1
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Abbasi A, Zahiri M, Abnous K, Taghdisi SM, Aliabadi A, Ramezani M, Alibolandi M. Nucleolin-targeted doxorubicin and ICG co-loaded theranostic lipopolymersome for photothermal-chemotherapy of melanoma in vitro and in vivo. Eur J Pharm Biopharm 2024; 202:114411. [PMID: 39009192 DOI: 10.1016/j.ejpb.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Combination therapy using chemo-photothermal therapy (chemo-PTT) shows great efficacy toward tumor ablation in preclinical studies. Besides, lipopolymersomes as a hybrid nanocarriers, integrate advantages of liposomes and polymersomes in a single platform in order to provide tremendous biocompatibility, biodegradability, noteworthy loading efficacy for both hydrophobic and hydrophilic drugs with adjustable drug release and high stability. In this study, a multipurpose lipopolymersome was fabricated for guided chemotherapy-PTT and NIR-imaging of melanoma. A lipopolymerosomal hybrid nanovesicle consisting of equal molar ratio of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) diblock copolymer (molar ratio 1:1) was fabricated. The nanoparticulate system was prepared through film rehydration technique for encapsulation of doxorubicin (DOX) and indocyanine green (ICG) to form DOX-ICG-LP platform. At the next stage, AS1411 DNA aptamer was conjugated to the surface of lipopolymersome (Apt-DOX-ICG-LP) for selective delivery. The sizes of DOX-ICG-LP and Apt-DOX-ICG-LP were obtained through DLS analysis (61.0 ± 6 and 74 ± 5, respectively). Near Infrared-responsive release pattern of the prepared lipopolymersome was verified in vitro. The formulated platform showed efficient photothermal conversion, and superior stability with acceptable encapsulation efficiency. Consistent with the in vitro studies, NIR-responsive lipopolymersome exhibited significantly higher cellular toxicity for Chemo-PTT versus single anti-cancer treatment. Moreover, superlative tumor shrinkage with favorable survival profile were attained in B16F10 tumor-bearing mice received Apt-DOX-ICG-LP and irradiated with 808 nm laser compared to those treated with either DOX-ICG-LP or Apt-DOX-ICG-LP without laser irradiation. The diagnostic capability of Apt-DOX-ICG-LP was addressed using in vivo NIR imaging, 6 and 24 h post-intravenous administration. The results indicated desirable feature of an established targeted theranostic capability of Apt-DOX-ICG-LP for both diagnostics and dual chemo-PTT of melanoma.
Collapse
Affiliation(s)
- Athena Abbasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mahshad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Aliabadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Li C, Wang M, Li PF, Sheng J, Fu Q. Construction of Smart DNA-Based Drug Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306257. [PMID: 38377302 DOI: 10.1002/smll.202306257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Junyue Sheng
- Qingdao No.58 High School of Shandong Province, 20 Jiushui Road, Qingdao, 266100, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
4
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
5
|
Song H, Dong H, Dong W, Luo Y. Atomic-Level Insights into Hollow Silica-Based Materials for Drug Delivery: Effects of Wettability and Porosity. ACS Biomater Sci Eng 2023; 9:6156-6164. [PMID: 37831542 DOI: 10.1021/acsbiomaterials.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Experimental evidence has demonstrated that the drug carrier capacity can be significantly enhanced through the use of hollow silica particles. Nevertheless, the effects of varying functional drug carrier surfaces and porous structures remain ambiguous. This study employs molecular dynamics simulations to examine the effects of varying the surface wettability, pore size, and flow velocity on the transfer process. The different levels of wettability of the silica surface with the coarse-grained water model is illustrated by adjusted interaction parameters. The effect of wettability is investigated. With weak interactions, the flow molecules form a nanodroplet to transfer through the porous structure. A strong interaction will lead to molecules flowing as a liquid film to transfer through the structure. Interestingly, the "contradiction effect" is observed when the flow molecules fail to penetrate the porous structure with weak interactions, during which surface tension dominates their flow behavior. Moreover, different porous structures are considered. The flow behaviors are divided into three processes: (1) fast flowing, (2) transient point, and (3) penetration flowing. Furthermore, the concept of surface molecules is defined to quantitatively measure the effect of porosity. A recommended contact angle is proposed. The results will pave the way for more carrier structures in medical engineering.
Collapse
Affiliation(s)
- Haoxin Song
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Haiyan Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weihua Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Luo
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
6
|
Hasannia M, Lamei K, Abnous K, Taghdisi SM, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102645. [PMID: 36549556 DOI: 10.1016/j.nano.2022.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Lamei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
8
|
Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Targeted Delivery of Sunitinib by MUC-1 Aptamer-Capped Magnetic Mesoporous Silica Nanoparticles. Molecules 2023; 28:molecules28010411. [PMID: 36615606 PMCID: PMC9824472 DOI: 10.3390/molecules28010411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| | - Pouria Savadi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (Di.S.T.A.Bi.F.), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| |
Collapse
|
9
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
11
|
Zhou L, Zhang Y, Ma Y. Construction of a redox-responsive drug delivery system utilizing the volume of AS1411 spatial configuration gating mesoporous silica pores. NANOSCALE ADVANCES 2022; 4:4059-4065. [PMID: 36285218 PMCID: PMC9514570 DOI: 10.1039/d2na00446a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 05/30/2023]
Abstract
In recent years, diverse redox-responsive drug delivery systems have emerged to prevent premature drug release and reduce drug toxicity in the human body in cancer treatment. In this paper, we put forward a view of directly utilizing the spatial structure size of the AS1411 aptamer as the nano-gatekeeper on the pore openings of MCM-41 type mesoporous silica and thus constructed a redox-responsive drug delivery system named MCM-41-SS-AS1411. The particles obtained at each step were characterized by TEM, FTIR, SXRD, TGA and zeta potential measurement. The characterization data confirmed that the particles were successfully prepared. The binding amount of the aptamer was ca. 3.1 × 103 for each carrier particle averagely. The anticancer drug Dox was regarded as a drug model to investigate the redox-controlled drug release behavior by fluorescence measurements. The investigation results demonstrate that the spatial volume of aptamer AS1411 can block the mesopore, and this drug-carrier can realize controlled drug release by GSH. We hope this idea can play a prompt role in relevant research. Meanwhile, the preparation steps of this DDS are simplified.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Chemistry, School of Forensic Medicine, China Medical University Shenyang 110122 China
| | - Yajie Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University Shenyang 110004 China
| | - Yong Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University Shenyang 110122 China
| |
Collapse
|
12
|
Rahimi H, Abdollahzade A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Targeted delivery of doxorubicin to tumor cells using engineered circular bivalent aptamer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hasannia M, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of doxorubicin-loaded peptosomes hybridized with gold nanorod for targeted drug delivery and CT imaging of metastatic breast cancer. J Nanobiotechnology 2022; 20:391. [PMID: 36045404 PMCID: PMC9429417 DOI: 10.1186/s12951-022-01607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer nanomedicines based on synthetic polypeptides have attracted much attention due to their superior biocompatibility and biodegradability, stimuli responsive capability through secondary conformation change, adjustable functionalities for various cargos such as peptides, proteins, nucleic acids and small therapeutic molecules. Recently, a few nanoformulations based on polypeptides comprising NK105, NC6004, NK911, CT2103, have entered phase I-III clinical trials for advanced solid tumors therapy. In the current study, we prepared polypeptide-based vesicles called peptosome via self-assembly of amphiphilic polypeptide-based PEG-PBLG diblock copolymer. RESULTS In this regard, poly(γ-benzyl L-glutamate (PBLG) was synthesized via ring opening polymerization (ROP) of γ-benzyl L-glutamate-N-carboxyanhydride (BLG-NCA) using N-hexylamine as initiator. Then amine-terminated PBLG was covalently conjugated to heterofuctional maleimide PEG-carboxylic acid or methyl-PEG-carboxylic acid. The PEG-PBLG peptosomes were prepared through double emulsion method for the co-delivery of doxorubicin.HCl and gold nanorods as hydrophilic and hydrophobic agents in interior compartment and membrane of peptosomes, respectively (Pep@MUA.GNR-DOX) that DOX encapsulation efficiency and loading capacity were determined 42 ± 3.6 and 1.68 ± 3.6. Then, theranostic peptosomes were decorated with thiol-functionalized EpCAM aptamer throught thiol-maleimide reaction producing Apt-Pep@MUA.GNR-DOX for targeted delivery. The non-targeted and targeted peptosomes showed 165.5 ± 1.1 and 185 ± 4.7 nm diameters, respectively while providing sustained, controlled release of DOX. Furthermore, non-targeted and targeted peptosomes showed considerable serum stability. In vitro study on MCF-7 and 4T1 cells showed significantly higher cytotoxicity for Apt-Pep@MUA.GNR-DOX in comparison with Pep@MUA.GNR-DOX while both system did not show any difference in cytotoxicity against CHO cell line. Furthermore, Apt-Pep@MUA.GNR-DOX illustrated higher cellular uptake toward EpCAM-overexpressing 4T1 cells compared to Pep@MUA.GNR-DOX. In preclinical stage, therapeutic and diagnostic capability of the prepared Pep@MUA.GNR-DOX and Apt-Pep@MUA.GNR-DOX were investigated implementing subcutaneous 4T1 tumor model in BALB/c mice. The obtained data indicated highest therapeutic index for Apt-Pep@MUA.GNR-DOX compared to Pep@MUA.GNR-DOX and free DOX. Moreover, the prepared system showed capability of CT imaging of tumor tissue in 4T1 tumorized mice through tumor accumulation even 24 h post-administration. CONCLUSION In this regard, the synthesized theranostic peptosomes offer innovative hybrid multipurpose platform for fighting against breast cancer.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Falsafi M, Hassanzadeh Goji N, Sh Saljooghi A, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of a targeted, dual pH and redox-responsive nanoscale coordination polymer theranostic against metastatic breast cancer in vitro and in vivo. Expert Opin Drug Deliv 2022; 19:743-754. [PMID: 35616345 DOI: 10.1080/17425247.2022.2083602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nanoscale coordination polymers (nCP) have exhibited a great potential in designing of the theranostic platforms in the latest years. However, they have low selectivity for cancerous tissues and require to be modified for becoming effective cancer therapeutics. In this study, a novel nanoscale pH and redox-responsive coordination polymer with high selectivity was synthesized. METHODS The nCP was synthesized by iron(III) chloride and dithiodiglycolic acid. After loading the prepared nCP with doxorubicin (DOX), nCP was coated with an amphiphilic copolymer composed of α-tocopheryl succinate-polyethylene glycol (VEP). Next, AS1411 aptamer was decorated on the VEP shell of the DOX-loaded nCP (Apt-VEP-nCP@DOX) to provide a guided drug delivery platform. RESULTS The prepared platform demonstrated high DOX loading capacity and pH and redox-responsive DOX release. Apt-VEP-nCP@DOX displayed greater DOX internalization and toxicity towards breast cancer cells of 4T1 and MCF7 compared with that of non-targeted VEP-nCP@DOX. Also, the intravenous injection of Apt-VEP-nCP@DOX (a single dose) considerably suppressed the 4T1 tumor growth in vivo. Moreover, Apt-VEP-nCP@DOX showed outstanding magnetic resonance (MR) imaging capability for 4T1 adenocarcinoma diagnosis in ectopic 4T1 tumor model in mice. CONCLUSIONS The developed innovative intelligent Apt-VEP-nCP@DOX could serve as a safe and biocompatible theranostic platform appropriate for further translational purposes against breast cancer.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
17
|
Akhtar S, Gunday ST, Alqosaibi AI, Aldossary H, Bozkurt A, Khan FA. Template-free preparation of iron oxide loaded hollow silica spheres and their anticancer proliferation capabilities. RSC Adv 2022; 12:6791-6802. [PMID: 35424646 PMCID: PMC8981845 DOI: 10.1039/d1ra08216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 01/18/2023] Open
Abstract
Hollow silica spheres were loaded with Fe3O4 NPs (u-HSS-Fe) and calcined further to remove the non-degradable phenyl groups (c-HSS-Fe) for anticancer applications.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Seyda Tugba Gunday
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hanan Aldossary
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
18
|
Wang Z, Ye X, Fang Y, Cheng H, Xu Y, Wang X. Development and in vitro evaluation of pH-sensitive naringenin@ZIF-8 polymeric micelles mediated by aptamer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm 2021; 605:120822. [PMID: 34182039 DOI: 10.1016/j.ijpharm.2021.120822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 01/17/2023]
Abstract
Due to the high frequency and mortality of breast cancer, developing efficient targeted drug delivery systems for frightening against this malignancy is among cancer research priorities. The aim of this study was to synthesize a targeted micellar formulation of docetaxel (DTX) using DTX, folic acid (FA) and polyethylene glycol (PEG) conjugates as building blocks. In the current study, two therapeutic polymers consisting of FA-PEG-DTX and PEG-DTX conjugates were synthesized and implemented to form folate-targeted and non-targeted micelles. Dissipative particle dynamics (DPD) method was used to simulate the behavior of the nanoparticle. The anti-cancer drug, DTX was loaded in to the micelles via solvent switching method in order to increase its solubility and stability. The cytotoxicity of the targeted and non-targeted formulations was evaluated against 4T1 and CHO cell lines. In vivo therapeutic efficiency was studied using ectopic tumor model of metastatic breast cancer, 4T1, in Female BALB/c mice. The successful synthesis of therapeutic polymers, FA-PEG-DTX and PEG-DTX were confirmed implementing 1HNMR spectral analysis. The size of DTX-loaded non-targeted and targeted micelles were 176.3 ± 8.3 and 181 ± 10.1 nm with PDI of 0.23 and 0.17, respectively. Loading efficiencies of DTX in non-targeted and targeted micelles were obtained to be 85% and 82%, respectively. In vitro release study at pH = 7.4 and pH = 5.4 showed a controlled and continuous drug release for both formulations, that was faster at pH = 5.4 (100% drug release within 120 h) than at pH = 7.4 (80% drug release within 150 h). The targeted formulation showed a significant higher cytotoxicity against 4T1 breast cancer cells (high expression of folate receptor) within the range of 12.5 to 200 μg/mL in comparison with no-targeted one. However, there was no significant difference between the cytotoxicity of the targeted and non-targeted formulations against CHO cell line as low-expressed cell line. In accordance with in vitro investigation, in vivo studies verified the ideal anti-tumor efficacy of the targeted formulation compared to Taxotere and non-targeted formulation. Based on the obtained data, FA-targeted DTX-loaded nano-micelles significantly increased the therapeutic efficacy of DTX and therefore can be considered as a new potent platform for breast cancer chemotherapy.
Collapse
|
21
|
Bagheri E, Alibolandi M, Abnous K, Taghdisi SM, Ramezani M. Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 2021; 9:1351-1363. [PMID: 33447840 DOI: 10.1039/d0tb01960g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a dual-receptor doxorubicin-targeted delivery system based on mesoporous silica nanoparticles (MSNs) modified with mucine-1 and ATP aptamers (DOX@MSNs-Apts) was developed. An amine-modified mucine-1 (MUC1) aptamer was covalently anchored on the surface of carboxyl-functionalized MSNs. Then, ATP aptamers (ATP1 and ATP2 aptamers) were immobilized on the surface of MSNs through partial hybridization with the MUC1 aptamer by forming a Y-shaped DNA structure on the MSNs surface (DOX@MSNs-Apts) as a gatekeeper. The developed DOX@MSNs-Apts exhibited high DOX loading capacity. In addition, it indicated an ATP-responsive feature, leading to the release of DOX in the environment with high ATP concentration (10 mM), similar to the intracellular environment of tumor cells. This property demonstrated that anticancer drug (DOX) could be entrapped inside the nanocarrier with nearly no leakage in blood and a very low concentration of ATP (1 μM). It was found that after the internalization of DOX@MSNs-MUC1 by cancer cells via the MUC1 receptor-mediated endocytosis, the ATP aptamers left the surface of the nanocarrier, allowing for rapid DOX release. DOX@MSNs-Apts indicated higher cellular uptake in MCF-7 and C26 cancer cells (MUC1+), rather than CHO cells (MUC1-). The in vitro cytotoxicity and the in vivo antitumor efficacy of DOX@MSNs-Apts showed greater cytotoxicity than the nanoparticles decorated with scrambled ATP aptamers (DOX@MSNs-Apts scrambled) in C26 and MCF-7 cell lines (MUC1+). The biodistribution and in vivo anticancer efficacy on the C26 tumor bearing mice indicated that the DOX@MSNs-Apts had a higher tumor accumulation and superior tumor growth inhibitory effect compared to free DOX and their scrambled aptamers, DOX@MSNs-Apts scrambled. Overall, the obtained results indicated that the prepared smart platform could reveal new insights into the treatment of cancer.
Collapse
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. and Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran and Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Niu S, Zhang X, Williams GR, Wu J, Gao F, Fu Z, Chen X, Lu S, Zhu LM. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Acta Biomater 2021; 126:408-420. [PMID: 33731303 DOI: 10.1016/j.actbio.2021.03.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022]
Abstract
The combination of chemotherapy and photothermal therapy (PTT) into a single formulation has attracted increasing attention as a strategy for enhancing cancer treatment. Here, hollow mesoporous silica nanoparticles (HMSNs) were used as a base carrier material, loaded with the anti-cancer drug doxorubicin (DOX), and surface functionalized with chitosan (CS) and copper sulfide (CuS) nanodots to give HMSNs-CS-DOX@CuS. In this formulation, the CuS dots act as gatekeepers to seal the surface pores of the HMSNs, preventing a burst release of DOX into the systemic circulation. S-S bonds connect the CuS dots to the HMSNs; these are selectively cleaved under the reducing microenvironment of the tumor, permitting targeted drug release. This, coupled with the PTT properties of CuS, results in a potent chemo/PTT platform. The HMSNs-CS-DOX@CuS nanoparticles have a uniform size (150 ± 13 nm), potent photothermal properties (η = 36.4 %), and tumor-targeted and near infrared (NIR) laser irradiation-triggered DOX release. In vitro and in vivo experimental results confirmed that the material has good biocompatibility, but is effectively taken up by cancer cells. Moreover, the CuS nanodots permit simultaneous thermal/photoacoustic dual-modality imaging. Treatment with HMSNs-CS-DOX@CuS and NIR irradiation caused extensive apoptosis in cancer cells both in vitro and in vivo, and could dramatically extend the lifetimes of animals in a murine breast cancer model. The system developed in this work therefore merits further investigation as a potential nanotheranostic platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Conventional cancer chemotherapy is accompanied by unavoidable off-target toxicity. Combination therapies, which can ameliorate these issues, are attracting significant attention. Here, the anticancer drug doxorubicin (DOX) was encapsulated in the central cavity of chitosan (CS)-modified hollow mesoporous silica nanoparticles (HMSNs). The prepared system can target drug release to the tumor microenvironment. When exposed to near infrared laser (NIR) irradiation, CuS nanodots located at the surface pores of the HMSNs generate energy, accelerating drug release. In addition, a systematic in vitro and in vivo evaluation confirmed the HMSNs-CS-DOX@CuS platform to give highly effective synergistic chemotherapeutic-photothermal therapy and have effective thermal/photoacoustic dual-imaging properties. This work may open up a new avenue for NIR-enhanced synergistic therapy with simultaneous thermal/photoacoustic dual imaging.
Collapse
Affiliation(s)
- Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P.R. China
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, P.R. China
| | - Zi Fu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopaedics, Department of Orthopaedics, the First People's Hospital of Yunnan Province, Kunming 650500, P.R. China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China.
| |
Collapse
|
23
|
Zhang XK, Wang QW, Xu YJ, Sun HM, Wang L, Zhang LX. Co-delivery of cisplatin and oleanolic acid by silica nanoparticles-enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci 2021; 37:505-512. [PMID: 33559348 DOI: 10.1002/kjm2.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 01/10/2023] Open
Abstract
Multidrug resistance (MDR) of chemotherapy is one of the significant concerns in cancer therapy. Here in our study, cisplatin (DDP) and oleanolic acid (OA) were co-loaded in mesoporous silica nanoparticles (Nsi) to construct DDP/OA-Nsi and solve the DDP-resistance in lung cancer therapy. The cytotoxicity and apoptosis assays demonstrated that in DDP-resistant A549/DDP cells, the cytotoxicity of DDP/OA-Nsi was significantly higher than that of free DDP or DDP single delivery system (DDP-Nsi). The intracellular drug accumulation study revealed that the intracellular DDP concentration in the DDP/OA-Nsi group was also higher than that in free DDP and DDP-Nsi groups. In the A549/DDP xenograft tumor model, DDP/OA-Nsi showed the best anticancer effect. In summary, DDP/OA-Nsi was a promising drug delivery system to solve MDR in lung cancer therapy.
Collapse
Affiliation(s)
- Xiao-Kai Zhang
- Department of Thoracic Oncosurgery-2, Jilin Province Tumor Hospital, Changchun, China
| | - Qi-Wen Wang
- Department of Thoracic Oncosurgery-2, Jilin Province Tumor Hospital, Changchun, China
| | - Ya-Juan Xu
- Oral and Maxillofacial Surgery, Jilin Province Tumor Hospital, Changchun, China
| | - Hong-Mei Sun
- Department of Thoracic Oncosurgery-2, Jilin Province Tumor Hospital, Changchun, China
| | - Lei Wang
- Department of Thoracic Oncosurgery-2, Jilin Province Tumor Hospital, Changchun, China
| | - Li-Xin Zhang
- Department of Thoracic Oncosurgery-2, Jilin Province Tumor Hospital, Changchun, China
| |
Collapse
|
24
|
Falsafi M, Saljooghi AS, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Smart metal organic frameworks: focus on cancer treatment. Biomater Sci 2021; 9:1503-1529. [DOI: 10.1039/d0bm01839b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials, have been broadly employed as controlled systems of drug delivery due to their inherent interesting properties.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
25
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
26
|
Liang X, Liang X. Chondroitin sulfate modified and adriamycin preloaded hybrid nanoparticles for tumor-targeted chemotherapy of lung cancer. Kaohsiung J Med Sci 2020; 37:411-418. [PMID: 33340254 DOI: 10.1002/kjm2.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
Promising cancer treatment requires the assistant of drug delivery systems (DDS) with the aim to increase the accumulation of drugs in tumor tissue. Herein, a hybrid DDS was successfully developed to integrate chondroitin sulfate (CS) and calcium carbonate (CC) in to one system. Anticancer drug adriamycin (Adr) was preloaded into CC nanoparticles to obtain Adr-loaded CC nanoparticles (CC/Adr). The resulted CS-CC/Adr nanoparticles as a biocompatible DDS was able to specifically target cancer cells to enhance the chemotherapy of lung cancer due to the surface modification of CS. Intracellular uptake as well as in vivo imaging results revealed the obtained CS-CC/Adr nanoparticles (size of ~100 nm) showed CS mediated tumor specific accumulation into A549 and LLC cells than unmodified CC/Adr, in which the CD44 receptor might be involved, which finally resulted in stronger anticancer capability than Adr or CC/Adr. As a result, CS-CC/Adr nanoparticles could be further extended to clinical administration in our future works.
Collapse
Affiliation(s)
- Xiang Liang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xi Liang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Gisbert-Garzarán M, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. Int J Mol Sci 2020; 21:ijms21249696. [PMID: 33353212 PMCID: PMC7766291 DOI: 10.3390/ijms21249696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapy treatments lack great selectivity towards tumoral cells, which leads to nonspecific drug distribution and subsequent side effects. In this regard, the use of nanoparticles able to encapsulate and release therapeutic agents has attracted growing attention. In this sense, mesoporous silica nanoparticles (MSNs) have been widely employed as drug carriers owing to their exquisite physico-chemical properties. Because MSNs present a surface full of silanol groups, they can be easily functionalized to endow the nanoparticles with many different functionalities, including the introduction of moieties with affinity for the cell membrane or relevant compartments within the cell, thus increasing the efficacy of the treatments. This review manuscript will provide the state-of-the-art on MSNs functionalized for targeting subcellular compartments, focusing on the cytoplasm, the mitochondria, and the nucleus.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-1843
| |
Collapse
|
28
|
Wang JY, Song YQ, Peng J, Luo HL. Nanostructured Lipid Carriers Delivering Sorafenib to Enhance Immunotherapy Induced by Doxorubicin for Effective Esophagus Cancer Therapy. ACS OMEGA 2020; 5:22840-22846. [PMID: 32954132 PMCID: PMC7495447 DOI: 10.1021/acsomega.0c02072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The tumor microenvironment (TME) plays a significant role in weakening the effect of cancer immunotherapy, which calls for the remodeling of TME. Herein, we fabricated a nanostructured lipid carrier (NLC) to codeliver doxorubicin (Dox) and sorafenib (Sfn) as a drug delivery system (NLC/D-S). The Sfn was expected to regulate the TME of esophagus cancer. As a result, the immune response induced by Dox-related immunogenicity cell death could be fully realized. Our results demonstrated that Sfn was able to remodel the TME through downregulation of regulatory T cells (Treg), activation of effector T cells, and relieving of PD-1 expression, which achieved synergistic effect on the inhibition of primary tumor but also subsequent strong immune response on the regeneration of distant tumor.
Collapse
|
29
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Wan J, Wang J, Zhou M, Rao Z, Ling X. A cell membrane vehicle co-delivering sorafenib and doxorubicin remodel the tumor microenvironment and enhance immunotherapy by inducing immunogenic cell death in lung cancer cells. J Mater Chem B 2020; 8:7755-7765. [PMID: 32735004 DOI: 10.1039/d0tb01052a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer immunotherapy is a promising approach for cancer therapy but is usually hindered by the inhibition of the tumor microenvironment (TME). Herein, we developed a cell membrane vehicle (CV) to co-deliver doxorubicin (Dox) and sorafenib (Sfn) as a drug delivery system (CV/D-S) to regulate the TME and sensitize the immunogenic cell death (ICD)-induced immune response against tumors. The CV/D-S showed high stability, acid-responsive drug release, high biocompatibility with tumor-specific cellular uptake, and target-ability that preferably resulted in the in vitro and in vivo anticancer performance. Most importantly, the Dox in the DDS can induce significant ICD while Sfn was able to remodel the TME, downregulate Treg, activate effector T cells and relieve programmed cell death protein 1 (PD-1) expression. As a result, the synergistic effect of Dox and Sfn achieved strong immune response in CV/D-S treated mice, which is believed to open a new window for the design and development of future platforms for the more effective immunotherapy of cancer.
Collapse
Affiliation(s)
- Jun Wan
- Department of Thoracic Surgery, The Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong 518020, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Nejabat M, Eisvand F, Soltani F, Alibolandi M, Mohammad Taghdisi S, Abnous K, Hadizadeh F, Ramezani M. Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. Int J Pharm 2020; 587:119650. [PMID: 32679263 DOI: 10.1016/j.ijpharm.2020.119650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Targeting inhibitors of apoptosis proteins (IAPs) family comprising high level expression in many cancer cells, could sensitize tumor cells to conventional chemotherapies. In the present study, we designed both doxorubicin and SmacN6 (an antagonist of the IAPs) encapsulated polymeric nanoparticles (NPs) and investigated their synergistic effect of combination therapy in vitro and in vivo. According to the results, NPs-SmacN6 significantly enhanced the cytotoxicity effect of NPs-DOX and reduced its IC50 in MCF-7, 4T1 and C26 cancer cells. Western blot analysis confirmed mechanism of cell apoptosis via caspase activation through intrinsic and also extrinsic pathways. Moreover, 5TR1 aptamer-modified NPs could effectively deliver DOXor SmacN6 to C26 cancer cells (MUC1 positive) in comparison with the non-targeted one (p < 0.001). However, they could not be efficiently internalized into CHO cells (MUC1 negative), showing less cytotoxicity in this cell line. In vivo experiments in BALB/c mice bearing C26 tumor indicated that Apt-NPs-DOX in combination with Apt-NPs-SmacN6 had significant tumor growth inhibition in comparison with mice receiving either free DOX or Apt-NPs-DOX with p < 0.0001 and p < 0.05, respectively. Our results revealed that combination therapy of DOX and SmacN6 via Apt-modified nanoparticles can lead to improvement of therapeutic index of DOX in MUC1 positive cancer cells.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2020; 194:111166. [PMID: 32521461 DOI: 10.1016/j.colsurfb.2020.111166] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
In this work, a pH-responsive and tumor targeted multifunctional drug delivery system (RB-DOX@HMSNs-N = C-HA) was designed to realize chemo-photodynamic combination therapy. Hollow mesoporous silica nanoparticles (HMSNs) was served as the host material to encapsulate doxorubicin (DOX) and photosensitizer rose bengal (RB). Hyaluronic acid (HA) was modified on the surface of HMSNs via pH-sensitive Schiff base bonds as gatekeeper as well as targeted agent. Characterization results indicated the successful preparation of HMSNs-N = C-HA with appropriate diameter of 170 nm around and the nanocarriers displayed superior drug loading capacity (15.30 % for DOX and 12.78 % for RB). Notably, the results of in vitro drug release experiments confirmed that the system possessed good pH-sensitivity, which made it possible to release cargoes in slight acid tumor micro-environments. Significantly, the in vitro cell uptake and cytotoxicity assay results fully proved that RB-DOX@HMSNs-N = C-HA could precisely target murine mammary carcinoma (4T1) cells and effectively inhibit tumor cells viability with chemo-photodynamic synergistic therapy. Overall, our work (RB-DOX@HMSNs-N = C-HA) provides an efficient approach for the development of chemo-photodynamic combination therapy.
Collapse
|
33
|
Ramezani P, Abnous K, Taghdisi SM, Zahiri M, Ramezani M, Alibolandi M. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surf B Biointerfaces 2020; 193:111135. [PMID: 32447200 DOI: 10.1016/j.colsurfb.2020.111135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
In the current study, polyethylene glycol (PEG) was linked to polylactide (PLA) through the synthetic peptide PVGLIG which can be selectively cleaved by the tumor-associated matrix metalloproteinase 2 (MMP-2) enzyme. The synthesized chimeric triblock polymer of PEG-b-PVGLIG-PLA was implemented to form nanoscale self-assemble chimeric polymersomes. The hydrophobic SN38 was loaded into polymersomes with 70.3% ± 3.0% encapsulation efficiency demonstrating monodispersed spherical morphologies with 172 ± 30 nm dimension. The prepared chimeric polymersomal formulation provided controlled release of SN38 at physiological condition while illustrating seven-folds higher release rate when exposed to MMP-2 enzyme. At the next stage, AS1411 aptamer was conjugated onto the surface of MMP-2 responsive polymersomal formulation in order to provide guided drug delivery against nucleolin positive cells. In vitro cellular toxicity assay against C26 cell line (nucleolin positive) demonstrated significantly higher toxicity of targeted formulation in comparison with non-targeted one in low SN38 concentrations (0.15-1.25 μg/mL). In vivo study in mice bearing subcutaneous C26 tumor showed higher therapeutic index for MMP-2 responsive chimeric polymersomal formulation of SN38 in comparison with non-responsive one. On the other hand, AS1411 aptamer-targeted MMP-2 responsive chimeric polymersomal formulation exhibited highest therapeutic index compared to other groups. It could be concluded that the targeted chimeric polymersomes bearing both cleavable peptide sequence between their blocks and targeting ligand on their surface, provide favorable characteristics as an ideal delivery system against cancer.
Collapse
Affiliation(s)
- Pouria Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
35
|
Yao F, An Y, Li X, Li Z, Duan J, Yang XD. Targeted Therapy of Colon Cancer by Aptamer-Guided Holliday Junctions Loaded with Doxorubicin. Int J Nanomedicine 2020; 15:2119-2129. [PMID: 32280210 PMCID: PMC7125415 DOI: 10.2147/ijn.s240083] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Chemotherapy is the primary treatment for advanced colon cancer, but its efficacy is often limited by severe toxicities. Targeted therapy in the form of selectively drug delivery system (SDDS) is an important strategy to reduce adverse effects. Here, we aim to design a novel SDDS with potential for practical application using biocompatible components and scalable production process, for targeted delivery of doxorubicin (Dox) to colon cancer cells. Methods The SDDS was made of a self-assembled DNA nano-cross (Holliday junction, or HJ) functionalized by four AS1411 aptamers (Apt-HJ) and loaded with Dox. Results Apt-HJ had an average size of 12.45 nm and a zeta potential of −11.6 mV. Compared with the monovalent AS1411 aptamer, the quadrivalent Apt-HJ showed stronger binding to target cancer cells (CT26). A complex of Apt-HJ and doxorubicin (Apt-HJ-Dox) was formed by intercalating Dox into the DNA structure of Apt-HJ, with each complex carrying approximately 17 Dox molecules. Confocal microscopy revealed that Apt-HJ-Dox selectively delivered Dox into CT26 colon cancer cells but not the control cells. Moreover, Apt-HJ-Dox achieved targeted killing of CT26 cancer cells in vitro and reduced the damage to control cells. Importantly, compared with free Dox, Apt-HJ-Dox significantly enhanced the antitumor efficacy in vivo without boosting the adverse effects. Conclusion These results suggest that Apt-HJ-Dox has application potential in targeted treatment of colon cancer.
Collapse
Affiliation(s)
- Fengjiao Yao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yacong An
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xundou Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhaoyi Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jinhong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
36
|
Zavvar T, Babaei M, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm 2020; 578:119091. [PMID: 32007591 DOI: 10.1016/j.ijpharm.2020.119091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
The objective of the current study is to design and delivery of targeted PEG-PCL nanopolymersomes encapsulated with Gadolinium based Quantum Dots (QDs) and Doxorubicin (DOX) as magnetic resonance-florescence imaging and anti-cancer agent. Diagnostic and therapeutic efficiency of the prepared theranostic formulation was evaluated in vitro and in vivo. Hydrophobic QDs based on indium-copper-gadolinium-zinc sulfide were synthesized and characterized extensively. Hydrophobic QDs and hydrophilic DOX were loaded in PEG-PCL polymersomes through double emulsion method. Drug release pattern was studied in both citrate (pH 5.4) and phosphate (pH 7.4) buffer during 10 days. Both fluorescence and magnetic properties of bare QDs and prepared formulations were studied entirely. AS1411 DNA aptamer was covalently attached to the surface of polymersomal formulation in order to prepare targeted drug delivery system. Cellular cytotoxicity and cellular uptake analysis were performed in both nucleolin positive (MCF7 and 4T1) and nucleolin negative (CHO) cell lines. After in vitro evaluations, anti-tumor efficiency and diagnostic capability of the formulation was investigated in 4T1 tumor baring mice. Scanning emission electron microscopy (SEM) confirmed spherical shape and around 100 nm size of prepared formulations. Transmission electron microscopy (HRTEM) showed crystal shape of QDs with size of 2-3 nm. Drug release study obtained controlled release of encapsulated DOX and stability of formulation in physiologic condition. MTT and flow cytometry results demonstrated that AS1411 aptamer could enhance both toxicity and cellular uptake in nucleolin overexpressing cell lines (P < 0.05). Moreover, aptamer targeted formulation could increase survival rate and tumor inhibitory growth effect in 4T1 tumor baring mice (P < 0.05). Our results verify that aptamer targeted polymersomes loaded with non-toxic QDs as a diagnostic agent and DOX as an anti-cancer drug, could provide a theranostic platform with the purpose of optimization of treatment process and minimization of systemic side effects.
Collapse
Affiliation(s)
- TaranehSadat Zavvar
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902242. [PMID: 31846230 DOI: 10.1002/smll.201902242] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| |
Collapse
|
38
|
Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system. Int J Pharm 2019; 570:118645. [DOI: 10.1016/j.ijpharm.2019.118645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/28/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
|
39
|
Tzankov B, Voycheva C, Yordanov Y, Aluani D, Spassova I, Kovacheva D, Lambov N, Tzankova V. Development and in vitro safety evaluation of pramipexole-loaded hollow mesoporous silica (HMS) particles. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1649094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Denitsa Aluani
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Sofia, Bulgaria
| | - Nikolay Lambov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
40
|
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308:172-189. [PMID: 31295542 DOI: 10.1016/j.jconrel.2019.07.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
Recent technological approaches in drug delivery have attracted scientist interest for improving therapeutic index of medicines and drug compliance. One of the powerful strategies to control the transportation of drugs is implementation of intelligent stimuli-responsive drug delivery system (DDS). In this regard, tumor tissues with unique characteristics including leaky vasculature and diverse enzyme expression profiles facilitate the development of efficient enzyme-responsive nanoscale delivery systems. Based on the stimuli nature (physical, chemical and biological), these systems can be categorized into three groups according to the nature of trigger initiating the drug release. Enzymes are substantial constituents of the biotechnology toolbox offering promising capabilities and ideal characteristics to accelerate chemical reactions. Nanoparticles which have the ability to trigger their cargo release in the presence of specific enzymes are fabricated implementing fascinating physico-chemical properties of different materials in a nanoscale dimension. In order to reduce the adverse effects of the therapeutic agents, nanocarriers can be utilized and modified with enzyme-labile linkages to provide on-demand enzyme-responsive drug release. In the current review, we give an overview of drug delivery systems which can deliver drugs to the tumor microenvironment and initiate the drug release in response to specific enzymes highly expressed in particular tumor tissues. This strategy offers a versatile platform for intelligent drug release at the site of action.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J Cell Physiol 2019; 235:1036-1050. [DOI: 10.1002/jcp.29019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahsa Zahiri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medicinal Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
42
|
Javanbakht S, Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol 2019; 133:21-29. [DOI: 10.1016/j.ijbiomac.2019.04.079] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
|
43
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
44
|
Konan KV, Le TC, Mateescu MA. Precompression of dry vegetal bioactive agents to optimize density and compactness: Case of Peschiera fuchsiaefolia powdered materials. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Gao G, Liu C, Jain S, Li D, Wang H, Zhao Y, Liu J. Potential use of aptamers for diagnosis and treatment of pancreatic cancer. J Drug Target 2019; 27:853-865. [PMID: 30596288 DOI: 10.1080/1061186x.2018.1564924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Ge Gao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Can Liu
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Sona Jain
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| | - Dai Li
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada.,d Department of Pharmacology , Xiangya Hospital, Central South University , Changsha , China
| | - Hai Wang
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Yongxin Zhao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Juewen Liu
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| |
Collapse
|
46
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
47
|
Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM, Ramezani M, Abnous K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 2018; 549:67-75. [PMID: 30048777 DOI: 10.1016/j.ijpharm.2018.07.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Gold NPs have great potential in biomedical applications. PAMAM dendrimers are spherical, hyper branched macromolecules which can encapsulate therapeutic molecules while stabilizing metal nanoparticle such as gold NPs. The aim of the current study was to investigate the theranostic capability of curcumin-loaded dendrimer-gold hybrid structure. Dendrimer-gold hybrid structure was synthesized by complexing AuCl4- ions with PEGylated amine-terminated generation 5 poly (amidoamine) dendrimer. The resultant hybrid system was loaded with curcumin. The curcumin-loaded PEGylated Au dendrimer was further conjugated to MUC-1 aptamer in order to target the colorectal adenocarcinoma in vitro and in vivo. Obtained results demonstrated that the targeted theranostic agent was accumulated in HT29 and C26 cells in vitro and showed higher cellular cytotoxicity in comparison with non-targeted system. On the other hand, in vivo experiment demonstrated the potential of targeted theranostic system in CT-scan tumor imaging as well as cancer therapy. Findings from this study suggested that MUC-1 targeted curcumin-loaded PEGylated Au dendrimers have good X-ray attenuation and is desirable probe for CT imaging while demonstrating high therapeutic index against colorectal cancer adenocarcinoma.
Collapse
Affiliation(s)
- Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fazileh Hoseini
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad Iran
| | - Pouria Ramezani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|