1
|
He M, Pan J, Hong M, Shen Y, Zhang H, Jiang Y, Gong L. Fabrication of antimicrobial packaging based on polyaminopropyl biguanide incorporated pectin/polyvinyl alcohol films for fruit preservation. Food Chem 2024; 457:140106. [PMID: 38901346 DOI: 10.1016/j.foodchem.2024.140106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Pectin (PEC)/polyvinyl alcohol (PVA), plasticizers, and polyaminopropyl biguanide (Pb) (0.125%-1%) were used to prepare the film solution. The results demonstrated significantly enhanced tensile strength and elongation at break of PEC/PVA/Pb 0.25% film than PEC/PVA film. Scanning electron microscopy was carried out to investigate the continuous and dense structure of the PEC/PVA/ Pb0.25% film. FTIR, XPS, and XRD revealed that Pb addition to the PEC/PVA film matrix changed its physicochemical properties by forming new hydrogen and CN bonds. Moreover, the composite films exhibited strong antimicrobial activity against food-borne microorganisms (E. coli and S. aureus), and post-harvest pathogens (P. italicum and F. proliferatum) in vitro. The composite film effectively inhibited P. italicum growth during citrus experiments, while maintaining nutritional components (vitamin C, total flavonoid, and total polyphenol content). Overall, the antimicrobial composite film presented promising applicability in food packaging.
Collapse
Affiliation(s)
- Mingyang He
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing 400712, China
| | - Jinpeng Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Hong
- Citrus Research Institute, Chinese Academy of Agricultural Science, Southwest University, Chongqing 400712, China
| | - Yujie Shen
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Heng Zhang
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Yueming Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Liang Gong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Tan KB, Zheng M, Lin J, Zhu Y, Zhan G, Chen J. Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods 2024; 13:3295. [PMID: 39456358 PMCID: PMC11507296 DOI: 10.3390/foods13203295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Loquat leaf extract (LLE) was added to guar gum and pullulan as an environmentally friendly packaging film (GPE) to preserve Chinese water chestnuts (CWCs). The effect of the amount of LLE on the guar gum/pullulan composite film was investigated. The optimal amount of LLE was 4% (GPE4), with lower water vapor permeability (WVP) and greater mechanical strength, antioxidant, and comparable antibacterial performance than many pullulan-based films. Upon packing the CWCs for 4 days, the weight loss rate of GPE4 was only 1.80 ± 0.05%. For GPE4, the POD activity, the soluble solid content, and the vitamin C (Vc) content of the CWCs were 21.61%, 36.16%, and 26.22% higher than those of the control sample, respectively. More importantly, GPE4 was effective in preserving the quality of CWCs after 4 days of storage, better or at least comparable to non-biodegradable plastic wrapping (PE). Therefore, it can be concluded that GPE films hold significant promise as a sustainable alternative packaging material for preserving fruit-based foods like CWCs, potentially replacing PE in the future.
Collapse
Affiliation(s)
- Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Junyan Lin
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
3
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Qin X, Cai X, Wang Y, Chen L, Zhao J, Zhang Y, Bi S, Zhou Y, Zhu Q, Cheng Y, Liu Y. A water-resistant egg white/chitosan/pectin blending film with spherical-linear molecular interpenetrating network strengthened by multifunctional tannin-nisin nanoparticles. Int J Biol Macromol 2024; 277:134548. [PMID: 39116973 DOI: 10.1016/j.ijbiomac.2024.134548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Edible films are effective alternatives to plastic packaging, however, the hydrophilicity of edible films based on protein and polysaccharide limits the application. Therefore, we fabricated a water-stable hybrid film with a linear-spherical interpenetrating molecular topology network using egg white (EW), chitosan (CS), and pectin. Meanwhile, the nisin-tannin acid self-assembly complex nanoparticles were employed as a multifunctional cross-linker, antibacterial and antioxidant agent to improve the performance of films. The FTIR, XRD, and SEM analysis revealed that the conformation and crystalline structure rearrangement of chitosan induced by the alkaline environment provided by egg white enhanced the network structure of films, effectively avoided the addition of modifying reagents. The proposed hybrid films exhibited excellent properties, with EW/TNPCS3 showing the best overall performance. The water contact angle (WCA) increased to 105.27 ± 1.62°, and its dissolution and swelling rates were significantly lower than pure egg white and pure chitosan films. Moreover, tannin-nisin (TN) nanoparticles endowed the films with excellent antimicrobial activity against the common Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Thus, the prepared blending films have great application potential in food preservation, especially to maintain stable performance in high humidity environment.
Collapse
Affiliation(s)
- Xianmin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Xue Cai
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yilin Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linqin Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Jingjing Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yifan Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuxin Cheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
5
|
Xu X, Deng S, Essawy H, Lee SH, Lum WC, Zhou X, Du G, Zhang J. Chitosan-casein blended with condensed tannin and carnauba wax for the fabrication of antibacterial and antioxidant food packing films. Int J Biol Macromol 2024; 277:133784. [PMID: 39084972 DOI: 10.1016/j.ijbiomac.2024.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.
Collapse
Affiliation(s)
- Xuan Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Shuduan Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Seng Hua Lee
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA Pahang Branch Jengka Campus, 26400 Bandar Tun Razak, Pahang, Malaysia; Institute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Wei Chen Lum
- Tropical Wood and Biomass Research Group, Department of Bio and Natural Resource Technology, Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China.
| |
Collapse
|
6
|
Luo R, Peng Z, Wu N, Zhang L, Peng B, Shao R, Xu W, Yang L. Development of antioxidant arabinoxylan-tea polyphenol composite films for enhanced preservation of fresh grapes. Int J Biol Macromol 2024:135867. [PMID: 39443169 DOI: 10.1016/j.ijbiomac.2024.135867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
In this study, arabinoxylan (AX) was used as a substrate, and tea polyphenol (TP) as a functional additive to create degradable, non-polluting, and antioxidant packaging materials. The effects of different TP concentrations on light transmittance and antioxidant activity of the AX-TP composite films were analyzed. The colors of the films gradually deepened with increasing TP content. The maximum scavenging rate of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals using the AX-TP composite film solution of 59.13 ± 2.19 % was achieved at the TP concentration of 2.0 %. AX-TP composite films with different TP concentrations were applied to the surfaces of grapes, and the sensory quality, shriveling and decay rates, titratable acid, and weight loss rate of grapes during storage were evaluated using data from different experimental groups. The AX-TP composite films coated on grapes reduced the transpiration of water in the fruit and delayed grape spoilage, demonstrating an excellent preservation effect. These results show that AX-TP composite films increase the shelf life of fresh grapes.
Collapse
Affiliation(s)
- Rongrong Luo
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zimeng Peng
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Li Zhang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bin Peng
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Lei Yang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Wen L, He H, Liu Y, Wang W, Du P, Hu P, Cao J, Ma Y. Research progress on natural preservatives of meat and meat products: classifications, mechanisms and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7085-7095. [PMID: 38546416 DOI: 10.1002/jsfa.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Wen
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, China
| | - Yaobo Liu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weiting Wang
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengfei Du
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Hu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianfang Cao
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanli Ma
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
8
|
Nguyen TTT, Ho HT, Hoang D, Nguyen QAP, Tran TV. Novel films of pectin extracted from ambarella fruit peel and jackfruit seed slimy sheath: Effect of ionic crosslinking on the properties of pectin film. Carbohydr Polym 2024; 334:122043. [PMID: 38553239 DOI: 10.1016/j.carbpol.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Here, we prepared ionically crosslinked films using pectin extracted from agro-wastes, specifically ambarella peels (AFP) and jackfruit seed slimy sheath (JFS). Physiochemical properties of pectins, including moisture content, molecular weight (Mw), degree of esterification (DE), and galacturonic acid (GA), were analyzed. Optimal extraction was determined, i.e., citric acid concentration 0.3 M, time 60 min, solid/liquid ratio 1:25, and temperature 90 °C for AFP or 85 °C for JFS. Pectin yields under these conditions were 29.67 % ± 0.35 % and 29.93 ± 0.49 %, respectively. AFP pectin revealed Mw, DE, and GA values of 533.20 kDa, 67.08 % ± 0.68 %, and 75.39 ± 0.82 %, while JFS pectin exhibited values of 859.94 kDa, 63.04 % ± 0.47 %, and 78.63 % ± 0.71 %, respectively. The pectin films crosslinked with Ca2+, Cu2+, Fe3+, or Zn2+ exhibited enhanced tensile strength and Young's modulus, along with reduced elongation at break, moisture content, water solubility, water vapor permeability, and oxygen permeability. Structural analyses indicated metal ions were effectively crosslinked with carboxyl groups of pectin. Notably, the Cu2+-crosslinked film demonstrated superior water resistance, mechanical properties, and exhibited the highest antioxidant and antibacterial activities among all tested films. Therefore, the pectin films represent a promising avenue to produce eco-friendly food packaging materials with excellent properties.
Collapse
Affiliation(s)
| | - Hao Tan Ho
- Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - DongQuy Hoang
- Faculty of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Quynh Anh Phan Nguyen
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Department of Organic Chemical Technology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
9
|
Li X, Fan Y, Guo J, Li R, Liu Z, Hou Y, Qu Z, Liu Q. Polyvinyl alcohol/kappa-carrageenan-based package film with simultaneous incorporation of ferric ion and polyphenols from Capsicum annuum leaves for fruit shelf-life extension. Int J Biol Macromol 2024; 266:131002. [PMID: 38522680 DOI: 10.1016/j.ijbiomac.2024.131002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Bio-based food packaging materials have elicited growing interests due to their great degradability, high safety and active biofunctions. In this work, by simultaneously introducing the polyphenolic extracts from Capsicum annuum leaves and ferric ion (Fe3+) into the Polyvinyl alcohol/kappa-carrageenan (PVA/κ-carrageenan)-based film-forming matrix, an active package film was developed, with the purpose to improve the food shelf life. The experimental results indicated that the existence of Fe3+ can not only improve the mechanical properties owing to the multiple dynamic coordinated interactions, but also endow the composite films with excellent fire-retardancy. Moreover, the composite films could display excellent UV resistant performance, water vapor/oxygen gas barrier properties and antioxidant activities with the corporation of polyphenols. In particular, the highest DPPH and ABTS radical scavenging capacities for composite film (PC-PLP7 sample) were evaluated to be 82.5 % and 91.1 %, respectively. Higher polyphenol concentration is favorable to the bio-functions of the materials. Benefitting from these features, this novel kind of films with a dense and steady micro-structure could be further applicated in fruit preservations, where the ripening bananas were ensured with the high storage quality. This integration as a prospective food packaging material provides an economic and eco-friendly approach to excavate the high added-values of biomass.
Collapse
Affiliation(s)
- Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China; Nanolattix Biotech Corporation, No.11 Kangshou street, Xiaodian District, Taiyuan 030006, China
| | - Yiyuan Fan
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Juan Guo
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Zhican Qu
- Nanolattix Biotech Corporation, No.11 Kangshou street, Xiaodian District, Taiyuan 030006, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
10
|
Wei N, Pan Z, Ning Y, Liu W, Wen X, Yang C, Wang L. Cassia Seed Gum Films Incorporated with Partridge Tea Extract as an Edible Antioxidant Food Packaging Film for Preservation of Chicken Jerky. Polymers (Basel) 2024; 16:1086. [PMID: 38675006 PMCID: PMC11054324 DOI: 10.3390/polym16081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The use of edible packaging films to delay food spoilage has attracted widespread attention. In this study, partridge tea extract (PTE) was added to cassia gum (CG) to prepare CG/PTE films. The microstructure, optical, mechanical, barrier, and antioxidant properties of CG/PTE films were investigated, and the effect of PTE on CG films was shown. The films had high transparency and smooth surface structure. Additionally, PTE significantly improved the elongation at break and antioxidant activity of films. At 2.5% of PTE, the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate of the film was 46.88% after diluting 50 times, indicating excellent antioxidant property, which could be applied to food preservation. After 9 days of storage, the thiobarbituric acid reactive substances values (TBARS) of chicken jerk packaged with films containing 0% and 2.5% PTE increased from 0.12% to 1.04% and 0.11% to 0.40%, respectively. This study suggests that CG/PTE films can be used to preserve cooked meat.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, China; (N.W.); (Z.P.); (Y.N.); (W.L.); (X.W.); (C.Y.)
| |
Collapse
|
11
|
Wu H, Wang X, Li S, Zhang Q, Chen M, Yuan X, Zhou M, Zhang Z, Chen A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int J Biol Macromol 2024; 260:129469. [PMID: 38242415 DOI: 10.1016/j.ijbiomac.2024.129469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiangfeng Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Maoxu Chen
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
12
|
Nayak A, Mukherjee A, Kumar S, Dutta D. Exploring the potential of jujube seed powder in polysaccharide based functional film: Characterization, properties and application in fruit preservation. Int J Biol Macromol 2024; 260:129450. [PMID: 38232896 DOI: 10.1016/j.ijbiomac.2024.129450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In this study, we fabricated a novel biodegradable functional film using natural polysaccharides by adding jujube seed powder as an active ingredient. Scanning electron microscopy analysis showed agglomerate formation in the film with increasing concentration of seed powder. Fourier transform-infrared spectroscopy study demonstrated an electrostatic interaction between pectin and chitosan. The water solubility and swelling degree significantly decreased from 55.5 to 47.7 % and 66.0 to 41.9 %, respectively, depicting the film's water resistance properties. Higher opacity and lower transmittance value of the film indicated its protective effect towards light-induced oxidation of food. It was observed that the fabricated active film biodegraded to 82.33 % in 6 days. The DPPH radical scavenging activity of 98.02 % was observed for the functional film. The film showed antifungal activity against B. cinerea and P. chrysogenum. The highest zone of inhibition was obtained against food spoiling bacteria B. subtilis followed by S. aureus, P. aeruginosa and E. coli. Genotoxicity studies with the fabricated film showed a mitotic index of 8 % compared to 3 % in the control film. We used the fabricated film to preserve grapefruits, and the result showed that it could preserve grapes for ten days with an increase in antioxidant activity and polyphenolic content.
Collapse
Affiliation(s)
- Anamika Nayak
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
13
|
Tie S, Zhang Q, Zhao Y, Wu Y, Liu D, Zhao L, Gu S. Design and preparation of novel antioxidant and antibacterial films containing procyanidins and phycocyanin for food packaging. RSC Adv 2024; 14:7572-7581. [PMID: 38440267 PMCID: PMC10910461 DOI: 10.1039/d3ra08653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
The purpose of this study was to design a novel antioxidant and antibacterial film for food packaging using food-grade raw materials. The films were designed and fabricated based on carboxymethyl chitosan and pectin incorporated with procyanidins (PCs) and phycocyanin (Phy) by the tape casting method. The effects of different proportions of PCs and Phy on the properties and functions of the prepared films were studied. The results showed that the thickness of films could range from 55 to 70 μm, with dense network structure and uniform distribution of elements. Compared with C-Film group, the film loaded with PCs and Phy had lower water solubility and swelling rate, and higher tensile strength and elongation at break. FITR and XRD spectra revealed the molecular interaction mechanism among carboxymethyl chitosan, pectin, PCs and Phy, which could effectively endow the films with ultraviolet barrier properties. Moreover, the addition of PCs and Phy could effectively improve the antioxidant capacity and antibacterial effect of films, for example, the free radical scavenging abilities of most films were above 80% when the concentration of PCs was 40 μg mL-1. In view of these functional properties, the prepared film containing PCs and Phy have been successfully used in food packaging, which was proved by the preservation experiment of grapes. This study can provide theoretical and technical guidance for the preparation of biodegradable antibacterial films, and their application in the food packaging field.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Qing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Yixuan Zhao
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Dasu Liu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China +86-379-64282342
| |
Collapse
|
14
|
Li X, Li F, Zhang X, Tang W, Huang M, Huang Q, Tu Z. Interaction mechanisms of edible film ingredients and their effects on food quality. Curr Res Food Sci 2024; 8:100696. [PMID: 38444731 PMCID: PMC10912050 DOI: 10.1016/j.crfs.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Traditional food packaging has problems such as nondegradable and poor food safety. Edible films play an important role in food packaging, transportation and storage, having become a focus of research due to their low cost, renewable, degradable, safe and non-toxic characteristics. According to the different materials of edible films substrate, edible films are usually categorized into proteins, polysaccharides and composite edible films. Functional properties of edible films prepared from different substrate materials also vary, single substrate edible films are defective in some aspects. Functional ingredients such as proteins, polysaccharides, essential oils, natural products, nanomaterials, emulsifiers, and so on are commonly added to edible films to improve their functional properties, extend the shelf life of foods, improve the preservation of sensory properties of foods, and make them widely used in the field of food preservation. This paper introduced the classification, characteristics, and modification methods of common edible films, discussed the interactions among the substrate ingredients of composite edible films, the influence of functional ingredients on the properties of edible films, and the effects of modified edible films on the quality of food, aiming to provide new research ideas for the wide application and further study of edible films.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fenghong Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xuan Zhang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
15
|
Yuan X, Zhou Y, Wang Y, Liu L, Yang G. Fabrication of Schiff-base crosslinked films modified dialdehyde starch with excellent UV-blocking and antibacterial properties for fruit preservation. Carbohydr Polym 2024; 326:121619. [PMID: 38142076 DOI: 10.1016/j.carbpol.2023.121619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 μg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.
Collapse
Affiliation(s)
- Xuan Yuan
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yijia Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yudan Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, China
| | - Guoxing Yang
- Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina Corporation, Daqing 163000, China.
| |
Collapse
|
16
|
Lin W, Zhang Y, Huang J, Li Z. Fluorescence and pectinase double-triggered chitosan/pectin/calcium propionate/curcumin-β-cyclodextrin complex film for pork freshness monitoring and maintenance. Int J Biol Macromol 2024; 257:128603. [PMID: 38056733 DOI: 10.1016/j.ijbiomac.2023.128603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
An intelligent and active food packaging film based on chitosan (CS), pectin (P), calcium propionate (CP), and curcumin-β-cyclodextrin complex (Cur-β-CD) was prepared. The CS/P/CP/Cur-β-CD film exhibited improved hydrophobicity (74.78 ± 0.53°), water vapor (4.55 ± 0.16 × 10-11 g·(m·s·Pa)-1), and oxygen (1.50 ± 0.06 × 10-12 g·(m·s·Pa)-1) barrier properties, as well as antioxidant (72.34 ± 3.79 % for DPPH and 86.05 ± 0.14 % for ABTS) and antibacterial (79.41 ± 2.89 % for E. coli and 83.82 ± 3.96 % for S. aureus) activities. The release of CP and Cur could be triggered by pectinase, with their cumulative release reaching 92.62 ± 1.20 % and 42.24 ± 1.15 %, respectively. The CS/P/CP/Cur-β-CD film showed delayed alterations in surface color, pH value, total volatile bases nitrogen, total viable counts, thiobarbituric acid reactive substance, hardness, and springiness of pork. Additionally, the fluorescence intensity of the film gradually decreased. In conclusion, we have developed a pH-responsive film with pectinase-triggered release function, providing a new concept for the design of multi-signal responsive intelligent food packaging.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yifan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
17
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Liu T, Tang Q, Lei H, Zhen X, Zheng N, Qiu P, Liu L, Zhao J. Preparation, physicochemical and biological evaluation of chitosan Pleurotus ostreatus polysaccharides active films for food packaging. Int J Biol Macromol 2024; 254:127470. [PMID: 37858659 DOI: 10.1016/j.ijbiomac.2023.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
The aim of this study was to create CS-POP composite films by blending Pleurotus ostreatus stalk polysaccharides (POP) and chitosan (CS). The effects of adding different concentrations (0 %, 0.25 %, 0.5 %, 0.75 %, and 1 %) of POP on the mechanical, barrier, and optical properties of the CS films were investigated. When the POP content is at 0.5 %, the tensile strength of the composite film reaches its maximum value at 13.691 MPa, showing a significant improvement compared to the tensile strength of the pure CS film. The structure of the CS and CS-POP composite films was characterized by FT-IR spectroscopy, XRD, TGA and SEM. The results indicate that due to the interaction between the two types of CS and POP, the formation of Schiff base, and the intermolecular hydrogen bonds between CS and POP, the addition of POP to CS films can result in a smoother and more stable crystalline structure in the composite film. The CS-POP composite films exhibited enhanced antioxidant and antibacterial activity compared to the CS films alone, with the highest DPPH scavenging activity of 72.43 %. The composite films also showed significant inhibitory effects on the growth of E. coli.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Nan Zheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Pen Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Liyang Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
19
|
Liao W, Liu X, Zhao Q, Lu Z, Feng A, Sun X. Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose. Int J Biol Macromol 2023; 253:127231. [PMID: 37804899 DOI: 10.1016/j.ijbiomac.2023.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial cellulose (BC) and ε-polylysine (ε-PL). The effects of different concentrations of ε-PL (0 %, 0.25 %, 0.5 %, 0.75 %, 1 %, w/v) on the physicochemical properties and antibacterial activity of composite films (CS-DABC-x%PL) were systematically investigated. Furthermore, a comprehensive comparison with purely physically mixed CS-BC-x%PL films provides a deeper understanding of the subject matter. Characterization tests of the films were conducted using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results suggested that the incorporation of 0.5 % ε-PL reduced the water solubility of the composite film by 19.82 %, along with improved the tensile strength and thermal stability by 37.31 % and 28.54 %. As ε-PL concentration increased to 1 %, the antibacterial performance of the films gradually enhanced. Additionally, the CS-DABC-0.5%PL film demonstrated effectiveness in delaying the deterioration of tilapia. These findings imply that this novel green packaging material holds significant potential in food preservation due to its promising antibacterial properties.
Collapse
Affiliation(s)
- Wenying Liao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| | - Xiaoli Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China.
| | - Qing Zhao
- Pharmacy Departmen, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.
| | - Zhanhui Lu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Anqi Feng
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| | - Xin Sun
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
20
|
Yang B, Xu Y, Kang X, Kang Z, Chen W, Chen W, Zhong Q, Zhang M, Pei J, Chen H. Effect of steam explosion on the morphological, textural, and compositional characteristics of betel nut. J Texture Stud 2023. [PMID: 38029426 DOI: 10.1111/jtxs.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
To reduce the adverse physical effects on the oral mucosa caused by excessive hardness of betel nut fibers, steam explosion was used to soften betel nuts. The effect of three operating parameters (pressure holding time, explosion pressure, and initial moisture content) on the morphology, texture, and chemical composition of the betel nuts was investigated. The fiber hardness and Shore hardness decreased by 56.17%-89.28% and 7.03%-34.29%, respectively, and the transverse tensile strength and fiber tensile strength also decreased by up to 60.72% and 24.62%, respectively. Moreover, the coefficient of static friction and moisture content increased. After steam explosion, the betel nut increased in transverse diameter, became darker and more yellow-red in color, and showed a damaged microstructure. The contents of free phenol and alkaloids decreased after steam explosion treatment, with free phenols and total alkaloids decreasing from 34.32 mg(GAE)/g and 7.84 mg/g to 21.58 mg(GAE)/g and 6.50 mg/g, respectively, after the A-50 s treatment condition. The steam explosion increased the quantity of phenols, alkaloids, and soluble solids released from the betel nut under the same simulated release conditions of the texture analyzer. The research also showed that increased pressure holding time and explosion pressure enhanced the explosion efficiency, while the initial moisture content was reduced the explosion efficiency. Therefore, steam explosion is an effective pretreatment approach to soften betel nut and facilitate healthy development of the betel nut industry.
Collapse
Affiliation(s)
- Bowen Yang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yaping Xu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoning Kang
- Haikou Key Laboratory of Areca Processing and Research, Haikou, China
| | | | - Weijun Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiuping Zhong
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
21
|
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, Rangasamy G. Recent advances in edible coatings and their application in food packaging. Food Res Int 2023; 173:113366. [PMID: 37803705 DOI: 10.1016/j.foodres.2023.113366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
22
|
Wu Q, Zhang F, Niu M, Yan J, Shi L, Liang Y, Tan J, Xu Y, Xu J, Wang J, Feng N. Extraction Methods, Properties, Functions, and Interactions with Other Nutrients of Lotus Procyanidins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14413-14431. [PMID: 37754221 DOI: 10.1021/acs.jafc.3c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fen Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jia Yan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Yinggang Liang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiangying Tan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei 441300, China
| | - Jingyi Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
23
|
Malvis Romero A, Picado Morales JJ, Klose L, Liese A. Enzyme-Assisted Extraction of Ulvan from the Green Macroalgae Ulva fenestrata. Molecules 2023; 28:6781. [PMID: 37836624 PMCID: PMC10574404 DOI: 10.3390/molecules28196781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Ulvan is a sulfated polysaccharide extracted from green macroalgae with unique structural and compositional properties. Due to its biocompatibility, biodegradability, and film-forming properties, as well as high stability, ulvan has shown promising potential as an ingredient of biopolymer films such as sustainable and readily biodegradable biomaterials that could replace petroleum-based plastics in diverse applications such as packaging. This work investigates the potential of Ulva fenestrata as a source of ulvan. Enzyme-assisted extraction with commercial cellulases (Viscozyme L and Cellulysin) and proteases (Neutrase 0.8L and Flavourzyme) was used for cell wall disruption, and the effect of the extraction time (3, 6, 17, and 20 h) on the ulvan yield and its main characteristics (molecular weight, functional groups, purity, and antioxidant capacity) were investigated. Furthermore, a combined process based on enzymatic and ultrasound extraction was performed. Results showed that higher extraction times led to higher ulvan yields, reaching a maximum of 14.1% dw with Cellulysin after 20 h. The combination of enzymatic and ultrasound-assisted extraction resulted in the highest ulvan extraction (17.9% dw). The relatively high protein content in U. fenestrata (19.8% dw) makes the residual biomass, after ulvan extraction, a potential protein source in food and feed applications.
Collapse
Affiliation(s)
- Ana Malvis Romero
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestraße 15, 21073 Hamburg, Germany
| | | | | | | |
Collapse
|
24
|
Niu J, Shang M, Li X, Sang S, Chen L, Long J, Jiao A, Ji H, Jin Z, Qiu C. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: a review. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37665600 DOI: 10.1080/10408398.2023.2253542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengshan Shang
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Long Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Xu QD, Jing Z, He Q, Zeng WC. A novel film based on gluten, pectin, and polyphenols and its potential application in high-fat food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6119-6127. [PMID: 37139632 DOI: 10.1002/jsfa.12682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A novel film based on some natural ingredients (wheat gluten, pectin, and polyphenols) was used to improve the quality and storage stability of high-fat food due to their good sustainable, mechanical, and edible properties. RESULTS With the addition of polyphenols from Cedrus deodara (in the form of pine-needle extract (PNE)), the physicochemical properties (thickness, moisture content, and color), mechanical properties (tensile strength and elongation), barrier properties (water vapor, oil, and oxygen permeability, transmittance), and thermal stability of the composite film were improved. According to the analysis of infrared spectroscopy and molecular docking, the main compounds of PNE interacted with wheat gluten by hydrogen bonds and hydrophobic forces to form a compact and stable structure. In addition, the composite film showed a remarkable antioxidant capability to scavenge free radicals, and the film matrix could effectively protect the antioxidant activity of PNE. Furthermore, using cured meat as a model, the composite film exhibited a fine packaging performance in high-fat food during storage, which could obviously inhibit the excessive oxidation of fat and protein of cured meat and was beneficial in forming its special flavor. CONCLUSION Our results suggest that the composite film possessed good properties and had potential for packing of high-fat foods, which could improve the quality and safety of food during processing and storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Zan Jing
- Leshan Food and Drug Inspection Center, Leshan, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
26
|
Baghi F, Ghnimi S, Dumas E, Chihib NE, Gharsallaoui A. Nanoemulsion-Based Multilayer Films for Ground Beef Preservation: Antimicrobial Activity and Physicochemical Properties. Molecules 2023; 28:molecules28114274. [PMID: 37298757 DOI: 10.3390/molecules28114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to improve the physical, mechanical, and biological properties of a monolayer pectin (P) film containing nanoemulsified trans-Cinnamaldehyde (TC) by incorporating it between inner and outer layers of ethylcellulose (EC). The nanoemulsion had an average size of 103.93 nm and a zeta potential of -46 mV. The addition of the nanoemulsion increased the opacity of the film, reduced its moisture absorption capacity, and improved its antimicrobial activity. However, the tensile strength and elongation at break of the pectin films decreased after the incorporation of nanoemulsions. Multilayer films (EC/P/EC) showed a higher resistance to breaking and better extensibility compared to monolayer films. The antimicrobial activity of both mono and multilayer films was effective in inhibiting the growth of foodborne bacteria during storage of ground beef patties at 8 °C for 10 days. This study suggests that biodegradable antimicrobial multilayer packaging films can be effectively designed and applied in the food packaging industry.
Collapse
Affiliation(s)
- Fatemeh Baghi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
- Higher Institute of Agriculture and Agri-Food Rhone-Alpes, ISARA, 23 Rue Jean Baldassini, F-69007 Lyon, France
| | - Sami Ghnimi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
- Higher Institute of Agriculture and Agri-Food Rhone-Alpes, ISARA, 23 Rue Jean Baldassini, F-69007 Lyon, France
| | - Emilie Dumas
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
| | - Nour-Eddine Chihib
- University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET-Unité Matériaux et Transformations, F-59000 Lille, France
| | - Adem Gharsallaoui
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69622 Villeurbanne, France
| |
Collapse
|
27
|
Jiang A, Patel R, Padhan B, Palimkar S, Galgali P, Adhikari A, Varga I, Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel) 2023; 15:polym15102235. [PMID: 37242810 DOI: 10.3390/polym15102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials.
Collapse
Affiliation(s)
- Andre Jiang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | | | - Padmaja Galgali
- Aadarsh Innovations, Balewadi, Pune 411045, Maharashtra, India
| | | | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
28
|
Wang H, Cao Z, Yao L, Feng T, Song S, Sun M. Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. Foods 2023; 12:foods12081622. [PMID: 37107417 PMCID: PMC10137591 DOI: 10.3390/foods12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine green algae, has been extensively used in various sectors. However, there are fewer commercial applications of this sugar in the food packaging industry compared to many other algae-derived polysaccharides, such as alginates, carrageenan, and agar. This article aims to review the unparalleled chemical composition/structure and physiochemical properties of ulvan and the latest developments in ulvan-based edible films and coatings, thus highlighting their potential applications in the food packaging industry.
Collapse
Affiliation(s)
- Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
29
|
Yang M, Zhao S, Zhao C, Cui J, Wang Y, Fang X, Zheng J. Caseinate-reinforced pectin hydrogels: Efficient encapsulation, desirable release, and chemical stabilization of (-)-epigallocatechin. Int J Biol Macromol 2023; 230:123298. [PMID: 36646343 DOI: 10.1016/j.ijbiomac.2023.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
(-)-Epigallocatechin (EGC) has good health benefits, but its chemical stability is low. Pectin hydrogels have potential for the encapsulation and delivery of EGC, but they are limited by porous networks and poor mechanical properties. In this study, protein (whey protein isolate and caseinate)-reinforced pectin hydrogel beads (HBPEC-WPI and HBPEC-CAS) were developed to overcome these limitations. The results showed that HBPEC-CAS was a superior delivery system for EGC. HBPEC-CAS had a compact network structure, mainly because of the hydrogen bonds that formed between caseinate and pectin. Moreover, the EGC encapsulation efficiency of HBPEC-CAS (2.4%) reached 92.23 %; HBPEC-CAS (2.4%) could also delay the release of EGC in an aqueous environment, while ensuring its sufficient release in a simulated gastrointestinal environment. Notably, EGC was chemically stabilized in HBPEC-CAS (2.4%) during a 6-day storage period at 37 °C through the inhibition of its epimerization, oxidation, dimerization, and trimerization. The numerous hydroxyl groups in EGC readily interacted with the exposed amino acid residues in caseinate and created more protective sites. This study developed a strategy for protein-reinforced pectin hydrogel development and approaches for the protection of tea polyphenols; the findings offer useful insights for the tea-based food and beverage industry.
Collapse
Affiliation(s)
- Minke Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shaojie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
30
|
Potential of pectin-chitosan based composite films embedded with quercetin-loaded nanofillers to control meat associated spoilage bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
31
|
Chen N, Gao HX, He Q, Zeng WC. Potential application of phenolic compounds with different structural complexity in maize starch-based film. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
32
|
Novel Bioactive Composite Films Based on Pectin-Nanocellulose-Synergistic Triple Essential Oils: Development and Characterization. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
33
|
Zhang Q, Zhai W, Cui L, Liu Y, Xie W, Yu Q, Luo H. Physicochemical properties and antibacterial activity of polylactic acid/starch acetate films incorporated with chitosan and tea polyphenols. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
34
|
The characteristics of polysaccharide from Gracilaria chouae and its application in food packaging with carboxymethyl cellulose and lysozyme. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Liu Y, Zhang Y, Zhen M, Wu Y, Ma M, Cheng Y, Jin Y. Effect of catechin and tannins on the structural and functional properties of sodium alginate/gelatin/ poly(vinylalcohol) blend films. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Chen N, Gao HX, He Q, Zeng WC. Potato Starch-Based Film Incorporated with Tea Polyphenols and Its Application in Fruit Packaging. Polymers (Basel) 2023; 15:588. [PMID: 36771890 PMCID: PMC9921189 DOI: 10.3390/polym15030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Effects of tea polyphenols (TP) on the physical properties, barrier properties and functionality of potato starch-based film were determined, while the interaction mechanism between TP and starch in film and the application of this film in fruit packaging were further evaluated. TP exhibited different effects on the physical properties of potato starch-based film, including thickness (0.083 to 0.087 mm), moisture content (9.27% to 9.68%), color (ΔE value: 5.41 to 10.55), light transmittance (51% to 62%), tensile properties and thermal properties, and improved its barrier properties, including water vapor permeability (9.68 to 11.84 × 10-11 g m-1 s-1 Pa-1),oxygen permeability (1.25 to 2.78 × 10-16 g m-1 s-1 Pa-1) and antioxidant activity. According to the determination of wide-angle X-ray diffraction, Fourier transform infrared and scanning electron microscope, TP could interact with starch chains via hydrogen bonds to form non-crystal complexes, thus affecting the cross-linking among starch chains and further changing the microstructure of film. Furthermore, film incorporated with TP could improve the storage quality (including weight and texture) of blueberries, and inhibit the enzymatic browning of fresh-cut bananas during storage. All present results suggested that tea polyphenols had potential to enhance the properties and function of potato starch-based film, and the film exhibited the application prospect in fruit packaging and preservation.
Collapse
Affiliation(s)
- Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
| | - Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
37
|
Kang L, Liang Q, Rashid A, Qayum A, Chi Z, Ren X, Ma H. Ultrasound-assisted development and characterization of novel polyphenol-loaded pullulan/trehalose composite films for fruit preservation. ULTRASONICS SONOCHEMISTRY 2023; 92:106242. [PMID: 36459903 PMCID: PMC9712991 DOI: 10.1016/j.ultsonch.2022.106242] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 05/23/2023]
Abstract
A novel food packaging film was developed by incorporating a tea polyphenols-loaded pullulan/trehalose (TP@Pul/Tre) into a composite film with ultrasound-assisted treatment of dual-frequency (20/35 kHz, 40 W/L) for 15 min to assess the physicochemical and mechanical properties of a composite film. The optimized ultrasound-assisted significantly increases elongation at break, tensile strength, and improves the composite film's UV/water/oxygen barrier properties. Structure analysis using attenuated total reflectance-Fourier transform infrared, X-ray diffraction and thermal stability revealed that these improvements were achieved through ultrasound-enhanced H-bonds, more ordered molecular arrangements, and good intermolecular compatibility. Besides, the ultrasound-assisted TP@Pul/Tre film has proven to have good antibacterial performance against Escherichia coli and Staphylococcus aureus, with approximately 100 % lethality at 4 h and 8 h, respectively. Moreover, the ultrasound-assisted TP@Pul/Tre film effectively delayed moisture loss, oxidative browning, decay, and deterioration in fresh-cut apples and pears, thereby extending their shelf life. Thus, ultrasound has proved to be an effective tool for improving the quality of food packaging films, with a wide range of applications.
Collapse
Affiliation(s)
- Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhuzhong Chi
- Jiangsu Nanxiang Agricultural Development Technology Co., Ltd, Danyang Huangtang City, Zhenjiang, Jiangsu 212327, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
38
|
Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation. Carbohydr Polym 2022; 297:120048. [DOI: 10.1016/j.carbpol.2022.120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022]
|
39
|
Tan C, Xu QD, Chen N, He Q, Sun Q, Zeng WC. Cross-linking effects of EGCG on myofibrillar protein from common carp (Cyprinus carpio) and the action mechanism. J Food Biochem 2022; 46:e14416. [PMID: 36106705 DOI: 10.1111/jfbc.14416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
The cross-linking effects and action mechanism of epigallocatechin gallate (EGCG) on myofibrillar protein from common carp (Cyprinus carpio) were investigated. According to particle size, zeta potential, and atomic force microscopy, EGCG could cause the aggregation of myofibrillar protein, while hydrogen bonds and electrostatic interactions were the main molecular forces. With the measurement of Fourier transform infrared spectrum, surface hydrophobicity, fluorescence spectrum, circular dichroism spectrum, and molecular dynamics simulation, EGCG could make the spatial configuration of myofibrillar protein loose, enhance the exposure of amino acid residues, and further change its secondary and tertiary structures by forming intermolecular and intramolecular hydrogen bonds with myofibrillar protein. In addition, the gel properties of myofibrillar protein were improved by EGCG. All results suggested that EGCG had the cross-linking effects on myofibrillar protein in carp meat and could further improve its properties, which showed the potential to improve the qualities of fish meat in food industry. PRACTICAL APPLICATIONS: Compared with other meat, fish meat is particularly easy to break and deteriorate during its processing and sales due to the short length and low cross-linking degree of fish myofibrillar protein, which shows some negative impacts on the quality of fish meat. In the present study, epigallocatechin gallate (EGCG) showed the significant cross-linking effects on carp myofibrillar protein and further improved its physicochemical properties. All results suggested that EGCG had the potential to increase the cross-linking degree of fish myofibrillar protein and improve its properties, so as to ameliorate the quality of fish meat during processing and storage.
Collapse
Affiliation(s)
- Chong Tan
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China.,The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
40
|
Sharaby MR, Soliman EA, Abdel-Rahman AB, Osman A, Khalil R. Novel pectin-based nanocomposite film for active food packaging applications. Sci Rep 2022; 12:20673. [PMID: 36450774 PMCID: PMC9712656 DOI: 10.1038/s41598-022-25192-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Novel pectin-based films reinforced with crystalline nanocellulose (CNC) and activated with zinc oxide nanoparticles (ZnO NPs) were prepared by solvent-casting method. Film ingredients enhanced UV-blocking, thermal, and antibacterial properties of active films against well-known foodborne pathogens. Optimal active films exhibited higher mechanical, water vapor barrier properties compared to pristine pectin films. SEM confirmed the even distribution of CNC and ZnO NPs in pectin matrix and their interactions were proven using FTIR. Wrapping hard cheese samples artificially contaminated with Staphylococcus aureus and Salmonella enterica with the ternary nanocomposite film at 7 °C for 5 days significantly reduced the total population counts by at least 1.02 log CFU/g. Zn2+ migrating to wrapped cheese samples was below the specific limit (5 mg/kg), confirming their safety for food contact. Overall, ZnO/CNC/pectin nanocomposite films represent promising candidates for active food packaging as safe, eco-friendly alternatives for synthetic packaging materials.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Adel B Abdel-Rahman
- Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed Osman
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
41
|
Xu W, Jia Y, Wei J, Ning Y, Sun H, Jiang L, Chai L, Luo D, Cao S, Shah BR. Characterization and antibacterial behavior of an edible konjac glucomannan/soluble black tea powder hybrid film with ultraviolet absorption. RSC Adv 2022; 12:32061-32069. [PMID: 36415559 PMCID: PMC9644209 DOI: 10.1039/d2ra05030g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
In this study, a KGM/SBTP film was prepared by a blending method using KGM and a soluble black tea film (SBTP) as substrates, and its hygroscopicity, thermal properties, light barrier properties, microstructure, and bacteriostatic properties were evaluated. The results confirmed that compared with the control group, with the increase in the SBTP content, the transmittance of the film in the ultraviolet region significantly reduced, and the water barrier property and thermal stability were improved. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results indicated that the tea polyphenols interacted with the film substrate. SEM also showed that the structure of the KGM/SBTP films was smooth and flat, and all samples showed no fracture. In addition, the KGM/SBTP mixed membrane had obvious concentration-dependent antibacterial activity. When the concentration of SBTP was 0.9%, the inhibition zones against Staphylococcus aureus and Escherichia coli were 12.30 ± 0.20 mm and 12.05 ± 0.47 mm, respectively.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yin Jia
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Jingjing Wei
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Lanxi Jiang
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Shiwan Cao
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách, 1780 České Budějovice 37005 Czech Republic
| |
Collapse
|
42
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Xu X, Li Z, Meng Y, Ma Q, Liu C, Zhang P, Chen K. Structural characterization and immunomodulatory activity of an acidic heteropolysaccharide isolated from the fermented burdock residue mediated by Rhizopus nigricans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, ‘Aqilah NMN, Felicia WXL, Funk AA. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022; 27:5604. [PMID: 36080371 PMCID: PMC9457879 DOI: 10.3390/molecules27175604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Collapse
Affiliation(s)
- Luk Jun Lam Iversen
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Andree Alexander Funk
- Rural Development Corporation, Level 2, Wisma Pertanian, Locked Bag 86, Kota Kinabalu 88998, Sabah, Malaysia
| |
Collapse
|
45
|
Ye X, Liu R, Qi X, Wang X, Wang Y, Chen Q, Gao X. Preparation of bioactive gelatin film using semi-refined pectin reclaimed from blueberry juice pomace: Creating an oxidation and light barrier for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Dai J, Sameen DE, Zeng Y, Li S, Qin W, Liu Y. An overview of tea polyphenols as bioactive agents for food packaging applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Nguyen TTT, Le TQ, Nguyen TTA, Nguyen LTM, Nguyen DTC, Tran TV. Characterizations and antibacterial activities of passion fruit peel pectin/chitosan composite films incorporated Piper betle L. leaf extract for preservation of purple eggplants. Heliyon 2022; 8:e10096. [PMID: 36016528 PMCID: PMC9396553 DOI: 10.1016/j.heliyon.2022.e10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to synthesize biodegradable films based on crosslinked passion fruit peel pectin/chitosan (P/CH) films incorporated with a bioactive extract from Piper betle L. leaf, and investigate their morphological, mechanical, water vapor permeability, optical, and antibacterial properties. The thickness and water vapor permeability of P/CH blend films were proportional to the increasing concentration of Piper betle extract (PB). The tensile strength of P/CH/PB films was significantly reduced at 42.89% compared to the P/CH films. The morphological characterization affirmed that resultant blend films showed a well-organized homogeneous structure with no cracks. Moreover, the antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Klebsiella pneumoniae increased with the increased concentration of PB in the obtained films. Our results demonstrated that P/CH/PB blend films could be potentially used for food packaging applications.
Collapse
Affiliation(s)
- Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tu Quoc Le
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tuyet Thi Anh Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Lan Thi My Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| |
Collapse
|
48
|
Ayub A, Usman M, Ihsan A, Ain Q, Awan AB, Wajid M, Ali A, Haque A, Iqbal M, Sarwar Y. Immunological characterization of chitosan adjuvanted outer membrane proteins of Salmonella enterica serovar Typhi as multi-epitope typhoid vaccine candidate. Mol Biol Rep 2022; 49:7377-7387. [PMID: 35713798 DOI: 10.1007/s11033-022-07531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Outer membrane proteins (OMPs) of Gram-negative bacteria have been known as potential vaccine targets due to their antigenic properties and host specificity. Here, we focused on the exploration of the immunogenic potential and protective efficacy of total OMPs of Salmonella enterica serovar Typhi due to their multi epitope properties, adjuvanted with nanoporous chitosan particles (NPCPs). The study was designed to extrapolate an effective, low cost prophylactic approach for typhoid fever being getting uncontrolled in Pakistan due to emergence of extensively drug resistant (XDR) strains. METHODS & RESULTS The OMPs of two S. Typhi variants (with and without Vi capsule) alone and with nanoporous chitosan particles as adjuvant were comparatively analyzed for immunogenic potential in mice. Adaptive immunity was evaluated by ELISA and relative quantification of cytokine gene expression (IL4, IL6, IL9, IL17, IL10, TNF, INF and PPIA as house keeping gene) using RT-qPCR. Statistical analysis was done using Welch's test. The protection was recorded by challenging the immunized mice with 50% ×LD50 of S. Typhi. The Vi + ve-OMPs of S. Typhi showed the most promising results by ELISA and significantly high expression of IL-6, IL-10 and IL-17 and 92.5% protective efficacy with no detectable side effects. CONCLUSION We can conclude that the OMPs of Vi + ve S. Typhi are the most promising candidates for future typhoid vaccines because of cost effective preparation without expensive purification steps and multi-epitope properties. Chitosan adjuvant may have applications for oral protein based vaccines but found less effective in injectable preparations.
Collapse
Affiliation(s)
- Ambreen Ayub
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Usman
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Quratul Ain
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asad Bashir Awan
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Wajid
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Aamir Ali
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Haque
- Akhuwat Faisalabad Institute For Research In Science & Technology, Faisalabad, Pakistan
| | - Mazhar Iqbal
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Yasra Sarwar
- National Institute for Biotechnology & Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.
- Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan.
| |
Collapse
|
49
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
50
|
Yu Z, Lu L, Lu L, Pan L, Qiu X, Tang Y. Development and antioxidation of metal ion chelating packaging film. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|