1
|
Rashidipour M, Abbaszadeh S, Birjandi M, Pajouhi N, Ahmadi Somaghian S, Goudarzi G, Shahryarhesami S, Moradi Sarabi M, Babaeenezhad E. Antimicrobial activity and cytotoxic and epigenetic effects of tannic acid-loaded chitosan nanoparticles. Sci Rep 2024; 14:30405. [PMID: 39638815 PMCID: PMC11621443 DOI: 10.1038/s41598-024-80771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Tannic acid (TA) is a potent antitumor agent, but its low bioavailability and absorption limit its use. In this study, it was loaded into chitosan-based nanoparticles (Chi-NPs) to overcome these limitations and to improve its antimicrobial and anticancer activities. TA-loaded Chi-NPs (Chi-TA-NPs) were synthesized using the ionic gelation method and physicochemically characterized by FE-SEM, FTIR, XRD, PDI, DLS, and zeta potential analysis. Additionally, the antimicrobial activity of Chi-TA-NPs against two G+ bacterial strains, two G- bacterial strains, and a fungal strain (Candida albicans) was investigated using the microbroth dilution method. MTT assay was used to examine the cytotoxic effects of Chi-TA-NPs on HepG2 cells. The expression of DNA methyltransferase 1 (DNMT1), DNMT3A, and DNMT3B was examined in HepG2 cells using RT-qPCR. The amount of 5-methylcytosine in the HepG2 cell-derived genomic DNA was measured using ELISA. FE-SEM micrographs showed the loading of TA into the chitosan-based formulation. The peaks detected in the XRD and FTIR analyses confirmed the formation of the Chi-TA-NPs. The PDI value (0.247 ± 0.03), size (567.0 ± 25.84 nm), and zeta potential (17.0 ± 5.86 mV) confirmed the relative stability of Chi-TA-NPs. A constant release profile in line with the Korsmeyer-Peppas model was detected for Chi-TA-NPs, such that approximately 44% of TA was released after 300 min. In addition, Chi-TA-NPs exhibited effective antimicrobial activity against the studied microbial strains, as manifested by MIC values ranging from 250 to 1000 µg/mL. Chi-TA-NPs induced cytotoxicity in liver tumor cell line, with an IC50 value of 500 µg/mL. Furthermore, Chi-TA-NPs considerably decreased the expression of DNMT1 (2.52-fold; p = 0.01), DNMT3A (2.96-fold; p = 0.004), and DNMT3B (2.94-fold; p < 0.0001). However, 5-methylcytosine levels in HepG2 cells were unaffected by Chi-TA-NPs treatment (p = 0.62). Finally, the antimicrobial, cytotoxic, and epigenetic effects of Chi-TA-NPs were more pronounced than those of free TA and the unloaded Chi-NPs. In conclusion, Chi-TA-NPs exhibit promising potential for reducing microbial growth and promoting cytotoxicity in liver cancer cells.
Collapse
Affiliation(s)
- Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saber Abbaszadeh
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Pajouhi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Gholamreza Goudarzi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Ali SK, Hakami O, Zelai T, Alamrii AA, Srivastava AR, Ahmad I, Shahzaib A. Green synthesis of nickel-integrated chitosan-modified CeO 2 nanocatalyst for the efficient hydrogenation of 4-NP and azo dyes. Int J Biol Macromol 2024; 283:137651. [PMID: 39547630 DOI: 10.1016/j.ijbiomac.2024.137651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This paper reports the green synthesis and characterization of nickel-integrated chitosan-modified cerium oxide (CHS-CeO2@Ni) nanocatalyst aimed at the efficient hydrogenation of 4-nitrophenol (4-NP) and the reduction of azo dyes such as methyl orange (MO) and Congo red (CR). The CHS-CeO2@Ni nanocatalyst was synthesized via a green method, where Arnebia benthamii plant extract was used as a reducing agent to deposit nickel nanoparticles onto the CHS-CeO2 nanocomposite. Results confirmed the successful integration of Ni into the CHS-CeO2 matrix, resulting in a highly crystalline, mesoporous structure with a substantial surface area of 78.447 m2/g. The catalytic activity was evaluated in reducing MO, CR, and 4-NP in the presence of NaBH4. The nanocatalyst exhibited remarkable efficiency, reducing MO and CR in 16 and 14 min, respectively, with pseudo-first-order rate constants of 0.173 min-1 and 0.179 min-1. For 4-NP, complete reduction to 4-aminophenol was achieved within 19 min, with a rate constant of 0.112 min-1. The enhanced catalytic performance is attributed to the synergistic interaction between cerium oxide and nickel nanoparticles, highlighting the potential of CHS-CeO2@Ni as a sustainable solution for environmental remediation.
Collapse
Affiliation(s)
- Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Taharh Zelai
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdullah Ali Alamrii
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | | | - Iftkhar Ahmad
- Department of Chemistry, Jamia Millia Islamia University, New Delhi 110025, India.
| | - Adnan Shahzaib
- Department of Chemistry, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
3
|
Bukharbayeva F, Zharmagambetova A, Talgatov E, Auyezkhanova A, Akhmetova S, Jumekeyeva A, Naizabayev A, Kenzheyeva A, Danilov D. The Synthesis of Green Palladium Catalysts Stabilized by Chitosan for Hydrogenation. Molecules 2024; 29:4584. [PMID: 39407514 PMCID: PMC11477545 DOI: 10.3390/molecules29194584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The proposed paper describes a simple and environmentally friendly method for the synthesis of three-component polymer-inorganic composites, which includes the modification of zinc oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on the resulting two-component composites. The structures and properties of the obtained composites were characterized by physicochemical methods (IRS, TEM, XPS, SEM, EDX, XRD, BET). Pd-CS species covered the surface of inorganic materials through two different mechanisms. The interaction of chitosan polyelectrolyte with zinc oxide led to the deprotonation of its amino groups and deposition on the surface of ZnO. The immobilization of Pd on CS/ZnO occurred by the hydrolysis of [PdCl4]2-, followed by forming PdO particles by interacting with amino groups of chitosan. In the case of CS/MMT, protonated amino groups of CS interacted with negative sites of MMT, forming a positively charged CS/MMT composite. Furthermore, [PdCl4]2- interacted with the -NH3+ sites of CS/MMT through electrostatic force. According to TEM studies of 1%Pd-CS/ZnO, the presence of Pd nanoclusters composed of smaller Pd nanoparticles of 3-4 nm in size were observed on different sites of CS/ZnO. For 1%Pd-CS/MMT, Pd nanoparticles with sizes of 2 nm were evenly distributed on the support surface. The prepared three-component CS-inorganic composites were tested through the hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-ol) under mild conditions (T-40 °C, PH2-1 atm). It was shown that the efficiency of 1%Pd-CS/MMT is higher than that of 1%Pd-CS/ZnO, which can be explained by the formation of smaller Pd particles that are evenly distributed on the support surface. The mechanism of 2-hexyn-1-ol hydrogenation over an optimal 1%Pd-CS/MMT catalyst was proposed.
Collapse
Affiliation(s)
- Farida Bukharbayeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Zharmagambetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Eldar Talgatov
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Sandugash Akhmetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Aigul Jumekeyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Akzhol Naizabayev
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Kenzheyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Denis Danilov
- Interdisciplinary Resource Center for Nanotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Sathyanarayanan H, Vaiyapuri M, Kumar R, Gnanadesigan M. Standardization of silver nanoparticle synthesis: Photocatalytic application (immobilized with chitosan complex) with textile dyes and antibacterial activity against Staphylococcus aureus using banana pseudo stem. CHEMOSPHERE 2024; 364:143246. [PMID: 39236920 DOI: 10.1016/j.chemosphere.2024.143246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The purpose of the study is to standardize the silver nanoparticle (BP-AgNPs) synthesis and its antibacterial activity and photocatalytic application with the selected dyes using the banana pseudo stem extract. "One-factor analysis (OFTA)" was carried out for the standardization of silver nanoparticle synthesis and nanoparticle-chitosan complex immobilization. The parameters were identified with plant quantity (20 g), silver nitrate concentration (1 mM), the ratio of plant extract and silver nitrate solution (2:8), pH (12), temperature (37 °C), dispersed light conditions, shaking conditions (120 rpm), and time (6 h) were analysed. The photocatalytic decolorization efficiency of the standardized BP-AgNPs (immobilized with chitosan complex) has shown 96.92% for methylene blue (10 ppm) at 3 h and 97.55% for safranin (100 ppm) at 15 h. The antibacterial activity for the synthesised BP-AgNPs was determined. MIC value of the BP-AgNPs was determined to be 15.62 μg. mL-1 for S. aureus. The synthesised BP-AgNPs treated with 0.5×, 1× and 2× MIC concentration (x = 15.62 μg. mL-1) showed decreased viable counts of S. aureus (99.6% at 2× concentration having viable count of 22.6 × 102 CFU. mL-1) at 24 h incubation when compared with the control culture. The structural characteristics of the BP-AgNPs were identified as spherical with SEM and the size was identified as 12.19 ± 1.62 nm with TEM and as 37.23 ± 17.89 nm with XRD. The parameters such as FTIR, Zeta potential, EDS further supports the nanoparticle synthesis with banana pseudostem extract. The current result suggested that, the silver nanoparticles (BP-AgNPs) synthesised using the extract of the banana pseudo stem could be used as an alternative source for dye decolorization and antibacterial activities.
Collapse
Affiliation(s)
- Harithaa Sathyanarayanan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Mithra Vaiyapuri
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ranjith Kumar
- Water-Energy-Biotech-Nanomaterials Nexus ET Research Group, Environmental Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Murugesan Gnanadesigan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
5
|
Akhmetova S, Zharmagambetova A, Talgatov E, Auyezkhanova A, Malgazhdarova M, Zhurinov M, Abilmagzhanov A, Jumekeyeva A, Kenzheyeva A. How the Chemical Properties of Polysaccharides Make It Possible to Design Various Types of Organic-Inorganic Composites for Catalytic Applications. Molecules 2024; 29:3214. [PMID: 38999166 PMCID: PMC11243343 DOI: 10.3390/molecules29133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, the use of plant-origin materials has become especially important due to the aggravation of environmental problems and the shortage and high cost of synthetic materials. One of the potential candidates among natural organic compounds is polysaccharides, characterized by a number of advantages over synthetic polymers. In recent years, natural polysaccharides have been used to design composite catalysts for various organic syntheses. This review is devoted to the current state of application of polysaccharides (chitosan, starch, pectin, cellulose, and hydroxyethylcellulose) and composites based on their catalysis. The article is divided into four main sections based on the type of polysaccharide: (1) chitosan-based nanocomposites; (2) pectin-based nanocomposites; (3) cellulose (hydroxyethylcellulose)-based nanocomposites; and (4) starch-based nanocomposites. Each section describes and summarizes recent studies on the preparation and application of polysaccharide-containing composites in various chemical transformations. It is shown that by modifying polysaccharides, polymers with special properties can be obtained, thus expanding the range of biocomposites for catalytic applications.
Collapse
Affiliation(s)
| | | | | | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan; (S.A.); (A.Z.); (E.T.); (M.M.); (M.Z.); (A.A.); (A.J.); (A.K.)
| | | | | | | | | | | |
Collapse
|
6
|
Wen Y, Xue C, Ji D, Zhang Y, Zhang M, Gong W, Li Z, Li Y. Green construction of self-floating polysaccharide-based hydrogels with catalytic activity for efficient organic pollutants reduction. Int J Biol Macromol 2024; 271:132507. [PMID: 38768920 DOI: 10.1016/j.ijbiomac.2024.132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
This study employed an anionic heteropolysaccharide extracted from overgrown Enteromorpha and homopolysaccharide pullulan to fabricate a self-floating hydrogel by introducing bubble templates. Subsequently, green in-situ reduction and immobilization of silver nanoparticles (Ag NPs) in the hydrogel were successfully achieved without additional reducing agents. The heteropolysaccharide from Enteromorpha provides carboxyl and sulfate groups for Ag+ ions complexation, which is beneficial for the in-situ reduction of Ag NPs and inhibits their aggregation. The incorporation of bubble templates facilitates the creation of a hierarchical pore structure in the hydrogel, giving it self-floating properties for easy recycling, while the hierarchical network with rich anchor sites ensuring adequate traction for Ag NPs dispersion and stabilization. By adjusting polysaccharide content and using bubble templates, Ag NPs smaller than 10 nm can be obtained. The composite hydrogel exhibits tunable catalytic activity and excellent degradation towards Rhodamine B, Methyl Orange, and 4-Nitrophenol, with the normalized rate constant (knor) of 78.89, 59.08, and 30.42 min-1 g-1, respectively. Notably, the reduction efficiency remained above 98 % after 6 recycles with little leaching of Ag NPs, benefiting from its self-floating ability for easy recovery in practical applications.
Collapse
Affiliation(s)
- Yutong Wen
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Chunlong Xue
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Deluo Ji
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Ye Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Meng Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Weiqian Gong
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Zhiqi Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Ying Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China.
| |
Collapse
|
7
|
Hassanpour H, Naeimi H. Fabrication and characterization of inorganic-organic hybrid copper ferrite anchored on chitosan Schiff base as a reusable green catalyst for the synthesis of indeno[1,2- b]indolone derivatives. RSC Adv 2024; 14:17296-17305. [PMID: 38812959 PMCID: PMC11134323 DOI: 10.1039/d3ra08705k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
This study presents a description of the catalytic synthesis of indeno[1,2-b]indolone derivatives. In this method, initially, a Schiff base compound was synthesized from the reaction of acetylacetone with 2-hydroxyaniline. Then, the prepared Schiff base was immobilized on chelated magnetic copper ferrite nanoparticles with a chitosan surface to design and prepare the CuFe2O4@CS-SB nanocomposite. Further, the one-pot multi-component cyclization reaction of aniline, dimedone and ninhydrin was conducted using the synthesized nanocomposite as a heterogeneous acid catalyst in water solvent under thermal conditions. In this reaction, the products were obtained in excellent yields and short reaction times, and the catalyst could be recycled and reused six times without any loss in product yields. By conducting FT-IR spectroscopy, 1H NMR spectroscopy, XRD, FE-SEM, TGA, elemental mapping scanning, EDX and BET analyses, the structure of the nanocatalyst was characterized. In addition, for the identification of organic compounds, FT-IR, 1H NMR, and 13C NMR spectroscopies and melting point analysis were used, which confirmed the synthesis of this class of derivatives.
Collapse
Affiliation(s)
- Hannaneh Hassanpour
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 I.R. Iran +983155912397 +983155912388
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 I.R. Iran +983155912397 +983155912388
| |
Collapse
|
8
|
Ramírez O, Bonardd S, Saldías C, Leiva A, Díaz Díaz D. Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction. ENVIRONMENTAL RESEARCH 2024; 247:118204. [PMID: 38224938 DOI: 10.1016/j.envres.2024.118204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
Collapse
Affiliation(s)
- Oscar Ramírez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Sebastián Bonardd
- Materials Physics Center, CSIC-UPV/EHU, San Sebastián, 20018, Spain; Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
| | - César Saldías
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Angel Leiva
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - David Díaz Díaz
- Departamento de Química Orgánica, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain.
| |
Collapse
|
9
|
Zhang Y, Kobayashi K, Kusumi R, Kimura S, Kim UJ, Wada M. Catalytic activity of Cu 2O nanoparticles supported on cellulose beads prepared by emulsion-gelation using cellulose/LiBr solution and vegetable oil. Int J Biol Macromol 2024; 265:130571. [PMID: 38467226 DOI: 10.1016/j.ijbiomac.2024.130571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Nanocatalysts tend to aggregate and are difficult to recycle, limiting their practical applications. In this study, an environmentally friendly method was developed to produce cellulose beads for use as supporting materials for Cu-based nanocatalysts. Cellulose beads were synthesized from a water-in-oil emulsion using cellulose dissolved in an LiBr solution as the water phase and vegetable oil as the oil phase. Upon cooling, the gelation of the cellulose solution produced spherical cellulose beads, which were then oxidized to introduce surface carboxyl groups. These beads (diameter: 95-105 μm; specific surface area: 165-225 m2 g-1) have a three-dimensional network of nanofibers (width: 20-30 nm). Furthermore, the Cu2O nanoparticles were loaded onto oxidized cellulose beads before testing their catalytic activity in the reduction of 4-nitrophenol using NaBH4. The apparent reaction rate constant increased with increasing loading of Cu2O nanoparticles and the conversion efficiency was >90 %. The turnover frequency was 376.2 h-1 for the oxidized cellulose beads with the lowest Cu2O loading, indicating a higher catalytic activity compared to those of other Cu-based nanoparticle-loaded materials. In addition to their high catalytic activity, the cellulose beads are reusable and exhibit excellent stability.
Collapse
Affiliation(s)
- Yangyang Zhang
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kayoko Kobayashi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryosuke Kusumi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan.
| | - Satoshi Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | - Masahisa Wada
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
10
|
Zhang W, Zhou W, Zhang Z, Zhang D, Guo Z, Ren P, Liu F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers (Basel) 2023; 15:4015. [PMID: 37836064 PMCID: PMC10575191 DOI: 10.3390/polym15194015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Chitosan and its derivatives are widely used in food packaging, pharmaceutical, biotechnology, medical, textile, paper, agriculture, and environmental industries. However, the flexibility of chitosan films is extremely poor, which limits its relevant applications to a large extent. In this paper, chitosan/sorbitol/nano-silica (CS/sorbitol/SiO2) composite films were prepared by the casting film method using chitosan, sorbitol, Tween-80 and nano-SiO2 as raw materials. The structure of the films was characterized by infrared spectroscopy, electron scanning microscopy, and X-ray diffraction analysis. The effects of sorbitol and nano-silica dosage on the mechanical properties, thermal properties and water vapor barrier properties of the composite film were investigated. The results show that with the gradual increase in sorbitol (≤75 wt %), the elongation at the break of chitosan/sorbitol films significantly increased. When the addition of sorbitol was 75 wt %, the elongation at break of the chitosan/sorbitol composite film was 13 times higher than that of the chitosan film. Moreover, nano-SiO2 can further improve the mechanical properties and thermal stability of the chitosan/sorbitol composite films. When the amount of nano-silica was 4.5 wt %, the composite film became more flexible, with a maximum elongation of 90.8% (which is 14 times that of chitosan film), and its toughness increased to 10.52 MJm-3 (which is 6 times that of chitosan film). This study balances the tensile strength and elongation at break of the composite films by adding a plasticizer and nano-filler, providing a reference for the preparation of chitosan composites or their blending with other polymers, and has practical guiding significance for the industrial production of biomass plastics.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Wentao Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Zisen Zhang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China (D.Z.)
| | - Di Zhang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China (D.Z.)
| | - Zhengzheng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Penggang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Fei Liu
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
11
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Zhao Y, Bi S, Gao F, Wang L. Preparation of Cu
2
O/Au Composite Nanomaterials for Effective Reduction of 4‐Nitrophenol. ChemistrySelect 2023. [DOI: 10.1002/slct.202204665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yang Zhao
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Shiliang Bi
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Faming Gao
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
13
|
Godiya CB, Kumar S, Park BJ. Superior catalytic reduction of methylene blue and 4-nitrophenol by copper nanoparticles-templated chitosan nanocatalyst. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
14
|
Zhang X, Ma J, Zou B, Ran L, Zhu L, Zhang H, Ye Z, Zhou L. Synthesis of a novel bis Schiff base chelating resin for adsorption of heavy metal ions and catalytic reduction of 4-NP. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Ali HSHM, Anwar Y, Khan SA. Vigna radiata Impregnated Zero-Valent CuAg NPs: Applications in Nitrophenols Reduction, Dyes Discoloration and Antibacterial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Novel in-situ synthesis of copper oxide nanoparticle in smart polymer microgel for catalytic reduction of methylene blue. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ni–Al-layered double-hydroxide photocatalyst for the visible light-assisted photodegradation of organic dye pollutants. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Catalytic Reduction of Environmental Pollutants with Biopolymer Hydrogel Cross-Linked Gelatin Conjugated Tin-Doped Gadolinium Oxide Nanocomposites. Gels 2022; 8:gels8020086. [PMID: 35200466 PMCID: PMC8871642 DOI: 10.3390/gels8020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/31/2023] Open
Abstract
In the present study, a biopolymer nanocomposite hydrogel based on gelatin and tin-doped gadolinium oxide (Sn-Gd2O3@GH) was prepared for the efficient reduction of water pollutants. The method of Sn-Gd2O3@GH preparation consisted of two steps. A Sn-Gd2O3 nanomaterial was synthesized by a hydrothermal method and mixed with a hot aqueous solution (T > 60 °C) of gelatin polymer, followed by cross-linking. Due to the presence of abundant functional groups on the skeleton of gelatin, such as carboxylic acid (–COOH) and hydroxyl (–OH), it was easily cross-linked with formaldehyde. The structure, morphology, and composition of Sn-Gd2O3@GH were further characterized by the FESEM, XRD, EDX, and FTIR techniques. The FESEM images located the distribution of the Sn-Gd2O3 nanomaterial in a GH matrix of 30.06 nm. The XRD patterns confirmed the cubic crystalline structure of Gd2O3 in a nanocomposite hydrogel, while EDS elucidated the elemental composition of pure Sn-Gd2O3 powder and cross-linked the Sn-Gd2O3@GH samples. The synthesized Sn-Gd2O3@GH nanocomposite was used for the removal of different azo dyes and nitrophenols (NPs). It exhibited an efficient catalytic reduction of Congo red (CR) with a reaction rate of 9.15 × 10−1 min−1 with a strong NaBH4-reducing agent. Moreover, the Sn-Gd2O3@GH could be easily recovered by discharging the reduced (colourless) dye, and it could be reused for a fresh cycle.
Collapse
|
19
|
Zhang Y, Zhou L, Han B, Li W, Li B, Zhu L. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Kamal T, Asiri AM, Ali N. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120019. [PMID: 34126398 DOI: 10.1016/j.saa.2021.120019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, two catalysts based-on copper and nickel nanoparticles anchored on agarose-coated sponge (Cu-AG-sponge and Ni-AG-sponge) were prepared, respectively. Both catalysts were characterized by analytical techniques of thermogravimetric analysis energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). Spherical Cu and Ni nanoparticles on struts of AG-coated sponge were observed by FESEM and the samples' elemental composition was confirmed by EDX technique. After characterization, the Cu-AG-sponge and Ni-AG-sponge catalysts were tested in 4-nitrophenol (4-NP) and methylene blue dye (MB) reduction in an aqueous medium. The reduction of the 4-NP to 4-aminophenol (4-AP) was achieved up to 95% using the NaBH4 reductant and Cu-AG-sponge and Ni-AG-sponge catalysts, respectively. Similarly, the rate of reduction of MB was faster for the Cu-AG-sponge as compared to the Ni-AG-sponge which was discussed based-on the catalyst morphology and other factors. The high rate of reactions for the 4-NP and MB reduction suggests that the Cu-AG-sponge and Ni-AG-sponge catalyst possess high catalytic efficiency, low cost and good reusability having the potential to be used in similar other reactions.
Collapse
Affiliation(s)
- Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nauman Ali
- Institute of Chemical Science, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
21
|
Preparation of magnetic chitosan-supported palladium-5-amino-1H-tetrazole complex as a magnetically recyclable catalyst for Suzuki-Miyaura coupling reaction in green media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Mounir C, Ahlafi H, Aazza M, Moussout H, Mounir S. Kinetics and Langmuir–Hinshelwood mechanism for the catalytic reduction of para-nitrophenol over Cu catalysts supported on chitin and chitosan biopolymers. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02066-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Anwar Y, Ullah I, Ul-Islam M, Alghamdi KM, Khalil A, Kamal T. Adopting a green method for the synthesis of gold nanoparticles on cotton cloth for antimicrobial and environmental applications. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Shi Z, Mahdavian Y, Mahdavian Y, Mahdigholizad S, Irani P, Karimian M, Abbasi N, Ghaneialvar H, Zangeneh A, Mahdi Zangeneh M. Cu immobilized on chitosan-modified iron oxide magnetic nanoparticles: Preparation, characterization and investigation of its anti-lung cancer effects. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Siddique K, Shahid M, Shahzad T, Mahmood F, Nadeem H, Saif Ur Rehman M, Hussain S, Sadak O, Gunasekaran S, Kamal T, Ahmad I. Comparative efficacy of biogenic zinc oxide nanoparticles synthesized by Pseudochrobactrum sp. C5 and chemically synthesized zinc oxide nanoparticles for catalytic degradation of dyes and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28307-28318. [PMID: 33537856 DOI: 10.1007/s11356-021-12575-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Discharge of untreated textile wastewaters loaded with dyes is not only contaminating the soil and water resources but also posing a threat to the health and socioeconomic life of the people. Hence, there is a need to devise the strategies for effective treatment of such wastewaters. The present study reports the catalytic potential of biogenic ZnO nanoparticles (ZnO NPs) synthesized by using a bacterial strain Pseudochrobactrum sp. C5 for degradation of dyes and wastewater treatment. The catalytic potential of the biogenic ZnO NPs for degradation of dyes and wastewater treatment was also compared with that of the chemically synthesized ones. The characterization of the biogenic ZnO NPs through FT-IR, XRD, and field emission scanning electron microscopy (FESEM) indicated that these are granular agglomerated particles having a size range of 90-110 nm and zeta potential of -27.41 mV. These catalytic NPs had resulted into almost complete (> 90%) decolorization of various dyes including the methanol blue and reactive black 5. These NPs also resulted into a significant reduction in COD, TDS, EC, pH, and color of two real wastewaters spiked with reactive black 5 and reactive red 120. The findings of this study suggest that the biosynthesized ZnO NPs might serve as a potential green solution for treatment of dye-loaded textile wastewaters.
Collapse
Affiliation(s)
- Khadija Siddique
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Saif Ur Rehman
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| | - Omer Sadak
- Department of Electrical and Electronics Engineering, Ardahan University, 75000, Ardahan, Turkey
| | - Sundaram Gunasekaran
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan.
| |
Collapse
|
26
|
Ali F, Khan SB, Shaheen N, Zhu YZ. Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydr Polym 2021; 259:117681. [PMID: 33674021 DOI: 10.1016/j.carbpol.2021.117681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022]
Abstract
This study focusses on the effect of chitosan coating with eggshell membranes for the reduction of different organic pollutants. Chickens eggs were collected from the local market and utilized to extract the enrich eggshell membranes (ESM). The chicken eggshell membranes are abundant waste material which is inexpensive and illustrates remarkable physiognomies for many possible applications. Fresh fibers/strips coated by chitosan (CS) were prepared by mixing the eggshell membranes with CS solution (2 wt%/v) in different proportions i.e., 10 %, 30 %, 50 %, 60 %, 70 %, 80 %, and 90 %. These strips were then templated with copper and iron metal nanoparticles by putting them in their metal ions aqueous solution to adsorb the metals ions and were then reduced to zero-valent metal nanoparticles (MNPS) by using NaBH4 aqueous solution. These prepared materials (MNPS@ESM-CS) were characterized by using XRD, XPS, FE-SEM, and EDS to confirm the successful preparation of MNPs over the surface of ESM coated with CS. Afterwards, these prepared materials were investigated as a catalyst for the reduction of different organic pollutants, such as 4-nitroaniline (4-NA), 4-nitrophenol (4-NP) and methylene blue (MB) dye. The catalytic efficiency of ESM was enhanced 5.7-fold by adding only 20 % CS solution. It was observed that Cu@ESM-CS-80 % took 7 min for reduction of 4-NA, 6 min for 4-NP, and 7 min for MB dye. The reusability of the catalytic strip was also investigated for four cycles and found efficient and can be easily recovered by simply pulling it from the reaction mixture.
Collapse
Affiliation(s)
- Fayaz Ali
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan.
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau.
| |
Collapse
|
27
|
Pang Y, Chen Z, Zhao R, Yi C, Qiu X, Qian Y, Lou H. Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. J Colloid Interface Sci 2020; 587:334-346. [PMID: 33370659 DOI: 10.1016/j.jcis.2020.11.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has received increasing attention. In this study, AgNPs were prepared through in-situ reduction by aminated alkaline lignin (AAL). Compared with alkaline lignin (AL), AAL exhibited stronger reduction capacity (increased by 36%) due to the introduced amine groups and better water solubility. Moreover, the coordination effect of amine groups on AAL improved the binding force between lignin and AgNPs. The content of AgNPs in AgNPs/AAL composite were 2.4 times higher than that in AgNPs/AL, such content could be further increased through increasing the reduction pH or prolonging the heating time. The results of XPS, XRD and TEM showed that the AgNPs were spherical and monodisperse with an average particle size about 17 nm. Additionally, the size of AgNPs was affected by the amination degree of lignin. AgNPs/AAL exhibited good catalytic performance for the reduction of 4-nitrophenol to 4-aminophenol, and this compound could be easily recovered and reused for at least eight cycles.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Rubin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
Al Shanqiti EM, Alfooty KO, Abdelaal MY. Synthesis of chitosan nanocomposites for controlled release applications. Int J Biol Macromol 2020; 168:769-774. [PMID: 33227334 DOI: 10.1016/j.ijbiomac.2020.11.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Chitosan (CS) was modified using hydroxyapatite (HA) and multiwalled carbon nanotubes (MWCNT) followed by crosslinking with glutaraldehyde (GA). The obtained products were characterized and investigated with thermal analysis. The modified CS suffered a slight weight loss % up to 240 °C then extensive weight loss (EWL)% up to 420 °C and a slight weight loss again until the end of measurement at 700 °C. The treatment showed more thermal stability of modified CS over the blank CS. The 20% HA modified CS showed the highest thermal stability among CS/HA composites while adding CNT to the matrix in CS/HA/CNT composites enhances their thermal stability. Ability of the modified CS to uptake metal ions was investigated by using Cu(NO3)2 where CS/HA/CNT/GA showed higher metal ion uptake than CS/HA/GA. Modified CS was preliminary checked for controlled release of 5-fluorouracil (FU), as an antitumor model drug, in aqueous media where the maximum release of FU was obtained after 48 h. This is concluding the ease of release of FU from the investigated matrices which can be arranged in the order of P111F > P121F > P211F > P311F > P221F > P321F.
Collapse
Affiliation(s)
- Ebtesam M Al Shanqiti
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Khalid O Alfooty
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy Y Abdelaal
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
29
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. Int J Biol Macromol 2020; 167:101-116. [PMID: 33220377 DOI: 10.1016/j.ijbiomac.2020.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) nanocomposite beads were prepared by facile, simple and environmentally friendly method. Initially, CuO-NiO was prepared and applied for the catalytic reduction of 4-nitrophenol (4-NP). The results showed that CuO-NiO demonstrate high catalytic activity toward the reduction of 4-NP to 4-aminophenol (4-AP) with a rate constant of 2.97 × 10-2 s-1. Further, CuO-NiO were well-dispersed in the polymeric matrix of carboxymethyl cellulose to prepare CMC/CuO-NiO beads. CMC/CuO-NiO nanocomposite beads were also applied to catalyze the reduction of potassium ferrocyanide (K3Fe (CN)6), 4-NP, Congo red (CR) and Eosin yellow (EY) in the presence of sodium borohydride. Experimental data indicated that CMC/CuO-NiO nanocomposite has higher catalytic activity and high rate constant compared to CuO-NiO. The rate constant found to be 6.88 × 10-2, 6.27 × 10-2, 1.89 × 10-2 and 2.43 × 10-2 for K3Fe(CN)6, 4-NP, CR and EY, respectively, using 5 mg CMC/CuO-NiO beads. FE-SEM, EDX, FTER, XRD and XPS were used to characterize the nanocomposites. CMC/CuO-NiO beads catalytically reduced up to 95-99% of K3Fe(CN)6, 4-NP, CR and EY within 40, 60, 120 and 120 s. CMC/CuO-NiO beads were found more selective for the reduction of 4-NP. The catalytic reduction performance of CMC/CuO-NiO beads was optimized by studying the influence of different parameters on the catalytic reduction of 4-NP. Hence, the effective and super catalytic performance toward the reduction of different organic and inorganic pollutants makes CMC/CuO-NiO beads a smart material and suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial catalysts.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Danish EY, Bakhsh EM, Akhtar K. Design of chitosan nanocomposite hydrogel for sensitive detection and removal of organic pollutants. Int J Biol Macromol 2020; 159:276-286. [DOI: 10.1016/j.ijbiomac.2020.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
31
|
Sargin I, Baran T, Arslan G. Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116987] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants. Carbohydr Polym 2020; 242:116286. [DOI: 10.1016/j.carbpol.2020.116286] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
|
33
|
Zhao H, Li Y. Eco-friendly floatable foam hydrogel for the adsorption of heavy metal ions and use of the generated waste for the catalytic reduction of organic dyes. SOFT MATTER 2020; 16:6914-6923. [PMID: 32647853 DOI: 10.1039/d0sm00756k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Benefiting from their three-dimensional network structure and various functional groups, hydrogels have emerged as efficient adsorbents for the removal of heavy metal ions from wastewater. However, the obvious drawbacks of hydrogels such as generation of toxic secondary waste after adsorption and difficulty in their separation and collection limit their practical application in wastewater treatment. Herein, we introduced a facile strategy of combining mechanical frothing and in situ radical polymerization to prepare a floatable porous foam hydrogel, which not only efficiently removed Cu2+ from water, but also could be easily collected. After adsorption, to avoid the generation of secondary toxic waste, a sustainable strategy of turning the waste into useful materials was introduced. The waste of the Cu2+_ adsorbed hydrogel was processed using NaBH4 solution to obtain a Cu nanoparticle (Cu NP)-loaded composite hydrogel, which was further employed as a catalyst for the catalytic reduction of organic dyes. Thus, this work established a convenient and sustainable strategy for the preparation of an eco-friendly floatable foam hydrogel for the efficient removal of heavy metal ions such as Cu2+ from water and turning the generated waste into useful materials, which is a concept envisaged to be applicable to other heavy metal ion-adsorbed hydrogel systems and will efficiently avoid unwanted secondary pollution.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 27 South Road of ShanDa, Jinan, Shandong 250100, P. R. China.
| | - Ying Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 27 South Road of ShanDa, Jinan, Shandong 250100, P. R. China.
| |
Collapse
|
34
|
Devi Priya D, Elango G, Mohana Roopan S, Shanavas S, Acevedo R, Golkonda M, Sridharan M. Abutilon indicum
Mediated CuO Nanoparticles: Eco‐Approach, Optimum Process of Congo Red Dye Degradation, and Mathematical Model for Multistage Operation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duraipandi Devi Priya
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Ganesh Elango
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
- School of Publish Health, SRM Medical College and Research CentreSRM Institute of Science and Technology Kattankulathur 603 203 Chengalpattu District Tamil Nadu
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Shajahan Shanavas
- Nano and Hybrid Materials LaboratoryDepartment of Physics, Periyar University Salem 636 011 India
| | - Roberto Acevedo
- Facultad de Ingeniería y TecnologíaUniversidad San Sebastián Bellavista 7 Santiago 8420524 Chile
| | - Mokeshrayalu Golkonda
- Department of Mathematics, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamilnadu India
| | - Makuteswaran Sridharan
- Department of ChemistryRashtreeya Vidyalaya College of Engineering, Mysore Road, Bangalore 560059 Karnataka India
| |
Collapse
|
35
|
Aljohny BO, Ahmad Z, Shah SA, Anwar Y, Khan SA. Cellulose acetate composite films fabricated with zero‐valent iron nanoparticles and its use in the degradation of persistent organic pollutants. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science King Abdulaziz University P. O, Box 80203 Jeddah 21589 Kingdom of Saudi Arabia
| | - Zubair Ahmad
- Department of Chemistry University of Swabi Anbar Khyber Pakhtunkhwa 23561 Pakistan
| | - Sher Ali Shah
- Department of Chemistry University of Swabi Anbar Khyber Pakhtunkhwa 23561 Pakistan
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science King Abdulaziz University P. O, Box 80203 Jeddah 21589 Kingdom of Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry University of Swabi Anbar Khyber Pakhtunkhwa 23561 Pakistan
| |
Collapse
|
36
|
Salman Ul Islam, Ahmed MB, Mazhar Ul-Islam, Shehzad A, Lee YS. Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol. Curr Pharm Des 2020; 25:3620-3632. [PMID: 31605574 DOI: 10.2174/1381612825666191009161018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced. Nanotechnology has played a vital role in providing new directions for diagnosis, prevention, and treatment of different disorders, and of cancer in particular. Nanotechnology has demonstrated the capability to deliver conventional natural products with poor solubility or a short half-life to target specific sites in the body and regulate the release of drugs. Among the natural products, the phytoalexin resveratrol has demonstrated therapeutic effects, including antioxidant, antiinflammatory, and anti-proliferative effects, as well as the potential to inhibit the initiation and promotion of cancer. However, low water solubility and extensive first-pass metabolism lead to poor bioavailability of resveratrol, hindering its potential. Conventional dosage forms of resveratrol, such as tablets, capsules, dry powder, and injections, have met with limited success. Nanoformulations are now being investigated to improve the pharmacokinetic characteristics, as well as to enhance the bioavailability and targetability of resveratrol. OBJECTIVES This review details the therapeutic effectiveness, mode of action, and pharmacokinetic limitations of resveratrol, as well as discusses the successes and challenges of resveratrol nanoformulations. Modern nanotechnology techniques to enhance the encapsulation of resveratrol within nanoparticles and thereby enhance its therapeutic effects are emphasized. CONCLUSION To date, no resveratrol-based nanosystems are in clinical use, and this review would provide a new direction for further investigations on innovative nanodevices that could consolidate the anticancer potential of resveratrol.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad B Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Young S Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
37
|
Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M Asiri A, Seo J, Khan SB. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des 2020; 25:3645-3663. [PMID: 31656147 DOI: 10.2174/1381612825666191021142026] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can't degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - M I Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Murad A Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju, Kangwon-do 26493, South Korea
| | - Sher B Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Din MI, Khalid R, Hussain Z, Najeeb J, Sahrif A, Intisar A, Ahmed E. Critical review on the chemical reduction of nitroaniline. RSC Adv 2020; 10:19041-19058. [PMID: 35518289 PMCID: PMC9054049 DOI: 10.1039/d0ra01745k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Conversion of nitroaniline (NA), a highly toxic pollutant that has been released into aquatic systems due to unmanaged industrial development in recent years, into the less harmful or a useful counterpart is the need of the hour. Various methods for its conversion and removal have been explored. Owing to its nominal features of advanced effectiveness, the chemical reduction of 4-NA using various different nanocatalytic systems is one such approach that has attracted tremendous interest over the past few years. The academic literature has been confined to case studies involving silver (Ag) and gold (Au) nanoparticles, as these are the two most widely used materials for the synthesis of nanocatalytic assemblies. Focus has also been given to sodium borohydride (NaBH4), which is used as a reductant during the chemical reduction of NA. This systematic review summarizes the fundamentals associated with the catalytic degradation of 4-NA, and presents a comprehensive and critical study of the latest modifications used in the synthesis of these catalytic systems. In addition, the kinetics, mechanisms, thermodynamics, as well as the future directions required for understanding this model reaction, have been provided in this particular study. Schematic illustration of catalytic reduction of 4-NA in the presence of nanocatalysts and a reducing agent.![]()
Collapse
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Jawayria Najeeb
- Department of Chemistry, University of Gujrat Gujarat 50700 Pakistan
| | - Ahsan Sahrif
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Azeem Intisar
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Ejaz Ahmed
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| |
Collapse
|
39
|
Yadav V, Verma P, Sharma H, Tripathy S, Saini VK. Photodegradation of 4-nitrophenol over B-doped TiO 2 nanostructure: effect of dopant concentration, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10966-10980. [PMID: 31950423 DOI: 10.1007/s11356-019-06674-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The 4-nitrophenol (4-NP) is one of the carcinogenic pollutants listed by US EPA and has been detected in industrial wastewater. This study investigates the photocatalytic degradation of 4-NP with TiO2 and boron (B)-doped TiO2 nanostructures. The degradation on undoped and B-doped TiO2 with various boron loadings (1-7%) was studied to establish a relationship between structure, interface, and photo-catalytic properties. The results of XRD, micro Raman, FTIR, and HRTEM show that the B doping has improved the crystallinity and induces rutile phase along with anatase (major phase). The N2 adsorption-desorption, SEM-EDX, and XPS indicated that the B induced the formation of mesoporous nanostructures in TiO2 and occupies interstitial sites by forming Ti-O-B type linkage. The surface area of pure TiO2 was decreased from 235.4 to 63.3 m2/g in B-TiO2. The photo-physical properties were characterized by UV-Vis DRS, which showed decrease in the optical band-gap of pure TiO2 (2.98 eV) to B-TiO2 (2.95 eV). The degradation results demonstrated that the B doping improved the photocatalytic activity of TiO2; however, this improvement depends on the B concentration in doped TiO2. B-doped TiO2 (> 5% B) showed 90 % degradation of 4-NP, whereas the undoped TiO2 can degrade only 79 % of 4-NP. The degradation followed pseudo-first-order kinetics with rate constant values of 0.006 min-1 and 0.0322 min-1 for pure TiO2 and B-TiO2 respectively. The existence of a reduced form of Ti3+ on the surface of TiO2 (as evidence from XPS) was found responsible for enhancement in photocatalytic activity.
Collapse
Affiliation(s)
- Vandana Yadav
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Priyanka Verma
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Himani Sharma
- Department of Physics, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Sudhiranjan Tripathy
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Vipin Kumar Saini
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
40
|
Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, Yusof FAM, Tan WN, Sulaiman B, Ooi ML, Lee KC. Homalomena pineodora essential oil nanoparticle inhibits diabetic wound pathogens. Sci Rep 2020; 10:3307. [PMID: 32094395 PMCID: PMC7039930 DOI: 10.1038/s41598-020-60364-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
Collapse
Affiliation(s)
- Nur Amiera Syuhada Rozman
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Woei Yenn Tong
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
| | - Chean Ring Leong
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Mohd Razealy Anuar
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Sabrina Karim
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Siew Kooi Ong
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Fahmi Asyadi Md Yusof
- Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Engineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- School of Distance Education, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Baharuddin Sulaiman
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Mei Lee Ooi
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat (Perak Campus), 31900, Kampar, Perak, Malaysia
| | - Kok Chang Lee
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat (Perak Campus), 31900, Kampar, Perak, Malaysia
| |
Collapse
|
41
|
Gholinejad M, Naghshbandi Z, Sansano JM. Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| | - Zhwan Naghshbandi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
| | - José M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA)Universidad de Alicante Apdo. 99, E‐03080‐ Alicante Spain
| |
Collapse
|
42
|
Akhtar K, Ali F, Sohni S, Kamal T, Asiri AM, Bakhsh EM, Khan SB. Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:823-836. [PMID: 31811610 DOI: 10.1007/s11356-019-06908-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass waste is a cheap, eco-friendly, and sustainable raw material for a wide array of applications. In the present study, an easy, fast, and economically feasible route has been proposed for the preparation of different zero-valent metal nanoparticles (ZV-MNPs) based on Cu, Co, Ag, and Ni NPs using empty fruit bunch (EFB) biomass residue as support material. The catalytic efficiency of ZV-MNPs/EFB catalyst was investigated against five model pollutants, such as methyl orange (MO), congo red (CR), methylene blue (MB), acridine orange (AO), and 4-nitrophenol (4-NP) using NaBH4 as a source of hydrogen and electron. Comparative study revealed that among as-prepared ZV-MNPs/EFB catalysts, Cu-NPs immobilized onto EFB (Cu/EFB) exhibited maximum catalytic efficiency towards pollutant abasement. Degradation reactions were highly efficient, and were completed within a short time (4 min) in case of MO, CR, and MB, whilst AO and 4-NP were reduced in less than 15 min. Kinetic investigation revealed that the degradation rate of model pollutants accorded with pseudo-first order model. Furthermore, supported catalysts were easily recovered after the completion of experiment by simply pulling the catalyst from reaction system. Recyclability tests performed on Cu/EFB revealed that more than 97% of the reduction was achieved in case of MO dye for four successive cycles of reuse. The as-prepared heterostructure showed multifunctional properties, such as enhanced uptake of contaminants, high catalytic efficiency, and easy recovery, hence, offers great prospects in wastewater purification.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Abbottabad, KPK, Pakistan
| | - Saima Sohni
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Tahseen Kamal
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
43
|
Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Rehan T, MacEwan D, Shah N, Rehan T, Tahira R, Murad S, Anees M, Murtaza I, Farman M, Abid OUR, Sultan A. Apoptosis of Leukemia Cells by Ocimum basilicum Fractions Following TNF alpha Induced Activation of JNK and Caspase 3. Curr Pharm Des 2019; 25:3681-3691. [DOI: 10.2174/1381612825666191011100826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 02/04/2023]
Abstract
Purpose:
Leukemia, one of the major cancers, affects a large proportion of people around the world.
Better treatment options for leukemia are required due to a large number of side effects associated with current
therapeutic regimens. In the present study, we sought to determine the pathway of triggering apoptosis of leukemic
cells by Ocimum basilicum (O. basilicum) plant extract.
Materials/Methods:
Methanolic extract of the O. basilicum plant material was prepared. The crude extract was
fractionated into several fractions through column chromatography using ethyl acetate and n-hexane as eluting
solvents. Cell viability of leukemic cells was assessed via Cell titer GLO assay and apoptosis was measured
through Annexin V/PI staining. Two apoptotic molecules JNK and caspases were analyzed through western blotting
while pro-inflammatory cytokines TNFα, CCL2 and CXCL8 using qPCR. Fractions were characterized
through LC-MS.
Results:
The most potent with lowest IC50 values among the fractions were BF2 (2:8 n-hexane:ethyl acetate) and
BF3 (3:7 n-hexane:ethyl acetate). Cytotoxicity was associated with apoptosis. Apoptosis was found caspasedependent
and P-JNK activation was detected sustained. A significant increase in the level of TNF α and a decrease
in the level of CXCL8 were observed in BF2 and BF3 treated cells.
Conclusion:
The fractions of O. basilicum extract were found to kill cells following JNK pathway activation.
Excellent results were obtained with BF2 and BF3 probably due to predominant Epicatechin and Cinnamic acid
derivatives in these fractions.
Collapse
Affiliation(s)
- Touseef Rehan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - David MacEwan
- Department of Translational Medicine, Faculty of Health Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Nasrullah Shah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Tabassum Rehan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Tahira
- Plant Genetic Resources Program, National Agricultural Research Centre, Park Road, Islamabad, Pakistan
| | - Sheeba Murad
- Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Mariam Anees
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Farman
- Department of Chemistry, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Aneesa Sultan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
45
|
Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, Khan MI, Almasry WA, Kang IK. Biocompatible Polymers and their Potential Biomedical Applications: A Review. Curr Pharm Des 2019; 25:3608-3619. [DOI: 10.2174/1381612825999191011105148] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/29/2019] [Indexed: 01/28/2023]
Abstract
Background:
Biocompatible polymers are gaining great interest in the field of biomedical applications.
The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible
polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in
intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the
body. A biocompatible polymer improves body functions without altering its normal functioning and triggering
allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial
grafts, wound fabrication, controlled drug delivery, bone filler material, etc.
Objectives:
This review provides an insight into the remarkable contribution made by some well-known biopolymers
such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many
biomedical applications.
Methods: :
Various techniques and methods have made biopolymers more significant in the biomedical fields such
as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques,
controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering
etc.
Results:
The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility,
nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and
minimized side effects that would occur if synthetic polymers are used in a host cell.
Conclusion:
Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There
are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.
Collapse
Affiliation(s)
- Uzma Arif
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Haider
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Abdulaziz A. Alghyamah
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, KPK, Pakistan
| | - Muhammad Imran Khan
- Deparment of Pharmacy, Kohat University of Science and Technology, Kohat KPK, Pakistan
| | - Waheed A. Almasry
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
46
|
Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Thoumire O, El Moznine R, Cherkaoui O, Vieillard J, Azzouz A. Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2336-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Khairnar SD, Shrivastava VS. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1686248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Shah N, Gul S, Mazhar Ul-Islam. Core-Shell Molecularly Imprinted Polymer Nanocomposites for Biomedical and Environmental Applications. Curr Pharm Des 2019; 25:3633-3644. [PMID: 31626581 DOI: 10.2174/1381612825666191009153259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Core-shell polymers represent a class of composite particles comprising of minimum two dissimilar constituents, one at the center known as a core which is occupied by the other called shell. Core-shell molecularly imprinting polymers (CSMIPs) are composites prepared via printing a template molecule (analyte) in the coreshell assembly followed by their elimination to provide the everlasting cavities specific to the template molecules. Various other types of CSMIPs with a partial shell, hollow-core and empty-shell are also prepared. Numerous methods have been reported for synthesizing the CSMIPs. CSMIPs composites could develop the ability to identify template molecules, increase the relative adsorption selectivity and offer higher adsorption capacity. Keen features are measured that permits these polymers to be utilized in numerous applications. It has been developed as a modern technique with the probability for an extensive range of uses in selective adsorption, biomedical fields, food processing, environmental applications, in utilizing the plant's extracts for further applications, and sensors. This review covers the approaches of developing the CSMIPs synthetic schemes, and their application with special emphasis on uses in the biomedical field, food care subjects, plant extracts analysis and in environmental studies.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Saba Gul
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
49
|
Shah N, Zaman T, Rehan T, Khan S, Khan W, Khan A, Ul-Islam M. Preparation and Characterization of Agar Based Magnetic Nanocomposite for Potential Biomedical Applications. Curr Pharm Des 2019; 25:3672-3680. [PMID: 31604415 DOI: 10.2174/1381612825666191011113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of the present study was to make a biocompatible agar based composite material via incorporation of appropriate additives within the agar matrix for potential applications in drug delivery and biomedical fields. METHODOLOGY Agar based composites were prepared by the incorporation of magnetic iron oxide nano particles, graphite and sodium aluminum as additives in different proportions within the agar matrix by a simple thermophysico- mechanical method. The as prepared agar based composites were then characterized by different techniques i.e. FTIR, SEM, TGA, XRD and EDX analyses. The FTIR peaks confirmed the presence of each component in the agar composite. SEM images showed the uniform distribution of each component in the agar composite. TGA study showed the thermal stability range of different composite sheets. XRD pattern revealed the crystallinity and EDX analysis confirmed the elemental composition of the prepared composites. The prepared agar based composites were evaluated for antimicrobial activities against three pathogenic bacterial strains Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia and the result indicated efficient antimicrobial activities for all composites. CONCLUSION From the overall study, it was concluded that due to the non-toxic nature, thermal stability and excellent antibacterial properties, the prepared agar based composites can receive potential biomedical applications.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Tahir Zaman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
50
|
Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Thoumire O, El Moznine R, Cherkaoui O, Vieillard J, Azzouz A. Preparation of a novel composite based polyester nonwovens with high mechanical resistance and wash fastness properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|