1
|
Ray E, Jadhav K, Kadian M, Sharma G, Sharma K, Jhilta A, Singh R, Kumar A, Verma RK. Inhalable chitosan-coated nano-assemblies potentiate niclosamide for targeted abrogation of non-small-cell lung cancer through dual modulation of autophagy and apoptosis. Int J Biol Macromol 2024; 279:135411. [PMID: 39245099 DOI: 10.1016/j.ijbiomac.2024.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Lung carcinoma, particularly non-small-cell lung cancer (NSCLC), accounts for a significant portion of cancer-related deaths, with a fatality rate of approximately 19 %. Niclosamide (NIC), originally an anthelmintic drug, has attracted attention for its potential in disrupting cancer cells through various intracellular signaling pathways. However, its effectiveness is hampered by limited solubility, reducing its bioavailability. This study investigates the efficacy of NIC against lung cancer using inhalable hybrid nano-assemblies with chitosan-functionalized Poly (ε-caprolactone) (PCL) as a carrier for pulmonary delivery. The evaluation encompasses various aspects such as aerodynamic and physicochemical properties, drug release kinetics, cellular uptake, biocompatibility, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Increasing NIC dosage correlates with enhanced inhibition of cell proliferation, showing a dose-dependent profile (approximately 75 % inhibition efficiency at 20 μg/mL of NIC). Optimization of inhaled dosage and efficacy is conducted in a murine model of NNK-induced tumor-bearing lung cancer. Following inhalation, NIC-CS-PCL-NA demonstrates significant lung deposition, retention, and metabolic stability. Inhalable nano-assemblies promote autophagy flux and induce apoptotic cell death. Preclinical trials reveal substantial tumor regression with minimal adverse effects, underscoring the potential of inhalable NIC-based nano-formulation as a potent therapeutic approach for NSCLC, offering effective tumor targeting and killing capabilities.
Collapse
Affiliation(s)
- Eupa Ray
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kritika Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Shah S, Famta P, Vambhurkar G, Bagasariya D, Kumar KC, Srinivasarao DA, Begum N, Sharma A, Shahrukh S, Jain N, Khatri DK, Srivastava S. Sulfo-butyl ether β-cyclodextrin inclusion complexes of bosutinib: in silico, in vitro and in vivo evaluation in attenuating the fast-fed variability. Drug Deliv Transl Res 2024; 14:1218-1231. [PMID: 37903963 DOI: 10.1007/s13346-023-01453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Bosutinib (BOS) is a BCS class IV drug that shows low oral bioavailability and high fast-fed variability. Various pharmaceutical formulations have been explored thus far in order to improve its bioavailability while avoiding fast-fed variability. In the present study, we explored cyclodextrin (CD) complexation strategy to overcome the aforementioned disadvantages associated with BOS. CD complexation is a simple, versatile and economic approach that enables formation of inclusion complexes, thereby improving aqueous solubility while nullifying pH-dependent solubility and fast-fed variability for poorly soluble drugs. Initially, we performed molecular dynamics and docking studies to select appropriate CD derivative. The results of in silico studies revealed that sulfo-butyl ether β-cyclodextrin (SBE-CD) offered superior binding affinity with BOS. Further, Job's plot revealed that 1:1 stoichiometry of BOS and CD resulted in enhancement of BOS solubility up to ~ 132.6-folds. In vitro release studies in bio-relevant media (fasted and fed state simulated gastric and intestinal fluids) revealed higher drug release while overcoming its pH-dependent solubility. In vitro studies on K562 cells demonstrated a 1.83-fold enhancement in cytotoxicity due to enhanced ROS production and G2/M phase arrest.In vivo pharmacokinetic studies in Sprague-Dawley rats revealed insignificant fast-fed variability with AUCfast/fed 0.9493 and Cmaxfast/fed 0.8291 being closer to 1 in comparison with BOS. Hence, we conclude that SBE-CD complexation could be a promising approach in diminishing fast-fed variability of BOS.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
4
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
5
|
Kang MJ, Kim MJ, Kim A, Koo TS, Lee KR, Chae YJ. Pharmacokinetic interactions of niclosamide in rats: Involvement of organic anion transporters 1 and 3 and organic cation transporter 2. Chem Biol Interact 2024; 390:110886. [PMID: 38280639 DOI: 10.1016/j.cbi.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 μM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.
Collapse
Affiliation(s)
- Min-Ji Kang
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Min Ju Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aeran Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
6
|
Patil SK, Chary PS, Maddipatla S, Madhavi YV, Singothu S, Bhandari V, Pardhi E, Bansal KK, Mehra NK. Development of venetoclax with 2-hydroxypropyl-beta-cyclodextrin inclusion complex for improved bioavailability. J Biomol Struct Dyn 2024:1-18. [PMID: 38247232 DOI: 10.1080/07391102.2024.2305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cyclodextrin complexes loaded with venetoclax for improved solubility and therapeutic efficacy as repurposed drug. The venetoclax-cyclodextrin inclusion complex was prepared using kneading method. Primarily in-silico molecular docking study was performed to examine the possible interaction between venetoclax and hydroxypropyl-β-cyclodextrin (HP-β-CD) and extensively characterized. The in-vitro studies were performed using A-549 lung epithelial cancer cells. The in-vivo pharmaco-kinetic studies was performed on wistar rats. The aqueous solubility of venetoclax was increased upto 3.16 folds, as compared with pure venetoclax with entrapment efficiency (EE%) was determined 95.44 ± 0.3%. In-vitro cytotoxicity studies were carried on A-549 lung epithelial cancer cells, wherein BCL-2 receptors were highly over-expressed and IC 50 values for venetoclax and venetoclax- HP-β-CD complex was calculated at 24 and 48 hrs in the order of 1.241 µg/ml, 0.68 µg/ml and 0.757719 µg/ml, 0.6125 µg/mL, respectively. The oral bioavailability was increased 4.03 times compared to the pure drug. The venetoclax-HP-β-CD inclusion complexes showed the increased aqueous solubility with improved anticancer activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Smalant Kishor Patil
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sarvan Maddipatla
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Y V Madhavi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
7
|
Rubim AM, Rubenick JB, Vendrame LO, Zanella I, Rolim CMB, Rhoden CRB. Formulation and characterization of amiodarone-methyl-beta-cyclodextrin inclusion complexes: A molecular modelling perspective. J Mol Graph Model 2024; 126:108639. [PMID: 37774479 DOI: 10.1016/j.jmgm.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to develop immediate-release tablets containing amiodarone hydrochloride (AM). AM is a BCS class II compound, i.e., high permeable, and poorly soluble. The interactions between amiodarone and methyl-β-cyclodextrin were DFT-based, theoretically measured, supporting the complexation of AM with cyclodextrin by using methyl-β-cyclodextrin through a spray-drying process. Thus, increasing substantially the drug solubility to 93.31% and 87.14%, respectively. Solubility studies demonstrated the formation of the Drug-Methyl-β-cyclodextrin inclusion complex with 1:1 stoichiometry. The complex formation was characterized by SBET, XRD, DSC, SEM, FTIR, and 1H NMR. Complementing, immediate-release tablets containing the inclusion complex were developed by direct compression, and in vitro dissolution studies were performed in gastrointestinal fluids using USP Pharmacopeia standard dissolution rate testing equipment. The dissolution rate of immediate-release tablets was substantially higher than the pristine drug in all mediums evaluated. These results confirm the application of methyl-β-cyclodextrin as an effective excipient for incorporation in novel dosage forms to increase the solubility of poorly soluble drugs.
Collapse
Affiliation(s)
- Alexandre M Rubim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil; Laboratório de Controle de Qualidade de Medicamentos, Universidade Franciscana - UFN, Andradas 1614, 97010-032, Santa Maria, RS, Brazil.
| | - Jaqueline B Rubenick
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil.
| | - Laura O Vendrame
- Laboratório de Materiais Magnéticos Nanoestruturados, Programa de Pós-Graduação em Nanociências, Universidade Franciscana - UFN, Andradas 1614, 97010-032, Santa Maria, RS, Brazil.
| | - Ivana Zanella
- Laboratório de Materiais Magnéticos Nanoestruturados, Programa de Pós-Graduação em Nanociências, Universidade Franciscana - UFN, Andradas 1614, 97010-032, Santa Maria, RS, Brazil.
| | - Clarice M B Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria - UFSM, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil.
| | - Cristiano R B Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, Programa de Pós-Graduação em Nanociências, Universidade Franciscana - UFN, Andradas 1614, 97010-032, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Kaur G, Khanna B, Yusuf M, Sharma A, Khajuria A, Alajangi HK, Jaiswal PK, Sachdeva M, Barnwal RP, Singh G. A Path of Novelty from Nanoparticles to Nanobots: Theragnostic Approach for Targeting Cancer Therapy. Crit Rev Ther Drug Carrier Syst 2024; 41:1-38. [PMID: 38305340 DOI: 10.1615/critrevtherdrugcarriersyst.2023046674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Pharmaceutical development of cancer therapeutics is a dynamic area of research. Even after decades of intensive work, cancer continues to be a dreadful disease with an ever-increasing global incidence. The progress of nanotechnology in cancer research has overcome inherent limitations in conventional cancer chemotherapy and fulfilled the need for target-specific drug carriers. Nanotechnology uses the altered patho-physiological microenvironment of malignant cells and offers various advantages like improved solubility, reduced toxicity, prolonged drug circulation with controlled release, circumventing multidrug resistance, and enhanced biodistribution. Early cancer detection has a crucial role in selecting the best drug regime, thus, diagnosis and therapeutics go hand in hand. Furthermore, nanobots are an amazing possibility and promising innovation with numerous significant applications, particularly in fighting cancer and cleaning out blood vessels. Nanobots are tiny robots, ranging in size from 1 to 100 nm. Moreover, the nanobots would work similarly to white blood cells, watching the bloodstream and searching for indications of distress. This review articulates the evolution of various organic and inorganic nanoparticles and nanobots used as therapeutics, along with their pros and cons. It also highlights the shift in diagnostics from conventional methods to more advanced techniques. This rapidly growing domain is providing more space for engineering desired nanoparticles that can show miraculous results in therapeutic and diagnostic trials.
Collapse
Affiliation(s)
- Gursharanpreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhawna Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mohammed Yusuf
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep K Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843, USA
| | - Mandip Sachdeva
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL, USA
| | | | | |
Collapse
|
9
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
10
|
Tai Y, Tian M, Chen Y, You P, Song X, Xu B, Duan C, Jin D. Preparation of PLGA microspheres loaded with niclosamide via microfluidic technology and their inhibition of Caco-2 cell activity in vitro. Front Chem 2023; 11:1249293. [PMID: 37780982 PMCID: PMC10537947 DOI: 10.3389/fchem.2023.1249293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Niclosamide (NIC) is a multifunctional drug that regulates various signaling pathways and biological processes. It is widely used for the treatment of cancer, viral infections, and metabolic disorders. However, its low water solubility limits its efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA), which exhibit good biocompatibility, biodegradability, and non-immunogenicity, were conjugated with niclosamide to prepare PLGA-HA-niclosamide polymeric nanoparticles (NIC@PLGA-HA) using microfluidic technology. The obtained microspheres had a uniform size distribution, with an average mean size of 442.0 ± 18.8 nm and zeta potential of -25.4 ± 0.41 mV, indicating their stable dispersion in water. The drug-loading efficiency was 8.70%. The drug-loaded microspheres showed sustained release behavior at pH 7.4 and 5.0, but not at pH 2.0, and the drug release kinetics were described by a quasi-first-order kinetic equation. The effect of the drug-loaded microspheres on the proliferation of Caco-2 cells was detected using the MTT assay. Hydrophilic HA-modified NIC@PLGA-HA microspheres prepared via microfluidic technology increased the cellular uptake by Caco-2 cells. Compared to the same concentration of NIC, the NIC@PLGA-HA microspheres demonstrated a stronger inhibitory effect on Caco-2 cells owing to the combined effect of PLGA, HA, and NIC. Therefore, the pH-responsive NIC@PLGA-HA microspheres synthesized using microfluid technology increased the solubility of NIC and improved its biological activity, thus contributing to the demand for intestinal drug carriers.
Collapse
Affiliation(s)
- Yulei Tai
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Menglun Tian
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Chen
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peijun You
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaojun Song
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bangting Xu
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cidong Duan
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dazhi Jin
- School Laboratory of Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, Rizzi R, Lopalco A, Musazzi UM, Cilurzo F, Denora N. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. Int J Pharm 2023; 643:123214. [PMID: 37423374 DOI: 10.1016/j.ijpharm.2023.123214] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The aim of this work is the development and production by Direct Powder Extrusion (DPE) 3D printing technique of novel oral mucoadhesive films delivering Clobetasol propionate (CBS), useful in paediatric treatment of Oral Lichen Planus (OLP), a rare chronic disease. The DPE 3D printing of these dosage forms can allow the reduction of frequency regimen, the therapy personalization, and reduction of oral cavity administration discomfort. To obtain suitable mucoadhesive films, different polymeric materials, namely hydroxypropylmethylcellulose or polyethylene oxide blended with chitosan (CS), were tested and hydroxypropyl-β-cyclodextrin was added to increase the CBS solubility. The formulations were tested in terms of mechanical, physico-chemical, and in vitro biopharmaceutical properties. The film showed a tenacious structure, with drug chemical-physical characteristics enhancement due to its partial amorphization during the printing stage and owing to cyclodextrins multicomponent complex formation. The presence of CS enhanced the mucoadhesive properties leading to a significant increase of drug exposure time on the mucosa. Finally, the printed films permeation and retention studies through porcine mucosae showed a marked retention of the drug inside the epithelium, avoiding drug systemic absorption. Therefore, DPE-printed films could represent a suitable technique for the preparation of mucoadhesive film potentially usable for paediatric therapy including OLP.
Collapse
Affiliation(s)
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Chiara Meazzini
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, Bari 70126, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy.
| |
Collapse
|
12
|
Thatikonda S, Pooladanda V, Tokala R, Nagula S, Godugu C. Niclosamide inhibits epithelial-mesenchymal transition with apoptosis induction in BRAF/ NRAS mutated metastatic melanoma cells. Toxicol In Vitro 2023; 89:105579. [PMID: 36870549 DOI: 10.1016/j.tiv.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Malignant melanoma is considered a deadly aggressive form of skin cancer that frequently metastasizes to various distal organs, which harbors mutations of the BRAF or NRAS which occur in 30 to 50% of melanoma patients. The growth factors secreted by melanoma cells contribute to tumor angiogenesis with the acquisition of metastatic potential by epithelial-mesenchymal transition (EMT) and drive melanoma growth toward a more aggressive form. Niclosamide (NCL) is an FDA-approved anthelmintic drug and is reported to have strong anti-cancer properties against various solid and liquid tumors. Its role in BRAF or NRAS mutated cells is unknown. In this context, we uncovered the role of NCL in impeding malignant metastatic melanoma in vitro in SK-MEL-2 and SK-MEL-28 cell lines. We found that NCL induces significant ROS generation and apoptosis through a series of molecular mechanisms, such as depolarization of mitochondrial membrane potential, arresting the cell cycle at the sub G1 phase with a significant increase in the DNA cleavage via topoisomerase II in both cell lines. We also found that NCL potently inhibited metastasis, which was examined by scratch wound assay, Additionally, we found that NCL inhibits the most important markers involved in the EMT signaling cascade that are stimulated by TGF-β such as N-cadherin, Snail, Slug, Vimentin, α-SMA and p-Smad 2/3. This work provides useful insights into the mechanism of NCL in BRAF/NRAF mutant melanoma cells via inhibition of molecular signaling events involved in EMT signaling, and apoptosis induction.
Collapse
Affiliation(s)
- Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India; Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shankaraiah Nagula
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
13
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
14
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
15
|
The challenge of repurposing niclosamide: Considering pharmacokinetic parameters, routes of administration, and drug metabolism. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
17
|
Encapsulation of Benzyl Isothiocyanate with β-Cyclodextrin Using Ultrasonication: Preparation, Characterization, and Antibacterial Assay. Foods 2022; 11:foods11223724. [PMID: 36429316 PMCID: PMC9689685 DOI: 10.3390/foods11223724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is widely utilized in multiple biomedical fields, due to its significant antibacterial properties and low toxicity. However, poor water solubility and pungent odor has limited its application in the food industry. In this study, we first prepared inclusion complexes of BITC in GLU-β-CD and HP-β-CD using ultrasound, which is able to overcome the hindrance of poor water solubility and high volatility. Then, the BITC-β-CD inclusion complexes were characterized by using high-performance liquid chromatography (HPLC), nuclear magnetic resonance hydrogen spectra (1H-NMR), infrared absorption spectra (IR), and differential scanning calorimetry (DSC) to confirm their stability. Further, the evaluation of antibacterial and antitumor effects of the BITC-β-CD inclusion complexes showed that they had great bactericidal activity against both Escherichia coli and Staphylococcus aureus cells, and also inhibited the growth of HepG2 cells in vitro. In addition, our results indicated that BITC-β-CD complexes were able to inhibit the growth of S. aureus in broccoli juice and extend the shelf life of broccoli juice, demonstrating the potential of β-cyclodextrin to improve the stability and controlled release of BITC. Taken together, our results show that BITC-β-CD complexes have good potential for application in the food industry.
Collapse
|
18
|
Suk Kim J, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim SJ, Giu Jin S, Choi HG. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: A prospective alternative to conventional solid dispersion. Int J Pharm 2022; 628:122286. [DOI: 10.1016/j.ijpharm.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
19
|
Quality by design (QbD) assisted Fabrication & evaluation of Simvastatin loaded Nano-Enabled thermogel for melanoma therapy. Int J Pharm 2022; 628:122270. [DOI: 10.1016/j.ijpharm.2022.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
20
|
Shah S, Famta P, Fernandes V, Bagasariya D, Charankumar K, Kumar Khatri D, Bala Singh S, Srivastava S. Quality by Design steered Development of Niclosamide Loaded Liposomal Thermogel for Melanoma: In vitro and Ex vivo Evaluation. Eur J Pharm Biopharm 2022; 180:119-136. [PMID: 36198344 DOI: 10.1016/j.ejpb.2022.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
Abstract
Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This advent brings in the principles of drug repurposing by repositioning Niclosamide (NIC), an anthelmintic drug for skin cancer. Incorporation into the liposomes facilitated enhanced melanoma cell uptake and apoptosis. Cytotoxicity studies revealed 1.756-fold enhancement in SK-MEL-28 cytotoxicity by NIC-loaded liposomes compared to free drug. Qualitative and quantitative cell internalization indicated greater drug uptake within the melanoma cells illustrating the efficacy of liposomes as efficient carrier systems. Nuclear staining showed blebbing and membrane shrinkage. Elevated ROS levels and apoptosis shown by DCFDA and acridine orange-ethidium bromide staining revealed greater melanoma cell death by liposomes compared to free drug. Incorporating NIC liposomes into the thermogel system restricted the liposomes as a depot onto the upper skin layers. Sustained zero order release up to 48 h with liposomes and 23.58-fold increase in viscosity led to the sol-to-gel transition at 33℃ was observed with liposomal thermogel. Ex vivo gel permeation studies revealed that C-6 loaded liposomes incorporated within the thermogel successfully formed a depot over the upper skin layer for 6 h to prevent transdermal delivery and systemic adverse effects. Thus, it could be concluded that NIC loaded liposomal thermogel system could be an efficacious therapeutic alternative for the management of melanoma.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Valencia Fernandes
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA.
| |
Collapse
|
21
|
Bhanushali JS, Dhiman S, Nandi U, Bharate SS. Molecular interactions of niclosamide with hydroxyethyl cellulose in binary and ternary amorphous solid dispersions for synergistic enhancement of water solubility and oral pharmacokinetics in rats. Int J Pharm 2022; 626:122144. [PMID: 36029996 DOI: 10.1016/j.ijpharm.2022.122144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
The cellulose-based polymers are extensively employed in oral formulations for addressing ADMET issues of API. Herein, we report the synergistic effect of hydroxyethyl cellulose in solubility/dissolution enhancement of BCS class II, anthelmintic drug niclosamide. The low solubility and poor oral bioavailability are the primary reasons for its high daily dose. The amorphous solid dispersions (ASDs) developed herein demonstrated reproducible solubility and dissolution enhancement in smaller-to-pilot batches. The significant boost in niclosamide solubility in HEC-based binary SD was rationalized as a result of intermolecular H-bonding as indicated by in-silico studies and further supported by characterization data. HEC is plausibly inhibiting the precipitation of drug and thereby enabling high dissolution and permeation across the membrane. The comparative oral pharmacokinetics in Wistar rats at 25 mg/kg provided 4.4-fold higher plasma exposure of niclosamide in SD formulation SB-ASD-N2 over the plain drug. The results presented herein warrant validation of this ASD under clinical settings. Teaser Amorphous solid dispersions of niclosamide.
Collapse
Affiliation(s)
- Jigar S Bhanushali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sumit Dhiman
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Utpal Nandi
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
22
|
Kumar A, Valamla B, Thakor P, Chary PS, Rajana N, Mehra NK. Development and evaluation of nanocrystals loaded hydrogel for topical application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
24
|
Pistone M, Racaniello GF, Arduino I, Laquintana V, Lopalco A, Cutrignelli A, Rizzi R, Franco M, Lopedota A, Denora N. Direct cyclodextrin-based powder extrusion 3D printing for one-step production of the BCS class II model drug niclosamide. Drug Deliv Transl Res 2022; 12:1895-1910. [PMID: 35138629 PMCID: PMC9242976 DOI: 10.1007/s13346-022-01124-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
Niclosamide (NCS) is a drug that has been used as an anthelmintic and anti-parasitic drug for about 40 years. Recently, some studies have highlighted its potential in treating various tumors, allowing a repositioning of this drug. Despite its potential, NCS is a Biopharmaceutical Classification System (BCS) Class II drug and is consequently characterized by low aqueous solubility, poor dissolution rate and reduced bioavailability, which limits its applicability. In this work, we utilize a very novel technique, direct powder extrusion (DPE) 3D printing, which overcomes the limitations of previously used techniques (fused deposition modelling, FDM) to achieve direct extrusion of powder mixtures consisting of NCS, hydroxypropyl methylcellulose (HPMC, Affinisol 15 LV), hydroxypropyl-β-cyclodextrin (HP-β-CD) and polyethylene glycol (PEG) 6000. For the first time, direct printing of powder blends containing HP-β-CD was conducted. For all tablets, in vitro dissolution studies showed sustained drug release over 48 h, but for tablets containing HP-β-CD, the release was faster. Solid-state characterization studies showed that during extrusion, the drug lost its crystal structure and was evenly distributed within the polymer matrix. All printed tablets have exhibited good mechanical and physical features and a stability of the drug content for up to 3 months. This innovative printing technique has demonstrated the possibility to produce personalized pharmaceutical forms directly from powders, avoiding the use of filament used by FDM.
Collapse
Affiliation(s)
- Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | | | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, 70126, Bari, Italy
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy.
| |
Collapse
|
25
|
Li H, Zhao Q, Wang L, Wang P, Zhao B. Cannabidiol/hydroxypropyl-β-cyclodextrin inclusion complex: structure analysis, release behavior, permeability, and bioactivity under in vitro digestion. NEW J CHEM 2022. [DOI: 10.1039/d1nj05998j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inclusion complex of CBD greatly improved its release performance and bioactivity.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peidong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
26
|
Rejinold NS, Piao H, Choi G, Jin GW, Choy JH. NICLOSAMIDE-EXFOLIATED ANIONIC CLAY NANOHYBRID REPURPOSED AS AN ANTIVIRAL DRUG FOR TACKLING COVID-19; ORAL FORMULATION WITH TWEEN 60/EUDRAGIT S100. CLAYS AND CLAY MINERALS 2021; 69:533-546. [PMID: 34785820 PMCID: PMC8584645 DOI: 10.1007/s42860-021-00153-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The ongoing pandemic, COVID-19 (SARS-CoV-2), has afflicted millions of people around the world, necessitating that the scientific community work, diligently and promptly, on suitable medicaments. Although vaccination programs have been run globally, the new variants of COVID-19 make it difficult to restrict the spread of the virus by vaccination alone. The combination of vaccination with anti-viral drug formulation is an ideal strategy for tackling the current pandemic situation. Drugs approved by the United States Food and Drug Administration (FDA), such as Remdesivir, have been found to be of little or no benefit. On the other hand, re-purposing of FDA-approved drugs, such as niclosamide (NIC), has offered promise but its applicability is limited due to its poor aqueous solubility and, therefore, low bioavailability. With advanced nano-pharmaceutical approaches, re-purposing this drug in a suitable drug-carrier for a better outcome may be possible. In the current study, an attempt was made to explore the loading of NIC into exfoliated layered double hydroxide nanoparticles (X-LDH NPs); prepared NIC-X-LDH NPs were further modified with eudragit S100 (ES100), an enteric coating polymer, to make the final product, ES100-NIC-X-LDH NPs, to improve absorption by the gastro/intestinal tract (GIT). Furthermore, Tween 60 was added as a coating on ES100-NIC-X-LDH NPs, not just to enhance its in vitro and in vivo stability, but also to enhance its mucoadhesive property, and to obtain, ultimately, better in vivo pharmacokinetic (PK) parameters upon oral administration. Release of NIC from Tween 60-ES100-NIC-X-LDH NPs was found to be greater under gastro/intestinal solution within a shorter period of time than the uncoated samples. The in vivo analysis revealed that Tween 60-ES100-NIC-X-LDH NPs were able to maintain a therapeutically relevant NIC plasma concentration in terms of PK parameters compared to the commercially available Yomesan®, proving that the new formulation might prove to be an effective oral drug-delivery system to deal with the SARS-CoV-2 viral infections. Further studies are required to ensure their safety and anti-viral efficacy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42860-021-00153-6.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
- College of Science and Technology, Dankook University, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Geun-Woo Jin
- R&D Centre, CnPharm Co., LTD., Seoul, 03759 Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan, 31116 Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| |
Collapse
|
27
|
Kim JS, Choi YJ, Woo MR, Cheon S, Ji SH, Im D, Ud Din F, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. New potential application of hydroxypropyl-β-cyclodextrin in solid self-nanoemulsifying drug delivery system and solid dispersion. Carbohydr Polym 2021; 271:118433. [PMID: 34364573 DOI: 10.1016/j.carbpol.2021.118433] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to use hydroxypropyl-β-cyclodextrin (HP-β-CD) as a novel carrier in solid SNEDDS and solid dispersions to enhance the solubility and oral bioavailability of poorly water-soluble dexibuprofen. The novel dexibuprofen-loaded solid SNEDDS was composed of dexibuprofen, corn oil, polysorbate 80, Cremophor® EL, and HP-β-CD at a weight ratio of 45/35/50/15/100. This solid SNEDDS spontaneously formed a nano-emulsion with a size of approximately 120 nm. Unlike the conventional solid SNEDDS prepared with colloidal silica as a carrier, this dexibuprofen-loaded solid SNEDDS exhibited a spherical structure. Similar to the dexibuprofen-loaded solid dispersion prepared with HP-β-CD, the transformation of the crystalline drug to an amorphous state with no molecular interactions were observed in the solid SNEDDS. Compared to the solid dispersion and dexibuprofen powder, solid SNEDDS significantly enhanced drug solubility and AUC. Therefore, HP-β-CD is a novel potential carrier in SNEDDS for improving the oral bioavailability of dexibuprofen.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yoo Jin Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Daseul Im
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
28
|
Piao H, Rejinold NS, Choi G, Pei YR, Jin GW, Choy JH. Niclosamide encapsulated in mesoporous silica and geopolymer: A potential oral formulation for COVID-19. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2021; 326:111394. [PMID: 34483712 PMCID: PMC8400459 DOI: 10.1016/j.micromeso.2021.111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 05/31/2023]
Abstract
COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to ~97% compared to the solubility of intact NIC (~40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC-NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.
Collapse
Affiliation(s)
- Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
- College of Science and Technology, Dankook University, Cheonan, 31116, South Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Yi-Rong Pei
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Geun-Woo Jin
- R&D Center, CnPharm Co., LTD., Seoul, 03759, South Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan, 31116, South Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
29
|
Li J, Feng T, Yang W, Xu Y, Wang S, Cai H, Liu Z, Qiang H, Zhang J. Rational formulation engineering of fraxinellone utilizing 6-O-α-D-maltosyl-β-cyclodextrin for enhanced oral bioavailability and hepatic fibrosis therapy. Drug Deliv 2021; 28:1890-1902. [PMID: 34519225 PMCID: PMC8451604 DOI: 10.1080/10717544.2021.1976310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although Fraxinellone (Frax) isolated from Dictamnus albus L. possessed excellent anti-hepatic fibrosis activity, oral administration of Frax suffered from the inefficient therapeutic outcome in vivo due to negligible oral absorption. At present, the oral formulation of Frax is rarely exploited. For rational formulation design, we evaluated preabsorption risks of Frax and found that Frax was rather stable while poorly dissolved in the gastrointestinal tract (78.88 μg/mL), which predominantly limited its oral absorption. Further solubility test revealed the outstanding capacity of cyclodextrin derivatives (CDs) to solubilize Frax (6.8-12.8 mg/mL). This led us to study the inclusion complexes of Frax with a series of CDs and holistically explore their drug delivery performance. Characterization techniques involving 1H-NMR, FT-IR, DSC, PXRD, and molecular docking confirmed the most stable binding interactions when Frax complexed with 6-O-α-D-maltosyl-β-cyclodextrin (G2-β-CD-Frax). Notably, G2-β-CD-Frax exhibited the highest solubilizing capacity, fast dissolution rate, and superior Caco-2 cell internalization with no obvious toxicity. Pharmacokinetic studies demonstrated markedly higher oral bioavailability of G2-β-CD-Frax (5.8-fold that of free drug) than other Frax-CDs. Further, long-term administration of G2-β-CD-Frax (5 mg/kg) efficiently inhibited CCl4-induced hepatic fibrosis in the mouse without inducing any toxicity. Our results will inspire the continued advancement of optimal oral Frax formulations for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Jianbo Li
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiange Feng
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Weijing Yang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Yaru Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Shuaishuai Wang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Huijie Cai
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Zhilei Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Qiang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Rejinold NS, Piao H, Jin GW, Choi G, Choy JH. Injectable niclosamide nanohybrid as an anti-SARS-CoV-2 strategy. Colloids Surf B Biointerfaces 2021; 208:112063. [PMID: 34482191 PMCID: PMC8383483 DOI: 10.1016/j.colsurfb.2021.112063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
COVID-19 is a rapidly evolving emergency, which necessitates scientific community to come up with novel formulations that could find quick relief to the millions affected around the globe. Remdesivir being the only injectable drug by FDA for COVID-19, it initially showed promising results, however, later on failed to retain its claims, hence rejected by the WHO. Therefore, it is important to develop injectable formulation that are effective and affordable. Here in this work, we formulated poly ethylene glycol (PEG) coated bovine serum albumin (BSA) stabilized Niclosamide (NIC) nanoparticles (NPs) (∼BSA-NIC-PEG NPs) as an effective injectable formulation. Here, serum albumin mediated strategy was proposed as an effective strategy to specifically target SARS-CoV-2, the virus that causes COVID-19. The in-vitro results showed that the developed readily water dispersible formulation with a particle size <120 nm size were well stable even after 3 weeks. Even though the in-vitro studies showed promising results, the in-vivo pharmaco-kinetic (PK) study in rats demands the need of conducting further experiments to specifically target the SARS-CoV-2 in the virus infected model. We expect that this present formulation would be highly preferred for targeting hypoalbuminemia conditions, which was often reported in elderly COVID-19 patients. Such studies are on the way to summarize its potential applications in the near future.
Collapse
Affiliation(s)
- N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Geun-Woo Jin
- R&D Center, CnPharm Co., LTD., Seoul, 03759, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
31
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
32
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
33
|
Choi G, Piao H, Rejinold NS, Yu S, Kim KY, Jin GW, Choy JH. Hydrotalcite-Niclosamide Nanohybrid as Oral Formulation towards SARS-CoV-2 Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14050486. [PMID: 34069716 PMCID: PMC8160721 DOI: 10.3390/ph14050486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has been affecting millions of individuals worldwide and, thus far, there is no accurate therapeutic strategy. This critical situation necessitates novel formulations for already existing, FDA approved, but poorly absorbable drug candidates, such as niclosamide (NIC), which is of great relevance. In this context, we have rationally designed NIC-loaded hydrotalcite composite nanohybrids, which were further coated with Tween 60 or hydroxypropyl methyl cellulose (HPMC), and characterized them in vitro. The optimized nanohybrids showed particle sizes <300 nm and were orally administrated to rats to determine whether they could retain an optimum plasma therapeutic concentration of NIC that would be effective for treating COVID-19. The pharmacokinetic (PK) results clearly indicated that hydrotalcite-based NIC formulations could be highly potential options for treating the ongoing pandemic and we are on our way to understanding the in vivo anti-viral efficacy sooner. It is worth mentioning that hydrotalcite–NIC nanohybrids maintained a therapeutic NIC level, even above the required IC50 value, after just a single administration in 8–12 h. In conclusion, we were very successfully able to develop a NIC oral formulation by immobilizing with hydrotalcite nanoparticles, which were further coated with Tween 60 or HPMC, in order to enhance their emulsification in the gastrointestinal tract.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Ki-yeok Kim
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
| | - Geun-woo Jin
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
- Correspondence: (G.-w.J.); (J.-H.C.)
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: (G.-w.J.); (J.-H.C.)
| |
Collapse
|
34
|
Fisli H, Hennig A, Chelaghmia ML, Abdaoui M. The relationship between solvatochromic properties and in silico ADME parameters of new chloroethylnitrosourea derivatives with potential anticancer activity and their β-Cyclodextrin complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119579. [PMID: 33611219 DOI: 10.1016/j.saa.2021.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In view of the anticancer effect of nitrosoureas a set of four new N-(2-chloroethyl)-N-nitrosourea (CENU) derivatives was synthesized. An in silico absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) prediction study revealed that the CENU derivatives satisfied all the required criteria for oral administration and introduced them as remarkable anticancer candidates in the central nervous system (CNS). A comparative solvatochromic study including the Kamlet-Taft, Catalán and Laurence models indicated that the solvatochromic behavior of the CENUs depended on both, unspecific and specific solvent-solute interactions. In detail, the solvatochromic effect of the solvent polarity on the absorption and emission maxima was significant for all CENUs, whereas the solvatochromic effect of the solvent's ability to donate or accept hydrogen bonds on the absorption and emission maxima was critically dependent on the electron density of the N'-aryl group. From the solvatochromic comparison method, excellent correlations (r ≥ 0.890) were obtained between the ADME parameters and the solvatochromic regression coefficients obtained by the Catalán model. As potential stabilizers, inclusion complexes of the investigated CENU derivatives with β-cyclodextrin (β-CD) were also explored. The spectrofluorimetric host-guest experiments included double-reciprocal Benesi-Hildebrand plots as well as the molar ratio and continuous variation plots (Job's plots), which established a 1:1 β-CD to CENU binding stoichiometry and relatively high affinities of β-CD for CENU derivatives.
Collapse
Affiliation(s)
- Hassina Fisli
- Laboratory of Applied Chemistry, Université 8 Mai 1945 Guelma, Algeria.
| | - Andreas Hennig
- Institute of Chemistry of New Materials, Universität Osnabrück, Germany
| | | | - Mohamed Abdaoui
- Laboratory of Applied Chemistry, Université 8 Mai 1945 Guelma, Algeria
| |
Collapse
|
35
|
Host-guest interaction of trimethoprim drug with cyclodextrins in aqueous solutions: Calorimetric, spectroscopic, volumetric and theoretical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Yu S, Piao H, Rejinold NS, Jin G, Choi G, Choy JH. Niclosamide-Clay Intercalate Coated with Nonionic Polymer for Enhanced Bioavailability toward COVID-19 Treatment. Polymers (Basel) 2021; 13:polym13071044. [PMID: 33810527 PMCID: PMC8036780 DOI: 10.3390/polym13071044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Niclosamide (NIC), a conventional anthelmintic agent, is emerging as a repurposed drug for COVID-19 treatment. However, the clinical efficacy is very limited due to its low oral bioavailability resulting from its poor aqueous solubility. In the present study, a new hybrid drug delivery system made of NIC, montmorillonite (MMT), and Tween 60 is proposed to overcome this obstacle. At first, NIC molecules were immobilized into the interlayer space of cationic clay, MMT, to form NIC–MMT hybrids, which could enhance the solubility of NIC, and then the polymer surfactant, Tween 60, was further coated on the external surface of NIC–MMT to improve the release rate and the solubility of NIC and eventually the bioavailability under gastrointestinal condition when orally administered. Finally, we have performed an in vivo pharmacokinetic study to compare the oral bioavailability of NIC for the Tween 60-coated NIC–MMT hybrid with Yomesan®, which is a commercially available NIC. Exceptionally, the Tween 60-coated NIC–MMT hybrid showed higher systemic exposure of NIC than Yomesan®. Therefore, the present NIC–MMT–Tween 60 hybrid can be a potent NIC drug formulation with enhanced solubility and bioavailability in vivo for treating Covid-19.
Collapse
Affiliation(s)
- Seungjin Yu
- Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Korea;
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.P.); (N.S.R.)
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.P.); (N.S.R.)
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.P.); (N.S.R.)
| | - Geunwoo Jin
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.P.); (N.S.R.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Correspondence: (G.C.); (J.-H.C.)
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (H.P.); (N.S.R.)
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: (G.C.); (J.-H.C.)
| |
Collapse
|
38
|
Chen XY, Yang HW, Chi SM, Yue LL, Ruan Q, Lei Z, Zhu HY, Zhao Y. Solubility and biological activity enhancement of docetaxel via formation of inclusion complexes with three alkylenediamine-modified β-cyclodextrins. RSC Adv 2021; 11:6292-6303. [PMID: 35423130 PMCID: PMC8694830 DOI: 10.1039/d0ra09720a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Docetaxel (DTX) is an effective and commonly used chemotherapeutic drug for cancer. However, its efficacy is greatly compromised because of its toxicity and poor water solubility. In order to overcome these disadvantages, three inclusion complexes between DTX and alkylenediamine-modified β-cyclodextrins (H1-3) with ethylene, propylene and butylene segments were prepared and characterized. The phase solubility studies demonstrated that the stoichiometry of the inclusion complexes between H1-3 and DTX were 1 : 1. The binding abilities of host H1-3 towards DTX decrease in the following order: H3 > H2 > H1, which had good consistency with the decreasing alkylene lengths of these hosts. The water solubility of DTX is remarkably increased 216, 242 and 253 times after forming inclusion complexes with H1-3, respectively. In vitro release studies of DTX from H1-3/DTX into NaAc-HAc buffer solution (pH 5.0) or PBS (pH 7.4) exhibited a preliminary stage burst effect and followed by a slow drug release. The cytotoxicity studies revealed that the H1-3/DTX inclusion complexes exhibited better cytotoxicity profiles against MCF-7, SW480 and A-549 cells than that of DTX. Furthermore, compared with the treatment of DTX, the H1/DTX inclusion complex significantly increased the cell apoptosis percentage from 17.2% to 30.2% (5 μg mL-1), 19.0% to 31.0% (10 μg mL-1), and 19.3% to 32.2% (15 μg mL-1), respectively. These results will provide useful information for H1-3/DTX inclusion complexes as safe and efficient anticancer drug formulations.
Collapse
Affiliation(s)
- Xiang-Yu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| | - Hui-Wen Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| | - Shao-Ming Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| | - Lu-Lu Yue
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| | - Qiong Ruan
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| | - Ze Lei
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd Shantou 515098 People's Republic of China
| | - Hong-You Zhu
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd Shantou 515098 People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 People's Republic of China +86 871 65941089
| |
Collapse
|
39
|
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13010097. [PMID: 33466598 PMCID: PMC7828663 DOI: 10.3390/pharmaceutics13010097] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.
Collapse
|
40
|
Pardhi VP, Flora S. Stable solid dispersion of lurasidone hydrochloride with augmented physicochemical properties for the treatment of schizophrenia and bipolar disorder. Biopharm Drug Dispos 2020; 41:334-351. [PMID: 33080060 DOI: 10.1002/bdd.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Crystalline solid dispersion of lurasidone hydrochloride (LH) was made with various polar and non-polar small molecules to overcome the poor aqueous solubility issue. LH-Glutathione (GSH) solid dispersion in 1:1 ratio was prepared by co-grinding method and characterized by using differential scanning calorimetry (DSC), powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. GSH acts as antioxidant and reported for anti-schizophrenic activity may provide synergistic action with LH or reduce the side effects. LH in LH-GSH solid dispersion (SD) has shown improvement in solubility by 7.9 folds than plain drug which translated in terms of improved dissolution rate by two-folds. The in vitro dissolution results showed maximum dissolution rate with LH-GSH SD (97.85 ± 2.40%) compared to plain drug (50.5 ± 3.02%) at 15 min (t15 min, %) and thus, satisfying criteria of immediate release dosage form. DSC and FTIR data confirmed the stability of LH-GSH SD for 3 months at accelerated stability condition (40 ± 2°C and 75 ± 5% RH). The prepared LH-GSH SD can be used as a tool to target dual problems that is, enhanced physicochemical properties along with possible management of disorder which could be due to synergism with co-administered GSH. This approach is thought to be efficiently providing the relief to the psychological patients.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
41
|
Viswanath V, Santhakumar K. Synthesis, characterization and biological activity of cefazolin sodium dendrimer complexes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Fiorica C, Palumbo FS, Pitarresi G, Puleio R, Condorelli L, Collura G, Giammona G. A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. Int J Pharm 2020; 589:119879. [DOI: 10.1016/j.ijpharm.2020.119879] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
|
43
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
44
|
Ferraz CAA, de Oliveira Júnior RG, de Oliveira AP, Groult H, Beaugeard L, Picot L, de Alencar Filho EB, Almeida JRGDS, Nunes XP. Complexation with β-cyclodextrin enhances apoptosis-mediated cytotoxic effect of harman in chemoresistant BRAF-mutated melanoma cells. Eur J Pharm Sci 2020; 150:105353. [PMID: 32334103 DOI: 10.1016/j.ejps.2020.105353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Harman, a natural β-carboline alkaloid, has recently gained considerable interest due to its anticancer properties. However, its physicochemical characteristics and poor oral bioavailability have been limiting factors for its pharmaceutical development. In this paper, we described the complexation of harman (HAR) with β-cyclodextrin (βCD) as a promising alternative to improve its solubility and consequently its cytotoxic effect in chemoresistant melanoma cells (A2058 cell line). Inclusion complexes (βCD-HAR) were prepared using a simple method and then characterized by FTIR, NMR and SEM techniques. Through in silico studies, the mechanism of complexation of HAR with βCD was elucidated in detail. Both HAR and βCD-HAR promoted cytotoxicity, apoptosis, cell cycle arrest and inhibition of cell migration in melanoma cells. Interestingly, complexation of HAR with βCD enhanced its pro-apoptotic effect by increasing of caspase-3 activity (p < 0.05), probably due to an improvement in HAR solubility. In addition, HAR and βCD-HAR sensitized A2058 cells to vemurafenib, dacarbazine and 5FU treatments, potentializing their cytotoxic activity. These findings suggest that complexation of HAR with natural polymers such as βCD can be useful to improve its bioavailability and antimelanoma activity.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil; RENORBIO, Universidade Federal Rural de Pernambuco, Recife-PE, 52171-900, Brazil
| | | | - Ana Paula de Oliveira
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil
| | - Hugo Groult
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laureen Beaugeard
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | | | | | - Xirley Pereira Nunes
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil.
| |
Collapse
|
45
|
Evangelista TFS, Andrade GRS, Nascimento KNS, Dos Santos SB, de Fátima Costa Santos M, Da Ros Montes D'Oca C, Dos S Estevam C, Gimenez IF, Almeida LE. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym 2020; 245:116592. [PMID: 32718656 DOI: 10.1016/j.carbpol.2020.116592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
In the present study, supramolecular polyelectrolyte complexes (SPEC) based on a cyclodextrin-grafted chitosan derivative and carrageenan were prepared and evaluated for controlled drug release. Samples were characterized by FTIR, SEM, and ζ-potential measurements, which confirmed the formation of the polymeric complex. The phenolphthalein test confirmed the presence and availability of inclusion sites from the attached βCD. Silver sulfadiazine was used as the model drug and the association with the SPEC was studied by FTIR and computational molecular modeling, using a semi-empirical method. DRS and TEM analyses have shown that Ag+ ions from the drug were reduced to form metallic silver nanostructures. In vitro tests have shown a clear bacterial activity toward Gram-positive bacteria Staphylococcus aureus and Enterococcus durans/hirae and Gram-negative bacteria Klebsiella pneumoniae and Escherichia coli. Finally, this work shows that βCD-chitosan/carrageenan supramolecular polyelectrolyte complexes hold an expressive potential to be applied as a polymer-based system for controlled drug release.
Collapse
Affiliation(s)
- Thamasia F S Evangelista
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - George R S Andrade
- Postgraduate Program in Energy, Federal University of Espírito Santo, São Mateus, ES, Brazil.
| | - Keyte N S Nascimento
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Samuel B Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Maria de Fátima Costa Santos
- Posgraduate Program of Chemistry, NMR Laboratory, Departament of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Iara F Gimenez
- Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luís E Almeida
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
46
|
Ahmed TA, Bawazir AO, Alharbi WS, Safo MK. Enhancement of Simvastatin ex vivo Permeation from Mucoadhesive Buccal Films Loaded with Dual Drug Release Carriers. Int J Nanomedicine 2020; 15:4001-4020. [PMID: 32606661 PMCID: PMC7294046 DOI: 10.2147/ijn.s256925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Simvastatin (SMV), a hypocholesterolemic agent, suffers from very low bioavailability due to its poor aqueous solubility and extensive first-pass metabolism. METHODS Two SMV carrier systems, namely, polymeric drug inclusion complex (IC) and mixed micelles (MM) nanoparticles, were developed and loaded into mucoadhesive buccal films to enhance SMV bioavailability. The two carrier systems were characterized and their permeation across human oral epithelial cells (OEC) was studied. The effect of IC to MM ratio (X1) and the mucoadhesive polymer concentration (X2) on the cumulative percent of drug released, elongation percent and the mucoadhesive strength, from the prepared mucoadhesive films, were optimized. Ex vivo permeation across bovine mucosal tissue was investigated. The permeation parameters for the in vitro and ex vivo release data were calculated. RESULTS Complexation of SMV with hydroxypropyl beta-cyclodextrin (HP β-CD) was superior to all other polymers as revealed by the equilibrium saturation solubility, stability constant, complexation efficiency and thermodynamic potential. SMV-HP β-CD IC was utilized to develop a saturated polymeric drug solution. Both carrier systems showed enhanced permeation across OEC when compared to pure drug. X1 and X2 were significantly affecting the characteristics of the prepared films. The optimized mucoadhesive buccal film formulation loaded with SMV IC and drug MM nanoparticles demonstrated superior ex vivo permeation when compared to the corresponding pure drug buccal film, and the calculated permeation parameters confirmed this finding. CONCLUSION Mucoadhesive buccal films containing SMV IC and drug MM can be used to improve drug bioavailability; however, additional pharmacokinetic and pharmacodynamic studies are required.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa O Bawazir
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA23298, USA
| |
Collapse
|
47
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
48
|
Wu X, Kasselouri A, Vergnaud-Gauduchon J, Rosilio V. Assessment of various formulation approaches for the application of beta-lapachone in prostate cancer therapy. Int J Pharm 2020; 579:119168. [PMID: 32087264 DOI: 10.1016/j.ijpharm.2020.119168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
Beta-lapachone (β-Lap) is an anticancer drug activated by the NAD(P)H:quinone oxidoreductase (NQO1), an enzyme over-expressed in a large variety of tumors. B-Lap is poorly soluble in water and in most biocompatible solvents. Micellar systems, liposomes and cyclodextrins (CDs) have been proposed for its solubilization. In this work, we analyzed the properties and in vitro efficacy of β-Lap loaded in polymer nanoparticles, liposome bilayers, complexed with sulfobutyl-ether (SBE)- and hydroxypropyl (HP)-β cyclodextrins, or double loaded in phospholipid vesicles. Nanoparticles led to the lowest drug loading. Encapsulation of [β-Lap:CD] complexes in vesicles made it possible to slightly increase the encapsulation rate of the drug in liposomes, however at the cost of poor encapsulation efficiency. Cytotoxicity tests generally showed a higher sensitivity of NIH 3T3 and PNT2 cells to the treatment compared to PC-3 cells, but also a slight resistance at high β-Lap concentrations. None of the studied β-Lap delivery systems showed significant enhanced cytotoxicity against PC-3 cells compared to the free drug. Cyclodextrins and double loaded vesicles, however, appeared more efficient drug delivery systems than liposomes and nanoparticles, combining both good solubilizing and cytotoxic properties. Ligand-functionalized double loaded liposomes might allow overcoming the lack of selectivity of the drug.
Collapse
Affiliation(s)
- Xiao Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - Athena Kasselouri
- Université Paris-Saclay, Lip(Sys)(2), Chimie Analytique Pharmaceutique, 92296 Châtenay-Malabry, France
| | | | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
49
|
Alshaer W, Zraikat M, Amer A, Nsairat H, Lafi Z, Alqudah DA, Al Qadi E, Alsheleh T, Odeh F, Alkaraki A, Zihlif M, Bustanji Y, Fattal E, Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv 2019; 9:30976-30988. [PMID: 35529392 PMCID: PMC9072562 DOI: 10.1039/c9ra05636j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023] Open
Abstract
Echinomycin, a DNA bis-intercalator peptide, belongs to the family of quinoxaline antibiotics. Echinomycin exhibits potent antitumor and antimicrobial activity. However, it is highly water insoluble and suffers from low bioavailability and unwanted side effects. Therefore, developing new formulations and delivery systems that can enhance echinomycin solubility and therapeutic potency is needed for further clinical application. In this study, echinomycin has been complexed into the hydrophobic cavity of γ-cyclodextrin (γCD) then encapsulated into PEGylated liposomes. The anti-proliferative and anti-invasive effect has been evaluated against U-87 MG glioblastoma cells. Echinomycin-in-γCD inclusion complexes have been characterized by phase solubility assay, TLC, and 1H-NMR. The echinomycin-in-γCD inclusion complexes have been loaded into liposomes using a thin film hydration method to end up with echinomycin-in-γCD-in-liposomes. Drug-loaded liposomes were able to inhibit cell proliferation with IC50 of 1.0 nM. Moreover, echinomycin-in-γCD-in-liposomes were found to inhibit the invasion of U-87 MG cells using the spheroid gel invasion assay. In conclusion, the current work describes for the first time γCD-echinomycin complexes and their encapsulation into PEGylated liposomes.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Manar Zraikat
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Amer Amer
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Hamdi Nsairat
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Zainab Lafi
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Enas Al Qadi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Tasneem Alsheleh
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Fadwa Odeh
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Arwa Alkaraki
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Yasser Bustanji
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
- HMCSR, The University of Jordan Amman Jordan
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry France
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Hematology, Jordan University Hospital, The University of Jordan Amman Jordan
| |
Collapse
|
50
|
Xu Y, Zhang C, Zhu X, Wang X, Wang H, Hu G, Fu Q, He Z. Chloramphenicol/sulfobutyl ether-β-cyclodextrin complexes in an ophthalmic delivery system: prolonged residence time and enhanced bioavailability in the conjunctival sac. Expert Opin Drug Deliv 2019; 16:657-666. [DOI: 10.1080/17425247.2019.1609447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuhua Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Chi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaolei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinxu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoyu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Guowei Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|