1
|
Zhou Y, Liu Y, Lv Y, Ye X, Song L, Liu M, Lin C. Efficient extraction of Eucommia ulmoides gum by a deep eutectic solvent-organic solvent biphasic recyclable system. Int J Biol Macromol 2024; 283:138056. [PMID: 39592033 DOI: 10.1016/j.ijbiomac.2024.138056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Eucommia ulmoides gum (EUG) with high purity was extracted directly from the Eucommia ulmoides pericarp using a biphasic solvent system consisting of deep eutectic solvent (DES) and petroleum ether. The addition of DES enabled the deconstruction of lignocellulose and the exposure of EUG, leading to the efficient dissolution of EUG in petroleum ether. The extraction rate of EUG was 22.986 %, and the purity of EUG was 98.01 %. The chemical structure of EUG was confirmed by FTIR and NMR characterization. XRD and DSC analysis reviewed the partial destruction of crystal structure and the decline of β-crystal phase of EUG during the extraction process. Moreover, the extracted EUG exhibited high tensile strength of 10.360 MPa, excellent elongation at break of 78.663 % ascribed to the unique crystallinity that enhanced the flexibility of molecular chains. In addition, the recycling performance of DES and petroleum ether was verified, and the recovery rate were up to 94.04 % and 82.60 %, respectively, indicating that this method is expected to replace the traditional pretreatment method for extracting EUG.
Collapse
Affiliation(s)
- Yicheng Zhou
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liang Song
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Minghua Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China.
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Yazdi JS, Salari M, Ehrampoush MH, Bakouei M. Development of active chitosan film containing bacterial cellulose nanofibers and silver nanoparticles for bread packaging. Food Sci Nutr 2024; 12:8186-8199. [PMID: 39479705 PMCID: PMC11521716 DOI: 10.1002/fsn3.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 11/02/2024] Open
Abstract
The objective was to develop an active chitosan-based coating and to evaluate its effect on the shelf life and microbial safety of bread. Bacterial cellulose nanofibers (BCNF) and various levels (0.5%, 1%, and 2%) of silver nanoparticles (AgNPs) were in the chitosan (CS) film. Characterization of films was determined by analyzing WVP, ultraviolet barrier, and opacity as well as FTIR, XRD, DSC, TGA, and SEM. The water vapor permeability (WVP) of CS was remarkably (p < .05) decreased from 3.75 × 10-10 to 0.85 × 10-10 g/smPa when filled with BCNF and 2% AgNPs. Thermal and structural properties were enhanced in nanoparticle-included films. Applying CS/BCNF/AgNPs coatings for bread samples demonstrated a significant improvement in moisture retention and a decrease in the hardness (from 10.2 to 7.05 N for CS and CS/BCNF/1% AgNPs coated samples, respectively). Moreover, microbial shelf life of bread sample increased from 5 to 38 days after packaging with CS/BCNF/2% AgNPs film. After a storage period of 15 days at 25°C, no fungal growth was detected in bread samples which were coated with nanocomposite suspensions containing 1% and 2% AgNPs. However, at the same condition, yeast and mold counts was 7.91 log CFU/g for control sample. In conclusion, the CS/BCNF/2% AgNPs film might have the potential for use as active packaging of bread.
Collapse
Affiliation(s)
- Jalal Sadeghizadeh Yazdi
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Salari
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mohammad Hasan Ehrampoush
- Department of Environmental Health Engineering, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mehrasa Bakouei
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
3
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Chen X, Lan W, Xie J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (Lateolabrax japonicas) packaging. Food Chem 2024; 441:138343. [PMID: 38211477 DOI: 10.1016/j.foodchem.2023.138343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The poor mechanical properties, low water-resistance, and limited antimicrobial activity of chitosan (CS)/polyvinyl alcohol (PVA) based film limited its application in aquatic product preservation. Herein, bacterial cellulose (BC) was used to load ginger essential oil (GEO). The effects of the addition of BC and different concentrations of GEO on the physicochemical and antimicrobial activities of films were systematically evaluated. Finally, the application of sea bass fillets was investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) analysis indicated dense networks were formed, which was verified by enhanced physical properties. The mechanical properties, barrier properties, and antimicrobial activities enhanced as GEO concentration increased. CPB0.8 (0.8 % GEO) film had better tensile strength (TS) and barrier performance, improved the quality, and extended the shelf-life of sea bass for another 6 days at least. Overall, active films are potential packaging materials for aquatic products.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
5
|
Wang K, Liu K, Dai L, Si C. Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding. Int J Biol Macromol 2024; 258:129046. [PMID: 38154714 DOI: 10.1016/j.ijbiomac.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Constructing a high-performance ultraviolet shielding film is an effective way for addressing the growing problem of ultraviolet radiation. However, it is still a great challenge to achieve a combination of multifunctional, excellent mechanical properties and low cost. Here, inspired by the multiscale structure of biomaterials and features of lignin, a multifunctional composite film (CNF/CMF/Lig-Ag) is constructed via a facile vacuum-filtration method by introducing micron-sized cellulose fibers (CMF) and lignin-silver nanoparticles (Lig-Ag NPs) into the cellulose nanofibers (CNF) film network. In this composite film, the microfibers interweave with nanofibers to form a multiscale three-dimensional network, which ensures satisfactory mechanical properties of the composite film. Meanwhile, the Lig-Ag NPs are employed as a multifunctional filler to enhance the composite film's antioxidant, antibacterial and ultraviolet shielding abilities. As a result, the prepared CNF/CMF/Lig-Ag composite film demonstrates excellent mechanical properties (with tensile strength of 133.8 MPa and fracture strain of 7.4 %), good biocompatibility, high thermal stability, potent antioxidant and antibacterial properties. More importantly, such composite film achieves a high ultraviolet shielding rate of 98.2 % for ultraviolet radiation A (UVA) and 99.4 % for ultraviolet radiation B (UVB), respectively. Therefore, the prepared CNF/CMF/Lig-Ag composite film shows great potential in application of ultraviolet protection.
Collapse
Affiliation(s)
- Kuien Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Department of Military Sick and Wounded Administration, No 983 Hospital of Chinese People's Liberation Army, Tianjin 300457, China
| | - Kefeng Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Bao L, Sun Y, Wang J, Li W, Liu J, Li T, Liu Z. A review of "plant gold" Eucommia ulmoides Oliv.: A medicinal and food homologous plant with economic value and prospect. Heliyon 2024; 10:e24851. [PMID: 38312592 PMCID: PMC10834829 DOI: 10.1016/j.heliyon.2024.e24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/10/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Eucommia ulmoides Oliv. is an ancient and precious plant that has been used as medicine in China for more than 2000 years. Because its bark, leaves, seeds, and male flowers can be used in medicine, it plays an important role in medicine, food, chemical industry, and other fields, so it is also called "plant gold". 246 compounds have been isolated from E. ulmoides, which endow E. ulmoides with many unique pharmacological effects and make it wide to study in the fields of osteoporosis, hypertension, liver protection, and so on. Besides, E. ulmoides also has significant medicinal effects on anti-inflammatory, antioxidant, immunomodulation, and neuroprotection, and is often used in clinical compound medicines of traditional Chinese medicine. In addition to updating its ethnobotany, phytochemistry, pharmacology, and toxicology information, the economic botany of leaves, seeds, and male flowers was also introduced. It hopes hoping to fully understand this economically important Chinese medicine and provide a scientific basis for further development and utilization of E. ulmoides.
Collapse
Affiliation(s)
- Lei Bao
- Heilongjiang University of Chinese Medicine, China
| | - Yinling Sun
- Heilongjiang Academy of Traditional Chinese Medicine, China
| | - Jinming Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | | | - Jie Liu
- The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Tianying Li
- Heilongjiang University of Chinese Medicine, China
| | | |
Collapse
|
7
|
Li H, Zhou J, Yu J, Zhao J. Light-activated cellulose nanocrystals/fluorinated polyacrylate-based waterborne coating: Facile preparation, mechanical and self-healing behavior. Int J Biol Macromol 2023; 249:126062. [PMID: 37524288 DOI: 10.1016/j.ijbiomac.2023.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The development of environmental-friendly self-healing nanocomposites has attracted much attention. In this paper, the light-activated cellulose nanocrystals/ fluorinated polyacrylate-based waterborne coating based on the reversible cycloaddition reaction of the coumarin groups was prepared via Pickering emulsion polymerization. The cellulose nanocrystals (CNCs) modified by the PDMAEMA-b-PGMA-b-P(HFBA-co-VBMC) copolymer were studied via FT-IR and TGA. In addition, the dispersity and interface behavior of CNCs before and after modification were investigated by DLS and interfacial tension measurements. Afterwards, we focused on the influence of modified CNCs, PDMAEMA-g-CNC-g- P(HFBA-co-VBMC) (MCNC) dosage on the Pickering emulsion, emulsion polymerization and properties of latex film. The droplet diameter of Pickering emulsion gradually reduced with the increase of MCNC dosage. The MCNC dosage for the minimum average size and optimum stability of latex particles was 1.0 wt%. Moreover, the latex film comprising 1.0 wt% MCNC presented not only high tensile stress (6.0 MPa), large elongation at break (567.70 %) and superior oil/water repellency but also excellent self-healing properties. The outstanding self-healing capability of latex film was attributed to the reversible light-activated dimerization of coumarin groups. The preparation method for the advanced performance waterborne cellulose nanocrystals/fluorinated polyacrylate will provide valuable guidance for the development of versatile materials.
Collapse
Affiliation(s)
- Hong Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiarui Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Yan S, Guo N, Chu Z, Jin X, Fang C, Yan S. A Study of Molecular Dynamic Simulation and Experimental Performance of the Eucommia Ulmoides Gum-Modified Asphalt. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5700. [PMID: 37629990 PMCID: PMC10456603 DOI: 10.3390/ma16165700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
In recent years, eucommia ulmoides gum (EUG), also known as gutta-percha, has been extensively researched. Molecular dynamic simulations and experiments were used together to look at how well gutta-percha and asphalt work together and how gutta-percha-modified asphalt works. To investigate the gutta-percha and asphalt blending systems, the molecular models of asphalt and various dosages of gutta-percha-modified asphalt were set up using Materials Studio (MS), and the solubility parameters, intermolecular interaction energy, diffusion coefficient, and mechanical properties (including elastic modulus, bulk modulus, and shear modulus) of each system were calculated using molecular dynamic simulations at various temperatures. The findings indicate that EUG and asphalt are compatible, and sulfurized eucommia ulmoides gum (SEUG) and asphalt are more compatible than EUG. However, SEUG-modified asphalt has better mechanical properties than EUG, and the best preparation conditions are 10 wt% doping and 1 h of 180 °C shearing. Primarily, physical modifications are required for gutta-percha-modified asphalt.
Collapse
Affiliation(s)
- Simeng Yan
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (S.Y.); (Z.C.); (C.F.)
- College of Communication, Tonghua Normal University, Tonghua 134002, China;
| | - Naisheng Guo
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (S.Y.); (Z.C.); (C.F.)
| | - Zhaoyang Chu
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (S.Y.); (Z.C.); (C.F.)
| | - Xin Jin
- School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Chenze Fang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; (S.Y.); (Z.C.); (C.F.)
| | - Sitong Yan
- College of Communication, Tonghua Normal University, Tonghua 134002, China;
| |
Collapse
|
9
|
Gao R, Zhang H, Li B, Guo H, Li H, Xiong L, Chen X. Extraction of Eucommia ulmoides gum and microbial lipid from Eucommia ulmoides Oliver leaves by dilute acid hydrolysis. Biotechnol Lett 2023; 45:619-628. [PMID: 37071384 DOI: 10.1007/s10529-023-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Eucommia ulmoides gum (EUG) is an important natural biomass rubber material, which is usually extracted from Eucommia ulmoides Oliver (EUO). In the extraction process of EUG, pretreatment is the most important step which can efficiently damage EUG-containing cell wall and improve yield of EUG. RESULTS The FT-IR, XRD, DSC and TG results showed that the thermal properties and structure of the EUG from the dilute acids hydrolysis residue are similar with that of the EUG directly extracted from EUO leaves (EUGD). EUO leaves hydrolysis with AA had the highest EUG yield (16.1%), which was higher than the EUGD yield (9.5%). In the case of the EUO leaves hydrolysis with 0.33 ~ 0.67 wt% of acetic acid (AA), the total sugar was stable in the range of 26.82-27.67 g/L. Furthermore, the EUO leaves acid hydrolysate (AA as reagent) was used as carbon sources for lipid-producing fermentation by Rhodosporidium toruloides. After 120 h of fermentation, the biomass, lipid content and lipid yield were 12.13 g/L, 30.16% and 3.64 g/L, respectively. The fermentation results indicated organic acids were no toxic for Rhodosporidium toruloides and the AA also could be used as carbon source for fermentation.
Collapse
Affiliation(s)
- Ruiling Gao
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China
| | - Hairong Zhang
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
| | - Bo Li
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Haijun Guo
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China
| | - Hailong Li
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China
| | - Lian Xiong
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China
| | - Xinde Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
- R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, 211700, People's Republic of China.
| |
Collapse
|
10
|
Study on the phase structure and sound absorption properties of Eucommia ulmoides gum composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Gao R, Zhang H, Xiong L, Li H, Chen X, Wang M, Chen X. Fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate: Impacts of the mixed strains fermentation. J Biotechnol 2023; 366:10-18. [PMID: 36868409 DOI: 10.1016/j.jbiotec.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
This present study mainly focused on the investigation and optimization of the fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate (EUOH), which contains abundant and diverse sugars. More importantly, the impacts of the mixed strains fermentation compared with the single strain fermentation were analyzed and evaluated, through systematic investigations of substrate metabolism, cell growth, polysaccharide and lipid production, COD and ammonia-nitrogen removals. It was found that the mixed strains fermentation could effectively promote a more comprehensive and thorough utilization of the various sugars in EUOH, greatly improve COD removal effect, biomass and yeast polysaccharide production, but could not significantly improve the overall lipid content and ammonia nitrogen removal effect. In this study, when the two strains with the highest lipid content (i.e. L. starkeyi and R. toruloides) were mixed-cultured, the maximum lipid yield of 3.82 g/L was achieved, and the yeast polysaccharide yield, COD and ammonia-nitrogen removal rates of the fermentation (LS+RT) were 1.64 g/L, 67.4% and 74.9% respectively. When the strain with the highest polysaccharide content (i.e. R. toruloides) was mixed-cultured with the strains with strong growth activity (i.e. T. cutaneum and T. dermatis), a large amount of yeast polysaccharides could be obtained, which were 2.33 g/L (RT+TC) and 2.38 g/L (RT+TD) respectively. And the lipid yield, COD and ammonia-nitrogen removal rates of the fermentation (RT+TC), (RT+TD) were 3.09 g/L, 77.7%, 81.4% and 2.54 g/L, 74.9%, 80.4%, respectively.
Collapse
Affiliation(s)
- Ruiling Gao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Mengkun Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
12
|
Guo S, Liu Y, Zhang W, Wang Y, Xiao B, Gao Y. N-doped carbon fibers in situ prepared by hydrothermal carbonization of Camellia sinensis branches waste for efficient removal of heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88951-88961. [PMID: 35841510 DOI: 10.1007/s11356-022-21923-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
N-doped carbon fibers (NCFs) were in situ prepared by Camellia sinensis branches waste through hydrothermal carbonization with urea/ZnCl2 at 160-280 °C under 0.8-8.9 MPa. The structural characteristics of NCFs were investigated by elemental analysis, SEM, TEM, XRD, XPS, Raman spectra, and BET surface area. The highest N content of NCFs obtained at 280 °C was 8.96%, and the main forms of doped N were pyridinic N, pyrrolic N, and graphitic N. Moreover, NCFs were applied to remove metal ions successfully. The results showed that NCF-240 had the maximum adsorption amounts of 106.52, 125.23, and 153.49 mg/g for Cu2+, Pb2+, and Zn2+, respectively, while NCF-280 had the best removal ability on Cr6+ (145.67 mg/g). Finally, it demonstrated that the adsorption behavior of NCFs was well fitted by the pseudo-second-order kinetic and the Langmuir adsorption isotherm models.
Collapse
Affiliation(s)
- Shasha Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yubo Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weiguo Zhang
- Shaanxi Dongyu Biotechnology Co., Ltd., Xixiang, 723500, China
| | | | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
An electrochemical sensor based on boron/nitrogen co-doped honeycomb-like porous carbon encapsulation molybdenum trioxides for the simultaneous detection of xanthine, uric acid and dopamine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
In-Situ Oxidative Polymerization of Pyrrole Composited with Cellulose Nanocrystal by Reactive Ink-Jet Printing on Fiber Substrates. Polymers (Basel) 2022; 14:polym14194231. [PMID: 36236179 PMCID: PMC9572165 DOI: 10.3390/polym14194231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
A simple and novel method for the deposition of polypyrrole (PPy) and cellulose nanocrystal (CNC) composites on different fiber substrates by reactive ink-jet printing was proposed. PPy/CNCs composites were successfully prepared, and the surface resistance of conductive layer deposited on different fiber substrates is the least when the monomer concentration is 0.6 M. PPy/CNCs were deposited on polyethylene terephthalate (PET) to form a conductive layer by adding polyvinyl alcohol (PVA), and the optimum sintering temperature is 100 °C (monomer/PVA ratio 4.0, conductivity 0.769 S cm−1). The PPy/CNCs conductive layer deposited on the paper has the lowest surface resistance and the best adhesion, and the surface resistance of PPy/CNCs conductive layer decreases first and then increases with the increase of sulfonate concentration. Moreover, the volume of anion in sulfonate will affect the arrangement and aggregation of PPy molecular chain in composite materials. Appropriate sulfonate doping can improve the conductivity and stability of conductive paper, and the maximum conductivity is 0.813 S cm−1. Three devices based on PPy/CNCs conductive paper were proposed and fabricated. Therefore, this ink-jet printing provides a new method for the preparation of conductive materials, sensors, energy storage and electromagnetic shielding, etc.
Collapse
|
15
|
Characterization of carvacrol incorporated antimicrobial film based on agar/konjac glucomannan and its application in chicken preservation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Wang J, Han X, Zhang C, Liu K, Duan G. Source of Nanocellulose and Its Application in Nanocomposite Packaging Material: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183158. [PMID: 36144946 PMCID: PMC9502214 DOI: 10.3390/nano12183158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Food packaging nowadays is not only essential to preserve food from being contaminated and damaged, but also to comply with science develop and technology advances. New functional packaging materials with degradable features will become a hot spot in the future. By far, plastic is the most common packaging material, but plastic waste has caused immeasurable damage to the environment. Cellulose known as a kind of material with large output, wide range sources, and biodegradable features has gotten more and more attention. Cellulose-based materials possess better degradability compared with traditional packaging materials. With such advantages above, cellulose was gradually introduced into packaging field. It is vital to make packaging materials achieve protection, storage, transportation, market, and other functions in the circulation process. In addition, it satisfied the practical value such as convenient sale and environmental protection, reduced cost and maximized sales profit. This review introduces the cellulose resource and its application in composite packaging materials, antibacterial active packaging materials, and intelligent packaging materials. Subsequently, sustainable packaging and its improvement for packaging applications were introduced. Finally, the future challenges and possible solution were provided for future development of cellulose-based composite packaging materials.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| |
Collapse
|
17
|
Su L, Wang Q, Xiang P, Yin D, Ding X, Liu L, Zhao X. Development of nitrile rubber/eucommia ulmoides gum composites for controllable dynamic damping and sound absorption performance. RSC Adv 2022; 12:21503-21511. [PMID: 35975054 PMCID: PMC9345298 DOI: 10.1039/d2ra03597a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Aiming at enhancing the damping and sound absorption performances of nitrile rubber (NBR) incorporated Eucommia ulmoides gum (EUG), a series of NBR/EUG composites were successfully fabricated using an open mixing mill. The co-vulcanization behaviors, fracture surface morphology observations, mechanical and thermal properties and damping and sound absorption performances of NBR/EUG composites were investigated systematically. It was shown that the crystalline area and the amorphous area in NBR/EUG composites displayed a sea-island phase distribution and most of the EUG crystals were β-form crystals. Compared to that of neat NBR, the tensile strength and storage modulus of NBR/EUG composites increased dramatically with the increasing EUG content, owing to the gradually increasing number of crystals in the NBR/EUG composites. In addition, the incorporation of EUG into the NBR matrix distinctly improved the sound absorption performance of NBR/EUG composites. This work is expected to provide a new insight into the fabrication of other composite materials with controllable damping and sound absorption properties. Nitrile rubber (NBR)/Eucommia ulmoides gum (EUG) composites were successfully fabricated with controllable dynamic damping and sound absorption performances, owing to the changeable EUG crystal number in different NBR/EUG composites.![]()
Collapse
Affiliation(s)
- Lin Su
- Systems Engineering Research Institute Beijing 100094 China
| | - Qi Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology Beijing 100029 China
| | - Ping Xiang
- Systems Engineering Research Institute Beijing 100094 China
| | - Dexian Yin
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaodong Ding
- Systems Engineering Research Institute Beijing 100094 China
| | - Li Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiuying Zhao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
18
|
Peng J, Yuan H, Ren T, Liu Z, Qiao J, Ma Q, Guo X, Ma G, Wu Y. Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(VI). Int J Biol Macromol 2022; 215:625-634. [PMID: 35772640 DOI: 10.1016/j.ijbiomac.2022.06.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
Chromium pollution is a major environmental concern; thus, effective and multifunctional adsorbents for removing the Cr(VI) ion are urgently needed. A fluorescent nanocellulose-based hydrogel (FNH) incorporating titanate nanofibers (TNs) was developed for the sorption and detection of Cr(VI) ion. The chemical and physical structures of the hydrogels, as well as their sorption and detection properties, were studied. The predicted maximum adsorption capacity and the lowest detection limit of FNH were 648.4 mg/g and 0.039 μg/L, respectively. Furthermore, the sorption and detection mechanisms of FNH were discussed in detail. These results showed that the excellent sorption and detection might be mainly attributed to the three-dimensional (3D) porous structure constructed by TNs and cellulose nanocrystals modified with carbon dots, which improved the sorption ability and provided the rapid visual response to Cr(VI). Furthermore, cost analysis showed that FNH was cheaper than activated carbon in removing the Cr(VI) ion. This work established a facile technique in developing low-cost and multifunctional adsorbents.
Collapse
Affiliation(s)
- Junwen Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanmeng Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Ren
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihuan Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianzheng Qiao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Guoxin Ma
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
19
|
Xu L, Liu Z, Ma L, Li X, Li P, Yang C, Li B, Wang X, Zhang Y, Song G. Effects of Eucommia ulmoides gum content and processing conditions on damping properties of E. ulmoides gum/nitrile-butadiene rubber nanocomposites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In order to improve the effective damping of nitrile-butadiene rubber (NBR) in a wider temperature range, Eucommia ulmoides gum (EUG) was incorporated into NBR to prepare nanocomposites. Atomic force microscopy (AFM) showed that EUG was dispersed in NBR matrix in the form of nanocrystals. Compared with pure NBR, the mechanical properties of NBR/EUG (80/20) composites are significantly improved. Dynamic thermo-mechanical analysis (DMA) showed that there are two dynamic mechanical loss peaks in two composites. With the increase of EUG component, the peak value of loss factor (tanδ) decreases gradually at −10 °C, and the temperature corresponding to the peak value tends to move towards high temperature, while the peak area increases gradually at −50 °C. Parking and repeated mixing make both loss peaks move towards high temperature. The differential scanning calorimetry analyzer (DSC) results expressed that the melting temperature and peak area of EUG after vulcanization decreased significantly compared with that before vulcanization. Hence, the damping effect of NBR can be improved and its damping temperature range can be widened by adding EUG and changing processing conditions.
Collapse
Affiliation(s)
- Longyu Xu
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Zhitao Liu
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Lichun Ma
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Xiaoru Li
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Peiyao Li
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Chao Yang
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Bowen Li
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Xiaoran Wang
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Yongfei Zhang
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| | - Guojun Song
- Institute of Polymer Materials, Qingdao University , Qingdao 266071 , China
| |
Collapse
|
20
|
Arifin HR, Djali M, Nurhadi B, Hasim SA, Hilmi A, Puspitasari AV. Improved properties of corn starch-based bio-nanocomposite film with different types of plasticizers reinforced by nanocrystalline cellulose. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2052085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heni Radiani Arifin
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Bambang Nurhadi
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Shafrina Azlin Hasim
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Amani Hilmi
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Almira Vania Puspitasari
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
21
|
Carboxymethyl chitosan incorporated with gliadin/phlorotannin nanoparticles enables the formation of new active packaging films. Int J Biol Macromol 2022; 203:40-48. [PMID: 35077750 DOI: 10.1016/j.ijbiomac.2022.01.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 01/14/2023]
Abstract
Advanced carboxymethyl chitosan (CMCS) based functional films were fabricated by involving some amounts of gliadin/phlorotannin nanoparticles (GPNPs) using a solution casting method. GPNPs were synthesized by an antisolvent precipitation approach, and they presented a spherical morphology with a mean diameter of 145.30 ± 2.06 nm. The effect of GPNPs concentration on the structural, physical, antioxidant and antimicrobial properties of CMCS-GPNPs (C-G) functional films was evaluated. It was found that the added GPNPs were homogeneously distributed over the whole CMCS matrix, allowing to reduce the free volume of the nanocomposite matrix and subsequently improve the physical properties of the final film (evidenced by mechanical and water barrier properties). FT-IR spectra indicated the intermolecular interactions, such as hydrogen bonds and electrostatic interaction, within the matrix of the nanocomposite films were increased. Impressively, the anti-ultraviolet properties, antioxidant activity and antimicrobial behaviors of the as-formed C-G functional films were greatly enhanced compared to the pure CMCS film. All these results suggested that our as-prepared C-G nanocomposite films could be a promising food packaging material.
Collapse
|
22
|
Dong Y, Yin D, Deng L, Cao R, Hu S, Zhao X, Liu L. Fabrication of Millable Polyurethane Elastomer/Eucommia Ulmoides Rubber Composites with Superior Sound Absorption Performance. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7487. [PMID: 34885642 PMCID: PMC8658837 DOI: 10.3390/ma14237487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E') of various MPU/EUG composites increased in a temperature range of -50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz-8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.
Collapse
Affiliation(s)
- Yuhang Dong
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
| | - Dexian Yin
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
| | - Linhui Deng
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
| | - Renwei Cao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
| | - Shikai Hu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
- Beijing Engineering Research Center of Advanced Elastomers, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuying Zhao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
- Beijing Engineering Research Center of Advanced Elastomers, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Y.D.); (D.Y.); (L.D.); (R.C.)
- Beijing Engineering Research Center of Advanced Elastomers, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Chang X, Hou Y, Liu Q, Hu Z, Xie Q, Shan Y, Li G, Ding S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106846] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Wu H, Sun W, Wei H, Zhao Y, Jin C, Yang X, Rong X, Sun C. Efficient removal of acetic acid by a regenerable resin-based spherical activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:697-711. [PMID: 34388128 DOI: 10.2166/wst.2021.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carboxylic acids are the main pollutant of industrial wastewater during the advanced oxidation process (AOPs). In this study, a resin-based spherical activated carbon (RSAC, AF5) as an adsorbent was examined and acetic acid was used as a model substrate for adsorption investigation. The pH = 3, temperature = 298 K were fixed by batch technique. The pseudo-second-order kinetic model, the intraparticle and external models are fitted well, and it was found that the adsorption of acetic acid onto AF5 was controlled by liquid film diffusion. A Freundlich model indicated that the adsorption process was heterogeneous multimolecular layer adsorption on the surface. AF5 shows good regenerative ability; the recovery rate of adsorption capacity was ∼88% after five cycles. Chemical oxygen demand (COD) adsorption removal rate could be maintained at 100% for over 35 h in an actual AOPs effluent, and could be eluted for 100% after 8 h by 0.8wt% NaOH. Characterizations, including XRF, XRD, TG/DSC,FTIR, SEM and N2 adsorption, showed that the excellent adsorption performance was mainly due to the microporous structure and large specific surface area (1,512.88 m2/g), the adsorption mechanism mainly included pore filling effect and electrostatic attraction. After five adsorption recycles, AF5's pore characteristic did not change significantly. This study provides a scientific basis for the wastewater standard discharge process of AOPs coupled adsorption.
Collapse
Affiliation(s)
- Huiling Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xu Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Rong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
26
|
Kusmono, Wildan MW, Lubis FI. Fabrication and Characterization of Chitosan/Cellulose Nanocrystal/Glycerol Bio-Composite Films. Polymers (Basel) 2021; 13:1096. [PMID: 33808206 PMCID: PMC8037625 DOI: 10.3390/polym13071096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanocrystal (CNC)-reinforced bio-composite films containing glycerol were produced using the solution casting technique. The influences of the addition of CNC (2, 4, and 8 wt%) and glycerol (10, 20, and 30 wt%) on the properties of the bio-composite films were studied in the present work. The resulting films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetry analysis (TGA), and according to their tensile, water absorption, and light transmission behavior. The introduction of 4 wt% CNC into the chitosan film did not affect the thermal stability, but the presence of 20 wt% glycerol reduced the thermal stability. The addition of 4 wt% CNC to the chitosan film increased its tensile strength, tensile modulus, and elongation at break by 206%, 138%, and 277%, respectively. However, adding more than 8 wt% CNC resulted in a drastic reduction in the strength and ductility of the chitosan film. The highest strength and stiffness of the chitosan bio-composite film were attained with 4 wt% CNC and 20 wt% glycerol. The water absorption and light transmission of the chitosan film were reduced dramatically by the presence of both CNC and glycerol.
Collapse
Affiliation(s)
- Kusmono
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Muhammad Waziz Wildan
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Fadhlan Ihsan Lubis
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| |
Collapse
|
27
|
Qi X, Zhao X, Li Y, Zhang J, Zhang L, Yue D. A high toughness elastomer based on natural
Eucommia ulmoides
gum. J Appl Polym Sci 2021. [DOI: 10.1002/app.50007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xin Qi
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Xin Zhao
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongxin Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jichuan Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Dongmei Yue
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
28
|
Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydr Polym 2021; 253:117144. [PMID: 33278962 DOI: 10.1016/j.carbpol.2020.117144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022]
Abstract
The objective of this work was to investigate the influence of different gamma ray dosages (5, 10, and 10 kGy) on the structural, mechanical, surface and barrier properties of chitosan (Ch) based nanocomposite film. The results showed gamma irradiation caused an increase in the surface hydrophobicity, water vapor permeability and sensitivity of films to water and also, yellowness and opacity of films increased, simultaneously. By increasing the irradiation doses up to 10 kGy, the mechanical properties of Ch/BCNC film was significantly enhanced. As observed by FTIR spectra, no change occurred in the chemical functional groups of the films during irradiation. XRD studies confirmed that crystallinity of films was increased after irradiation. The nanocomposite film irradiated by 10 kGy had the highest thermal stability. In conclusion, gamma radiation can be considered as a safe method for sterilization of foods and modification of Ch/BCNC film properties.
Collapse
|
29
|
Cao R, Deng L, Feng Z, Zhao X, Li X, Zhang L. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Li H, Shi H, He Y, Fei X, Peng L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int J Biol Macromol 2020; 164:4104-4112. [PMID: 32898536 DOI: 10.1016/j.ijbiomac.2020.09.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Pea hull is a renewable, readily available and abundant agricultural waste whose high-value utilization deserves more attentions. This work aimed at the isolation of cellulose nanocrystals (CNC) from pea hull and evaluation its reinforcement capability for carboxymethyl cellulose (CMC) film. The obtained CNC displayed needle-like shapes with length of 81-286 nm, diameter of 8-21 nm, aspect ratio of 16 and crystallinity index of 0.77. The effects of CNC content on the morphologies, optical, mechanical, water vapor barrier and thermal properties of CMC/CNC films were investigated. SEM images showed that the CNC was evenly distributed in the CMC matrix to form homogenous films when the content of CNC was ≤5 wt%. The CMC/CNC composite films showed improved UV barrier, mechanical strength, water vapor barrier and thermal stability. Compared with pure CMC film, an increase of 50.8% in tensile strength and a decrease of 53.4% in water vapor permeability were observed for 5 wt% CNC-reinforced composite film. Furthermore, 5 wt% CNC-reinforced composite film was used for red chilies packaging, which is very effective at reducing weight loss and maintaining vitamin C compared with uncoated red chilies. These results indicated that the CMC/CNC composite film may have promising application potential as edible food packaging material.
Collapse
Affiliation(s)
- Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongbo Shi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunqing He
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Fei
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
31
|
Balasurya S, Syed A, Thomas AM, Bahkali AH, Al-Rashed S, Elgorban AM, Raju LL, Das A, Khan SS. Preparation of Ag-cellulose nanocomposite for the selective detection and quantification of mercury at nanomolar level and the evaluation of its photocatalytic performance. Int J Biol Macromol 2020; 164:911-919. [PMID: 32682970 DOI: 10.1016/j.ijbiomac.2020.07.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/16/2023]
Abstract
Mercury is a toxic heavy metal that reaches to the water bodies mainly by coal burning, mining and petrol refining. The study was focused to investigate the application of Ag-cellulose nanocomposite to detect and quantify mercury colorimetrically. The Ag-cellulose nanocomposite was characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-visible spectroscopy, particle size analyzer and zetasizer. The study identified that the presence of other metal ions did not interfere with the detection of Hg2+ ion by the probe. The prepared Ag-cellulose nanocomposite-phenylalanine conjugate incorporated paper strip showed an excellent result in Hg2+ detection. The Ag-cellulose nanocomposite was used to quantify the unknown concentration of mercury on real sample (environmental sample) and it was found to be highly accurate by confirming with atomic absorption spectrophotometric analysis. The Ag-cellulose nanocomposite showed effective detection at 45 °C, pH 9 and 0.1% of salinity. The Ag-cellulose nanocomposite showed efficient photocatalytic performance under visible light irradiation. The half-life period of MB by Ag-cellulose nanocomposite under visible light was determined to be 90 min. The study suggests the application of prepared probe in photocatalysis and the detection of Hg2+ from various environmental samples.
Collapse
Affiliation(s)
- S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Center of Excellence in Biotechnology Research, King Saud University, P.O Box 2455, Riyadh, Saudi Arabia
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Arunava Das
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
32
|
Wang L, Lin L, Guo Y, Long J, Mu RJ, Pang J. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Asgher M, Qamar SA, Bilal M, Iqbal HMN. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 2020; 137:109625. [PMID: 33233213 DOI: 10.1016/j.foodres.2020.109625] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
In food industry, a growing concern is the use of suitable packaging material (i.e., biodegradable coatings and films) with enhanced thermal, mechanical and barrier characteristics to prevent from contamination and loss of foodstuff. Biobased polymer resources can be used for the development of biodegradable bioplastics. To achieve this goal, biopolymers should be economic, renewable and abundantly available. Bioplastic packaging materials based on renewable biomass could be used as sustainable alternative to petrochemically-originated plastic materials. This review summarizes the recent advancements in biopolymer-based coatings and films for active food packaging applications. Microbial polymers (PHA and PLA), wood-based polymers (cellulose, hemicellulose, starch & lignin), and protein-based polymers (gelatin, keratin, wheat gluten, soy protein and whey protein isolates) were among the materials most widely exploited for the development of smart packaging films. These biopolymers are able to synthesize coatings and films with good barrier properties against food borne pathogens and the transport of gases. Biobased reinforcements e.g., plant essential oils and natural additives to bioplastic films improve oxygen barrier, antibacterial and antifungal properties. To induce the desired functionality the simultaneous utilization of different synthetic and biobased polymers in the form of composites/blends is also an emerging area of research. Nanoscale reinforcements into bioplastic packaging have also been reported to improve packaging characteristics ultimately increasing food shelf life. The development of bioplastic/biocomposite and nanobiocomposites exhibits high potential to replace nonbiodegradable materials with characteristics comparable to fossil-based plastics, additionally, giving biodegradable and compostable characteristics. The idea of utilization of renewable biomass and the implications of biotechnology can firstly reduce the burden from fossil-resources, while secondly promoting biobased economy.
Collapse
Affiliation(s)
- Muhammad Asgher
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
34
|
The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Int J Biol Macromol 2020; 160:245-251. [DOI: 10.1016/j.ijbiomac.2020.05.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/13/2023]
|
35
|
Tong C, Wu Z, Sun J, Lin L, Wang L, Guo Y, Huang Z, Wu C, Pang J. Effect of carboxylation cellulose nanocrystal and grape peel extracts on the physical, mechanical and antioxidant properties of konjac glucomannan films. Int J Biol Macromol 2020; 156:874-884. [DOI: 10.1016/j.ijbiomac.2020.04.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022]
|
36
|
Qian S, Zhang C, Zhu Z, Huang P, Xu X. White rot fungus Inonotus obliquus pretreatment to improve tran-1,4-polyisoprene extraction and enzymatic saccharification of Eucommia ulmoides leaves. Appl Biochem Biotechnol 2020; 192:719-733. [DOI: 10.1007/s12010-020-03347-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
|
37
|
Sun Q, Geng Z, Dong J, Peng P, Zhang Q, Xiao Y, She D. Graphene nanoplatelets/Eucommia rubber composite film with high photothermal conversion performance for soil mulching. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Guo S, Wang Y, Wei X, Gao Y, Xiao B, Yang Y. Structural analysis and heavy metal adsorption of N-doped biochar from hydrothermal carbonization of Camellia sinensis waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18866-18874. [PMID: 32207017 DOI: 10.1007/s11356-020-08455-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
N-doped biochar as adsorption material for heavy metal removal has attracted increasing concern in environmental application due to its unique features. Here, N-doped biochar was prepared by hydrothermal carbonization of Camellia sinensis branch waste using KOH/NH4Cl at 120-280 °C for 2 h under 0.4-6.5 MPa, followed by structural analysis. The results showed that the highest N content determined by elemental analysis could reach up to 6.18% in biochar, and the major N species were involved in graphitic N, pyrrolic N, and pyridinic N. Interestingly, these N-doped biochar exhibited the effective adsorption ability of Cu2+, Pb2+, Zn2+, and Cr6+. The batch adsorption behavior had a better adjustment to the pseudo-second-order kinetic and the Langmuir adsorption isotherm models. In brief, the present results are attributed to develop low-cost adsorbent for removing heavy metal ions.
Collapse
Affiliation(s)
- Shasha Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | | | - Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yajun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
39
|
Yekta R, Mirmoghtadaie L, Hosseini H, Norouzbeigi S, Hosseini SM, Shojaee-Aliabadi S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int J Biol Macromol 2020; 158:327-337. [PMID: 32278602 DOI: 10.1016/j.ijbiomac.2020.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Althaea rosea flowers were used to procure the gum (ARG) needed for film preparation. Pretest studies suggested 1.5% ARG + 50% glycerol as optimum for film preparation. The reinforcement impact of 3, 5, and 8 wt% bacterial nanocrystalline cellulose (BNC) incorporation (based on the dry weight of ARG) was investigated on the structural, mechanical, physical, thermal, optical, morphological, and barrier properties of films. The Results suggested that increasing the BNC concentration until a certain level (5 wt% BNC) could improve the latter properties. However, at higher concentration (8 wt% BNC), cellulose nanoparticles tended to agglomerate, which led to the impairment of some of those properties, especially barrier properties. According to AFM and SEM results, BNC addition increased surface roughness and coarseness. All BNC-loaded films showed better functions compared to control sample (0 wt% BNC) and the film containing 5 wt% BNC was suggested as the optimum film.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Norouzbeigi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Wang Y, Xie R, Li D, Shen Y, Xie W, Wang H, Gan L, Huang J. A Cross-Linking/Percolating-Integrated Strategy to Enhance Crystallizable Rubber Using Rod-Like Reactive Biobased Nanocrystals. ACS APPLIED BIO MATERIALS 2019; 3:441-449. [DOI: 10.1021/acsabm.9b00901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Wang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| | - Rong Xie
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| | - Dong Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| | - Yang Shen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| | - Wei Xie
- The First Scientific Research Institute of Wuxi, Wuxi 214035, China
| | - Hualin Wang
- The First Scientific Research Institute of Wuxi, Wuxi 214035, China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, Southwest University, 400715, Chongqing, China
| |
Collapse
|
41
|
Zhao B, Jiang H, Lin Z, Xu S, Xie J, Zhang A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr Polym 2019; 224:115022. [DOI: 10.1016/j.carbpol.2019.115022] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023]
|
42
|
Liu S, Zhang L, Chen X, Chu T, Guo Y, Niu M. Cationic micelles self-assembled from quaternized cellulose-g-oligo (ε-caprolactone) amphiphilic copolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Liu Q, Wu X, Qian F, Zhang T, Mu G. Influence of natamycin loading on the performance of transglutaminase‐induced crosslinked gelatin composite films. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Liu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Tao Zhang
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| |
Collapse
|
44
|
Idumah CI, Hassan A, Ihuoma DE. Recently emerging trends in polymer nanocomposites packaging materials. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1542718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Azman Hassan
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - David Esther Ihuoma
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of TVE, Food and Nutrition Unit, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
45
|
Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Cellulose nanocrystal/amino-aldehyde biocomposite films. Carbohydr Polym 2018; 194:51-60. [DOI: 10.1016/j.carbpol.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
|