differential scanning calorimetry, water uptake, density variation, morphology, and composting of the biocomposites were studied. The mechanical properties of the biocomposites (tensile, flexural, and Charpy impact properties) were determined following ASTM international norms. The addition of agave fibers to the filaments increased the crystallinity value from 23.7 to 44.1%. However, the fibers generated porous structures with a higher content of open cells and lower apparent densities than neat PLA pieces. The printing angle had a low significant effect on flexural and tensile properties, but directly affected the morphology of the printed biocomposites, positively influenced the impact strength, and slightly improved the absorption values for biocomposites printed at −45°/45°. Overall, increasing the concentrations of agave fibers had a detrimental effect on the mechanical properties of the biocomposites. The disintegration of the biocomposites under simulated composting conditions was slowed 1.6-fold with the addition of agave fibers, compared to neat PLA.
Collapse
|
17
|
Effect of Glass Bubbles on Friction and Wear Characteristics of PDMS-Based Composites. COATINGS 2021. [DOI: 10.3390/coatings11050603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to improve the mechanical durability and surface frictional characteristics of polymer/ceramic-based composite materials. Polydimethylsiloxane (PDMS)/glass bubble (GB) composite specimens are prepared at various weight ratios (PDMS:GB) by varying the amount of micro-sized GBs added to the PDMS. The surface, mechanical, and tribological characteristics of the PDMS/GB composites are evaluated according to the added ratios of GBs. The changes in internal stress according to the indentation depth after contacting with a steel ball tip to the bare PDMS and PDMS/GB composites having different GB densities are compared through finite element analysis simulation. The elastic modulus is proportional to the GB content, while the friction coefficient generally decreases as the GB content increases. A smaller amount of GB in the PDMS/GB composite results in more surface damage than the bare PDMS, but a significant reduction in wear rate is achieved when the ratio of PDMS:GB is greater than 100:5.
Collapse
|
18
|
Gaidukova G, Platnieks O, Aunins A, Barkane A, Ingrao C, Gaidukovs S. Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective. RSC Adv 2021; 11:18580-18589. [PMID: 35480919 PMCID: PMC9033479 DOI: 10.1039/d1ra03203h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Turning waste products into useable resources is a necessity for the sustainable future of our planet. Such is the case with popular beverage coffee that produces solid waste in the form of spent coffee grounds (SCG). There is an opportunity to use SCG material as a cheap, sustainable, and biodegradable polymer filler that is received as waste from espresso machines. There have been relatively many studies that prove the concept of various agricultural and forestry waste, which can be integrated into modern green materials. Building upon this concept, we have selected a promising polyester poly(butylene succinate) (PBS) as a matrix owing to its bio-based and biodegradable nature. High loadings of SCG from 20 to 60 wt% were tested for optimal composition performance. Tensile, dynamic mechanical, thermal, and structural properties of the composites were examined, while their biodegradation in composting conditions was also analyzed. SCG filler showed different performance from various cellulose fiber-based composites, and properties significantly varied depending on loading. Compared to neat PBS, biodegradation occurred twice as fast for composite materials with high SGC loadings.
Collapse
Affiliation(s)
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University P. Valdena 3/7 Riga LV-1048 Latvia
| | - Arturs Aunins
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University P. Valdena 3/7 Riga LV-1048 Latvia
| | - Anda Barkane
- Latvian Maritime Academy Flotes3-7 Riga LV-1016 Latvia
| | - Carlo Ingrao
- Department of Economics, University of Foggia Via Romolo Caggese 1 - 71121 Foggia Italy
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University P. Valdena 3/7 Riga LV-1048 Latvia
| |
Collapse
|
19
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
20
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
21
|
Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydr Polym 2021; 253:117144. [PMID: 33278962 DOI: 10.1016/j.carbpol.2020.117144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022]
Abstract
The objective of this work was to investigate the influence of different gamma ray dosages (5, 10, and 10 kGy) on the structural, mechanical, surface and barrier properties of chitosan (Ch) based nanocomposite film. The results showed gamma irradiation caused an increase in the surface hydrophobicity, water vapor permeability and sensitivity of films to water and also, yellowness and opacity of films increased, simultaneously. By increasing the irradiation doses up to 10 kGy, the mechanical properties of Ch/BCNC film was significantly enhanced. As observed by FTIR spectra, no change occurred in the chemical functional groups of the films during irradiation. XRD studies confirmed that crystallinity of films was increased after irradiation. The nanocomposite film irradiated by 10 kGy had the highest thermal stability. In conclusion, gamma radiation can be considered as a safe method for sterilization of foods and modification of Ch/BCNC film properties.
Collapse
|
22
|
Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility. MEMBRANES 2021; 11:membranes11010037. [PMID: 33406798 PMCID: PMC7824666 DOI: 10.3390/membranes11010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications.
Collapse
|
23
|
Chen Y, Wang Y, Xu L, Jia Y, Xue Z, Zhang M, Phisalaphong M, Chen H. Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. Int J Biol Macromol 2020; 165:156-168. [DOI: 10.1016/j.ijbiomac.2020.09.192] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
|
25
|
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Waste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’ spent grain composites’ mechanical performance. The chemical structure was analyzed by Fourier-transform infrared spectroscopy, while the mechanical performance of composites was assessed by static tensile tests and dynamic mechanical analysis. Depending on the filler pretreatment, composites with different mechanical properties were obtained. Nevertheless, the increase in pretreatment temperature resulted in the increased interface surface area of filler, which enhanced composites’ toughness. As a result, composites were able to withstand a higher amount of stress before failure. The mechanical tests also indicated a drop in the adhesion factor, pointing to enhanced interfacial interactions for higher pretreatment temperatures. The presented work showed that reactive extrusion could be considered an auspicious method for lignocellulose filler modification, which could be tailored to obtain composites with desired properties.
Collapse
|
26
|
Mellinas AC, Jiménez A, Garrigós MC. Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods 2020; 9:E1572. [PMID: 33138245 PMCID: PMC7692356 DOI: 10.3390/foods9111572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
In this work, pectin-based active films with a cocoa bean shell extract, obtained after waste valorisation of residues coming from the chocolate production process, and zinc oxide/zinc nanoparticles (ZnO/Zn-NPs) at different concentrations, were obtained by casting. The effect of the active additive incorporation on the thermal, barrier, structural, morphological and optical properties was investigated. Moreover, the photocatalytic properties of the obtained films based on the decomposition of methylene blue (MB) in aqueous solution at room temperature were also studied. A significant increase in thermal and oxidative stability was obtained with the incorporation of 3 wt% of ZnO/Zn-NPs compared to the control film. The addition of 5 wt% cocoa bean shell extract to pectin significantly affected the oxygen barrier properties due to a plasticizing effect. In contrast, the addition of ZnO/Zn-NPs at 1 wt% to pectin caused a decrease in oxygen transmission rate per film thickness (OTR.e) values of approximately 50% compared to the control film, resulting in an enhanced protection against oxidation for food preservation. The optical properties were highly influenced by the incorporation of the natural extract but this effect was mitigated when nanoparticles were also incorporated into pectin-based films. The addition of the extract and nanoparticles resulted in a clear improvement (by 98%) in UV barrier properties, which could be important for packaged food sensitive to UV radiation. Finally, the photocatalytic activity of the developed films containing nanoparticles was demonstrated, showing photodegradation efficiency values of nearly 90% after 60 min at 3 wt% of ZnO/Zn-NPs loading. In conclusion, the obtained pectin-based bionanocomposites with cocoa bean shell waste extract and zinc oxide/zinc nanoparticles showed great potential to be used as active packaging for food preservation.
Collapse
Affiliation(s)
| | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.C.M.); (A.J.)
| |
Collapse
|
27
|
Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coffee husk, a major lignocellulosic waste derived from the coffee industry, was first ground into flour of fine particles of approximately 90 µm and then torrefied at 250 °C to make it more thermally stable and compatible with biopolymers. The resultant torrefied coffee husk flour (TCHF) was thereafter melt-compounded with polylactide (PLA) in contents from 20 to 50 wt% and the extruded green composite pellets were shaped by injection molding into pieces and characterized. Although the incorporation of TCHF reduced the ductility and toughness of PLA, filler contents of 20 wt% successfully yielded pieces with balanced mechanical properties in both tensile and flexural conditions and improved hardness. Contents of up to 30 wt% of TCHF also induced a nucleating effect that favored the formation of crystals of PLA, whereas the thermal degradation of the biopolyester was delayed by more than 7 °C. Furthermore, the PLA/TCHF pieces showed higher thermomechanical resistance and their softening point increased up to nearly 60 °C. Therefore, highly sustainable pieces were developed through the valorization of large amounts of coffee waste subjected to torrefaction. In the Circular Bioeconomy framework, these novel green composites can be used in the design of compostable rigid packaging and food contact disposables.
Collapse
|
28
|
Harhaun R, Kunik O, Saribekova D, Lazzara G. Biologically active properties of plant extracts in cosmetic emulsions. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Sadjadi S, Malmir M, Lazzara G, Cavallaro G, Heravi MM. Preparation of palladated porous nitrogen-doped carbon using halloysite as porogen: disclosing its utility as a hydrogenation catalyst. Sci Rep 2020; 10:2039. [PMID: 32029834 PMCID: PMC7005045 DOI: 10.1038/s41598-020-59003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/23/2020] [Indexed: 12/04/2022] Open
Abstract
In this article, halloysite nanoclay (Hal) was used as porogen for the synthesis of nitrogen doped porous carbon material with high specific surface area and pore volume. To this purpose, polymerization of melamine and terephthalaldehyde (MT) was performed in the presence of amine-functionalized carbon coated Hal (Hal@Glu-2N) that was prepared from hydrothermal treatment of Hal and glucose. Then, the prepared nanocomposite was palladated and carbonized to afford Pd@Hal@C. To further improve the textural properties of the nanocomposite, and introduce more pores in its structure, Hal nanotubes were etched. The characterization of the resulting compound, Pd@C, and comparing it with Pd@Hal@C, showed that etching of Hal significantly increased the specific surface area and pore volume in Pd@C. Pd@C was successfully used as a heterogeneous catalyst for promoting hydrogenation of nitroarens in aqueous media using hydrogen with atmospheric pressure as a reducing agent. The comparison of the structural features and catalytic activity of the catalyst with some control catalysts, including, Pd@Hal, Pd@Hal@Glu, Pd@Hal@Glu-MT and Pd@Hal@C confirmed that nitrogen groups in C could improve the Pd anchoring and suppress its leaching, while etching of Hal and introduction of more pores could enhance the catalytic activity through facilitating the mass transfer.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemicals Institute, PO Box 14975-112, Tehran, Iran.
| | - Masoumeh Malmir
- Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128, Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128, Palermo, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121, Firenze, Italy
| | - Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| |
Collapse
|
30
|
Kalathaki I, Alba K, Muhamedsalih H, Kontogiorgos V. Fabrication and characterisation of metal-doped pectin films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Barnes E, Jefcoat JA, Alberts EM, McKechnie MA, Peel HR, Buchanan JP, Weiss CA, Klaus KL, Mimun LC, Warner CM. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Polymers (Basel) 2019; 11:polym11071091. [PMID: 31252644 PMCID: PMC6680576 DOI: 10.3390/polym11071091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanofibrils (CNFs) are high aspect ratio, natural nanomaterials with high mechanical strength-to-weight ratio and promising reinforcing dopants in polymer nanocomposites. In this study, we used CNFs and oxidized CNFs (TOCNFs), prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation process, as reinforcing agents in poly(vinylidene fluoride) (PVDF). Using high-shear mixing and doctor blade casting, we prepared free-standing composite films loaded with up to 5 wt % cellulose nanofibrils. For our processing conditions, all CNF/PVDF and TOCNF/PVDF films remain in the same crystalline phase as neat PVDF. In the as-prepared composites, the addition of CNFs on average increases crystallinity, whereas TOCNFs reduces it. Further, addition of CNFs and TOCNFs influences properties such as surface wettability, as well as thermal and mechanical behaviors of the composites. When compared to neat PVDF, the thermal stability of the composites is reduced. With regards to bulk mechanical properties, addition of CNFs or TOCNFs, generally reduces the tensile properties of the composites. However, a small increase (~18%) in the tensile modulus was observed for the 1 wt % TOCNF/PVDF composite. Surface mechanical properties, obtained from nanoindentation, show that the composites have enhanced performance. For the 5 wt % CNF/PVDF composite, the reduced modulus and hardness increased by ~52% and ~22%, whereas for the 3 wt % TOCNF/PVDF sample, the increase was ~23% and ~25% respectively.
Collapse
Affiliation(s)
- Eftihia Barnes
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA.
| | - Jennifer A Jefcoat
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | | | - Mason A McKechnie
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Hannah R Peel
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - J Paige Buchanan
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Charles A Weiss
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Kyle L Klaus
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - L Christopher Mimun
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Christopher M Warner
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, USA
| |
Collapse
|
32
|
Sottile F, Modica A, Rosselli S, Catania CA, Cavallaro G, Lazzara G, Bruno M. Hand-made paper obtained by green procedure of cladode waste of Opuntia ficus indica (L.) Mill. from Sicily. Nat Prod Res 2019; 35:359-368. [PMID: 31219358 DOI: 10.1080/14786419.2019.1631820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cellulosic fibres have been obtained by green procedures from the cladodes of Opuntia ficus indica (L.) Mill., constituting a large agro industrial waste in our territory. The materials have been analysed for its relative composition, applying, IR and TG methodologies and it was characterised by the absence of lignin. The fibrous material allowed the manufacture of a handmade paper obtaining an ecological material suitable for packaging purposes. The authors evidenced that the simple protocol based on hot water treatment was able to decrease the amount of hemicellulose in the final material.
Collapse
Affiliation(s)
- Francesco Sottile
- Dipartimento di Architettura, Università degli Studi di Palermo, Palermo, Italy
| | - Aurora Modica
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Sergio Rosselli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Palermo, Italy
| | - C Anna Catania
- Dipartimento di Architettura, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università degli Studi di Palermo, Palermo, Italy and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università degli Studi di Palermo, Palermo, Italy and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Firenze, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
33
|
Okoshi M. Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E870. [PMID: 31181677 PMCID: PMC6630368 DOI: 10.3390/nano9060870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022]
Abstract
A 193-nm ArF excimer laser was used to induce the photodissociation of Si-O bonds of silicone rubber in order to fabricate a periodic micro/nano-suction cup silicone structure, approximately 1 μm in diameter and 2 μm in height at regular intervals of 2.5 μm. The laser was focused on Al-coated silicone rubber by each silica glass microsphere 2.5 μm in diameter, which covered the entire surface of the silicone rubber. The silicone rubber underneath each microsphere photochemically swelled after laser-ablating the coated Al to limit the diameter of the swelling. Simultaneously, the coated Al was able to adjust the focal point to the surface of the silicone rubber to form a hole approximately 500 nm in diameter, centered at the swollen silicone. The dependences of the thickness of the coated-Al and the laser pulse number are discussed, based on the observations of a scanning electron microscope (SEM) and an atomic force microscope (AFM). The superhydrophobic property of the fabricated micro/nano-suction cup structure was successfully found.
Collapse
Affiliation(s)
- Masayuki Okoshi
- Department of Electrical and Electronic Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan.
| |
Collapse
|
34
|
Demina TS, Kuryanova AS, Aksenova NA, Shubnyy AG, Popyrina TN, Sokovikov YV, Istranova EV, Ivanov PL, Timashev PS, Akopova TA. Chitosan-g-oligo/polylactide copolymer non-woven fibrous mats containing protein: from solid-state synthesis to electrospinning. RSC Adv 2019; 9:37652-37659. [PMID: 35542266 PMCID: PMC9075748 DOI: 10.1039/c9ra07667k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Amphiphilic chitosan-g-oligo/polylactide graft-copolymers were synthesized through solid-state reactive co-extrusion and used for fabrication of fibrous non-woven mats via the electrospinning technique using chloroform as a solvent.
Collapse
Affiliation(s)
- Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
- Institute for Regenerative Medicine
| | - Anastasia S. Kuryanova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Nadejda A. Aksenova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Andrey G. Shubnyy
- Institute on Photon Technologies
- Federal Scientific Research Centre “Crystallography and Photonics”
- Russian Academy of Sciences
- Moscow 142190
- Russia
| | - Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| | | | - Elena V. Istranova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
| | - Pavel L. Ivanov
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| |
Collapse
|
35
|
Wardhono EY, Wahyudi H, Agustina S, Oudet F, Pinem MP, Clausse D, Saleh K, Guénin E. Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E859. [PMID: 30347805 PMCID: PMC6215109 DOI: 10.3390/nano8100859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022]
Abstract
The isolation of crystalline regions from fibers cellulose via the hydrolysis route generally requires corrosive chemicals, high-energy demands, and long reaction times, resulting in high economic costs and environmental impact. From this basis, this work seeks to develop environment-friendly processes for the production of Bacterial Cellulose Nanocrystals (BC-NC). To overcome the aforementioned issues, this study proposes a fast, highly-efficient and eco-friendly method for the isolation of cellulose nanocrystals from Bacterial Cellulose, BC. A two-step processes is considered: (1) partial depolymerization of Bacterial Cellulose (DP-BC) under ultrasonic conditions; (2) extraction of crystalline regions (BC-NC) by treatment with diluted HCl catalyzed by metal chlorides (MnCl₂ and FeCl₃.6H₂O) under microwave irradiation. The effect of ultrasonic time and reactant and catalyst concentrations on the index crystallinity (CrI), chemical structure, thermal properties, and surface morphology of DP-BC and BC-NC were evaluated. The results indicated that the ultrasonic treatment induced depolymerization of BC characterized by an increase of the CrI. The microwave assisted by MnCl₂-catalyzed mild acid hydrolysis enhanced the removal of the amorphous regions, yielding BC-NC. A chemical structure analysis demonstrated that the chemical structures of DP-BC and BC-NC remained unchanged after the ultrasonic treatment and MnCl₂-catalyzed acid hydrolysis process.
Collapse
Affiliation(s)
| | - Hadi Wahyudi
- University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia.
| | - Sri Agustina
- University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia.
| | - François Oudet
- Physico-Chemical Analysis Services, University of Technology of Compiègne, Sorbonne Universities, 60200 Compiègne, France.
| | - Mekro Permana Pinem
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), University of Technology of Compiègne, Sorbonne Universities, 60200 Compiègne, France.
| | - Danièle Clausse
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), University of Technology of Compiègne, Sorbonne Universities, 60200 Compiègne, France.
| | - Khashayar Saleh
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), University of Technology of Compiègne, Sorbonne Universities, 60200 Compiègne, France.
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), University of Technology of Compiègne, Sorbonne Universities, 60200 Compiègne, France.
| |
Collapse
|
36
|
Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production. METALS 2018. [DOI: 10.3390/met8040290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Günter EA, Melekhin AK, Belozerov VS, Ananchenko BA, Martinson EA, Litvinets SG. Adhesive properties of calcium pectinate gels prepared from callus cultures pectins. Int J Biol Macromol 2018; 112:900-908. [PMID: 29444473 DOI: 10.1016/j.ijbiomac.2018.02.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Abstract
The aim of this research is to investigate the influence of the surface morphology of the calcium pectinate gel (CaPG) beads as well as the physicochemical characteristics of pectins and the CaPG beads on the adhesive properties of gels against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Bacillus subtilis. The adhesion of the bacteria depends on the type of pectin and the surface morphology of the beads. The faster adhesion on CaPG beads appeared to be related to a lower degree of methyl esterification (DE), a higher molecular weight (Mw) and specific viscosity of the pectin and a higher gel strength. Surface roughness measurements were performed using an atomic force microscope. The beads from pectins with a higher Mw, a higher specific viscosity and a lower DE had a higher surface roughness. The surface roughness was one of the factors promoting adhesion of the bacteria onto the calcium pectinate gels. The surface morphology was observed under a scanning electron microscope (SEM). SEM images illustrated that E. coli and B. subtilis adhered on the beads with a rough surface. CaPG beads obtained from callus culture pectins can be proposed for the preparation of gels with adhesive and antiadhesive properties.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Anatoliy K Melekhin
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| | - Vladislav S Belozerov
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | - Boris A Ananchenko
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | - Ekaterina A Martinson
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| | - Sergey G Litvinets
- Federal Government-financed Educational Institution of Higher Professional Education, Vyatka State University, 36, Moskovskaya str., Kirov 610000, Russia
| |
Collapse
|
38
|
Zhang F, Liu M, Mo F, Zhang M, Zheng J. Effects of Acid and Salt Solutions on the Pasting, Rheology and Texture of Lotus Root Starch⁻Konjac Glucomannan Mixture. Polymers (Basel) 2017; 9:E695. [PMID: 30965995 PMCID: PMC6418512 DOI: 10.3390/polym9120695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
To explore the functional properties of mixed biopolymer systems affected by acid and salts. The effects of acid and salt solutions (i.e., NaCl, KCl and CaCl₂) on the pasting, rheology, texture and microstructure of lotus root starch⁻konjac glucomannan (LRS/KGM) mixtures were assessed. Acid (citric acid buffer) treatment worsened the pasting (except for breakdown viscosity), rheological (except for fluid index), and textural properties, thereby inhibiting retrogradation, weakening pseudoplasticity and thickening, and reducing mixture viscoelasticity. Furthermore, it led to destructive ruptures and large pores in the internal microstructure. Salt treatment worsened the pasting properties (except for setback viscosity), thus inhibiting retrogradation and weakening pseudoplasticity, but enhanced the rheological properties, improving thickening and fluctuating viscoelasticity of the mixture. Moreover, salt addition decreased the hardness while increasing mixture cohesiveness, and modified the elasticity, adhesiveness and internal microstructure in a salt type- and concentration-dependent manner. A salt solution concentration of 0.5 mol/L NaCl, 0.1 mol/L KCl, and 0.5 mol/L CaCl₂ led to the mixture with the best texture and gel network.
Collapse
Affiliation(s)
- Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Min Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Fang Mo
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Meixia Zhang
- School of Forestry and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|