1
|
Xie Y, Yang Z, Shen H, Chen J, Weitz DA, Chen D, Sheng J, Liang T. Interfacial Engineering of Biocompatible Nanocapsules for Near-Infrared-Triggered Drug Release and Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410844. [PMID: 39573938 PMCID: PMC11727245 DOI: 10.1002/advs.202410844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Indexed: 01/14/2025]
Abstract
Chemotherapy is an effective option for cancer treatment. However, its clinical application is often limited by the severe side effects of chemical drugs. To overcome these limitations, a novel drug-loaded phase-change nanocapsule system is developed. These nanocapsules are assembled via one-step electrostatic self-assembly through guided interfacial engineering. The phase change material core nanocapsules demonstrate great photothermal-controlled drug release performance and exhibit excellent tumor-targeting drug delivery performance both in vitro and in vivo via the binding of hyaluronic acid shell on the nanocapsule surface with corresponding receptors on the tumor cell membrane. The phototherapy function of the nanocapsules enhances immune activation within the tumor microenvironment, as demonstrated by flow cytometry and multiplex immunohistochemistry. The developed nanocapsules are biocompatible, versatile, and scalable and offer a promising smart delivery platform for controllable near-infrared triggered drug release and photothermal therapy.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Ze Yang
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Hang Shen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Chen
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Dong Chen
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| |
Collapse
|
2
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhang J, Li Y, Guo S, Zhang W, Fang B, Wang S. Moving beyond traditional therapies: the role of nanomedicines in lung cancer. Front Pharmacol 2024; 15:1363346. [PMID: 38389925 PMCID: PMC10883231 DOI: 10.3389/fphar.2024.1363346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.
Collapse
Affiliation(s)
- Jingjing Zhang
- Medical College of Qingdao Binhai University, Qingdao, China
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Yanzhi Li
- Medical College of Qingdao Binhai University, Qingdao, China
| | - Sa Guo
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weifen Zhang
- Medical College, Weifang University, Weifang, China
| | - Bing Fang
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Guo F, Du Y, Wang Y, Wang M, Wang L, Yu N, Luo S, Wu F, Yang G. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review. Int J Biol Macromol 2024; 257:128658. [PMID: 38065446 DOI: 10.1016/j.ijbiomac.2023.128658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Nanodrug delivery systems based on tumor microenvironment responses have shown excellent performance in tumor-targeted therapy, given their unique targeting and drug-release characteristics. Matrix metalloproteinases (MMPs) have been widely explored owing to their high specificity and expression in various tumor microenvironments. The design of an enzyme-sensitive nanodelivery system using MMPs as targeted receptors could markedly improve the performance of drug targeting. The current review focuses on the development and application of MMP-responsive drug carriers, and summarizes the classification of single- and multi-target nanocarriers based on their MMP responsiveness. The potential applications and challenges of this nanodrug delivery system are discussed to provide a reference for designing high-performance nanodrug delivery systems.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Ailioaie LM, Ailioaie C, Litscher G. Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus? Int J Mol Sci 2023; 24:ijms24098308. [PMID: 37176014 PMCID: PMC10179579 DOI: 10.3390/ijms24098308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity and mortality, which seriously threatens the health and life expectancy of patients. The traditional methods of treatment by surgical ablation, radiotherapy, chemotherapy, and more recently immunotherapy have not given the expected results in HCC. New integrative combined therapies, such as photothermal, photodynamic, photoimmune therapy (PTT, PDT, PIT), and smart multifunctional platforms loaded with nanodrugs were studied in this review as viable solutions in the synergistic nanomedicine of the future. The main aim was to reveal the latest findings and open additional avenues for accelerating the adoption of innovative approaches for the multi-target management of HCC. High-tech experimental medical applications in the molecular and cellular research of photosensitizers, novel light and laser energy delivery systems and the features of photomedicine integration via PDT, PTT and PIT in immuno-oncology, from bench to bedside, were introspected. Near-infrared PIT as a treatment of HCC has been developed over the past decade based on novel targeted molecules to selectively suppress cancer cells, overcome immune blocking barriers, initiate a cascade of helpful immune responses, and generate distant autoimmune responses that inhibit metastasis and recurrences, through high-tech and intelligent real-time monitoring. The process of putting into effect new targeted molecules and the intelligent, multifunctional solutions for therapy will bring patients new hope for a longer life or even a cure, and the fulfillment of the myth of Prometheus.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|
7
|
Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines 2023; 11:biomedicines11020473. [PMID: 36831009 PMCID: PMC9952953 DOI: 10.3390/biomedicines11020473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.
Collapse
|
8
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
9
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
10
|
Xu H, Nie W, Dai L, Luo R, Lin D, Zhang M, Zhang J, Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr Polym 2022; 301:120311. [DOI: 10.1016/j.carbpol.2022.120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
11
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
12
|
pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. Int J Biol Macromol 2022; 206:489-500. [PMID: 35240214 DOI: 10.1016/j.ijbiomac.2022.02.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Although many chemotherapy prodrugs have been developed for tumor therapy, non-targeted delivery, uncontrolled release and tedious construction procedure of prodrugs still limit their clinical application in tumor treatment. In this work, hyaluronic acid (HA) which has tumor-targeting ability was used to conjugate to antitumor drug podophyllotoxin (PPT) to construct a pH-sensitive prodrug named HA-CO-O-PPT just via a one-step esterification reaction. The HA-CO-O-PPT spontaneously assembled into nano spherical micelles in aqueous medium, which had outstanding serum stability and blood compatibility. The obtained prodrug micelles (named HP micelles) exhibited a pH-responsive drug release mode with cumulative release reaching 81.2% due to their dissociation in response to acid stimulus, and had a high cellular uptake efficiency beyond 97% owing to HA receptor-mediated targeting. Furthermore, it was found that the prodrug micelles showed excellent antitumor activities in vivo with the tumor inhibition ratio up to 85% and negligible systemic toxicity. Accordingly, the pH-responsive HP micelles constructed by a simple one-step reaction, could be a promising candidate as a chemotherapeutic agent for cancer therapy.
Collapse
|
13
|
Park B, Park S, Kim J, Kim C. Listening to drug delivery and responses via photoacoustic imaging. Adv Drug Deliv Rev 2022; 184:114235. [PMID: 35346776 DOI: 10.1016/j.addr.2022.114235] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Administrating pharmaceutic agents efficiently to achieve the therapeutic effect is the aim of all drug delivery techniques. Recent drug delivery systems aim to deliver high doses of drugs to disease sites accurately while maximizing therapeutic effects and minimizing potential side effects. Key approaches apply image guidance techniques for the quantification of drug biodistribution and pharmacokinetic parameters during drug delivery. This review highlights recent research on image-guided drug delivery systems based on photoacoustic imaging, which has been attracting attention for its non-invasiveness, non-ionizing radiation, and real-time imaging functions. Photoacoustic imaging based on the photothermal conversion efficiency of agents can be easily combined with various phototherapeutics, making them highly suitable for drug delivery therapy platforms. Here, we summarize and compare the characteristics of various types of photoacoustic imaging systems, focus on contrast-enhanced photoacoustic imaging and controlled release of therapeutics in drug delivery systems for synergistic therapies.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sinyoung Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jeesu Kim
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
14
|
Yao J, Zhu C, Peng T, Ma Q, Gao S. Injectable and Temperature-Sensitive Titanium Carbide-Loaded Hydrogel System for Photothermal Therapy of Breast Cancer. Front Bioeng Biotechnol 2022; 9:791891. [PMID: 35004650 PMCID: PMC8733661 DOI: 10.3389/fbioe.2021.791891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.
Collapse
Affiliation(s)
- Jun Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chuanda Zhu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianjiao Peng
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
15
|
Wang F, Li J, Chen C, Qi H, Huang K, Hu S. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym 2022; 275:118714. [PMID: 34742439 DOI: 10.1016/j.carbpol.2021.118714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Chemo-photothermal combination therapy has great promise for enhanced tumor treatment. Hereby, we developed a complex nanoparticle using electrostatic absorption method, in which the inner chitosan (CS) NPs loaded polypyrrole (PPy) nanoparticles and 5-fluorouracil (5Fu), the outer shell was carboxymethyl cellulose (CMC) crosslinked with disulfide. The drug loaded polysaccharide complex nanoparticles displayed good photothermal effects, and the drug release would be triggered by multi-model response of NIR irradiation, high glutathione (GSH) and weak acidity in tumor environment. In vitro biological studies indicated the nanopartiles could be effectively internalized by HepG2 cancer cells. Moreover, the remarkable inhibition of the CMC complex PPy and 5Fu loaded CS nanoparticles (CMC/CS@PPy + 5Fu NPs) against tumor growth was achieved in HepG2-bearing mice model, suggesting its great potential for synergetic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Fang Wang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China; Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Re, Nanjing 210037, Jiangsu, PR China.
| | - Jiarui Li
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Cheng Chen
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Hong Qi
- Nanjing Medical Univ, School of Public Health, Nanjing 211166, Jiangsu, PR China
| | - Kexin Huang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Sheng Hu
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| |
Collapse
|
16
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
17
|
Qi J, Jin F, You Y, Du Y, Liu D, Xu X, Wang J, Zhu L, Chen M, Shu G, Wu L, Ji J, Du Y. Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nat Commun 2021; 12:4755. [PMID: 34362890 PMCID: PMC8346467 DOI: 10.1038/s41467-021-24902-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Some specific chemotherapeutic drugs are able to enhance tumor immunogenicity and facilitate antitumor immunity by inducing immunogenic cell death (ICD). However, tumor immunosuppression induced by the adenosine pathway hampers this effect. In this study, E-selectin-modified thermal-sensitive micelles are designed to co-deliver a chemotherapeutic drug (doxorubicin, DOX) and an A2A adenosine receptor antagonist (SCH 58261), which simultaneously exhibit chemo-immunotherapeutic effects when applied with microwave irradiation. After intravenous injection, the fabricated micelles effectively adhere to the surface of leukocytes in peripheral blood mediated by E-selectin, and thereby hitchhiking with leukocytes to achieve a higher accumulation at the tumor site. Further, local microwave irradiation is applied to induce hyperthermia and accelerates the release rate of drugs from micelles. Rapidly released DOX induces tumor ICD and elicits tumor-specific immunity, while SCH 58261 alleviates immunosuppression caused by the adenosine pathway, further enhancing DOX-induced antitumor immunity. In conclusion, this study presents a strategy to increase the tumor accumulation of drugs by hitchhiking with leukocytes, and the synergistic strategy of chemo-immunotherapy not only effectively arrested primary tumor growth, but also exhibited superior effects in terms of antimetastasis, antirecurrence and antirechallenge. Targeting the adenosinergic pathway represents a therapeutic option to overcome tumor-induced immunosuppression. Here the authors design E-selectin-modified thermal-sensitive micelles loaded with doxorubicin and an adenosine A2 receptor antagonist to enhance chemotherapy-induced anti-tumor immune responses.
Collapse
Affiliation(s)
- Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minjiang Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Tao J, Feng S, Liu B, Pan J, Li C, Zheng Y. Hyaluronic acid conjugated nitrogen-doped graphene quantum dots for identification of human breast cancer cells. Biomed Mater 2021; 16. [PMID: 34157704 DOI: 10.1088/1748-605x/ac0d93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022]
Abstract
Accurate distinguish of cancer cells through fluorescence plays an important role in cancer diagnosis. Here we synthesized a blue fluorescent nitrogen-doped graphene quantum dots (N-GQDs) from citric acid and diethylamine via one-step hydrothermal synthesis method which was simple and quick to avoid by-products, and highlighted the binding sites to achieve precise combination. Due to the nitrogen element doping, amide II bond was amply obtained and abundant binding sites were provided for hyaluronic acid (HA) conjugation. N-GQDs solution with different pH value was then conjugated to HA via an amide bond for the recognition of human breast cancer cells (MCF-7 cells), and the formation of amide bond was more favorable under alkaline conditions. HA conjugated N-GQDs (HA-N-GQDs) were combined with CD44 which was over expressed on the surface of MCF-7 cells, resulting in MCF-7 cells performing stronger fluorescence. HA-N-GQDs showed high fluorescence, low toxicity, and good cytocompatibility, which held it play a role in fluorescence imaging for accurate identification of cancer cells.
Collapse
Affiliation(s)
- Junting Tao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Shixuan Feng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Bing Liu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
19
|
Azo modified hyaluronic acid based nanocapsules: CD44 targeted, UV-responsive decomposition and drug release in liver cancer cells. Carbohydr Polym 2021; 267:118152. [PMID: 34119127 DOI: 10.1016/j.carbpol.2021.118152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate a novel UV-induced decomposable nanocapsule of natural polysaccharide (HA-azo/PDADMAC). The nanocapsules are fabricated based on layer-by-layer co-assembly of anionic azobenzene functionalized hyaluronic acid (HA-azo) and cationic poly diallyl dimethylammonium chloride (PDADMAC). When the nanocapsules are exposed to 365 nm light, ultraviolet photons can trigger the photo-isomerization of azobenzene groups in the framework. The nanocapsules could decompose from large-sized nanocapsules to small fragments. Due to their optimized original size (~180 nm), the nanocapsules can effectively avoid biological barriers, provide a long blood circulation and achieve high tumor accumulation. It can fast eliminate nanocapsules from tumor and release the loaded drugs for chemotherapy after UV-induced dissociation. Besides, HA is an endogenous polysaccharide that shows intrinsic targetability to CD44 receptors on surface of cancer cells. The intracellular experiment shows that the HA-azo/PDADMAC nanocapsules with CD44 targeting ability and UV-controlled intracellular drug release are promising for cancer chemotherapy.
Collapse
|
20
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
21
|
Lai H, Zhong L, Huang Y, Zhao Y, Qian Z. Progress in Application of Nanotechnology in Sorafenib. J Biomed Nanotechnol 2021; 17:529-557. [DOI: 10.1166/jbn.2021.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation of the tyrosine kinase signaling pathway is closely related to tumor development, and tyrosine kinase inhibitors are important targets for potential anticancer strategies. In particular, sorafenib, as a representative drug of multitarget tyrosine kinase inhibitors, has
an important clinical status and is widely used for treating various solid tumors and diabetic complications. However, poor aqueous solubility of sorafenib, poor bioavailability of commonly used oral dose forms, poor accumulation at tumor sites, and severe off-target effects that tend to induce
intolerable systemic side effects in patients have greatly reduced its therapeutic efficiency and limited its extensive clinical application. To improve the properties of sorafenib, increase the efficiency of clinical treatment, and overcome the increasingly prominent phenomenon of sorafenib
resistance, multiple investigations have been conducted. Numerous studies have reported that the properties of nanomaterials, such as small particle size, large specific surface area, high surface activity and high adsorption capacity, make nanotechnology promising for the construction of
ideal sorafenib nanodelivery systems to achieve timed and targeted delivery of sorafenib to tumors, prolong the blood circulation time of the drug, improve the utilization efficiency of the drug and reduce systemic toxic side effects. This review summarizes the progress of research applications
in nanotechnology related to sorafenib, discusses the current problems, and expresses expectations for the prospect of clinical applications of sorafenib with improved performance.
Collapse
Affiliation(s)
- Huili Lai
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiyong Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
22
|
Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Lai H, Ding X, Ye J, Deng J, Cui S. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111455. [PMID: 33243547 DOI: 10.1016/j.colsurfb.2020.111455] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Curcumin (CUR) display promising antitumor effects, however, the poor water solubility severely limited its clinical application. To overcome this problem, polymeric nanocarriers have been adopted for targeted CUR delivery and enhanced cancer therapy. In this paper, utilizing an acid-labile hydrazone linkage, hydrophobic CUR was conjugated with hydrophilic hyaluronic acid (HA) to form amphiphilic HA-ADH-CUR conjugates, which could subsequently self-assemble to form nanoparticles (HA@CUR NPs) in aqueous. The in vitro drug release experiments showed that HA@CUR NPs exhibited a pH-responsive CUR release behavior, and the release rate of CUR was 73.5 % in pH 5.0. Further, in vitro cell experiments showed HA@CUR NPs could be efficiently internalized by 4T1 and MCF-7 cancer cells through CD44 receptor mediated endocytosis and successfully release CUR in acidic lysosome environment for chemotherapy. In vivo antitumor experiments showed that, compared to free CUR, HA@CUR NPs could efficiently cumulate in tumor site via EPR effect and CD44 mediated endocytosis, achieve superior therapeutic effect for tumor growth suppression. Therefore, HA@CUR NPs were a highly promising nanocarrier for hydrophobic CUR to realize enhanced cancer therapy with good biosafety.
Collapse
Affiliation(s)
- Hualu Lai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Xin Ding
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Junxian Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Jie Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Shengmiao Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
24
|
Tao J, Diao L, Chen F, Shen A, Wang S, Jin H, Cai D, Hu Y. pH-Sensitive Nanoparticles Codelivering Docetaxel and Dihydroartemisinin Effectively Treat Breast Cancer by Enhancing Reactive Oxidative Species-Mediated Mitochondrial Apoptosis. Mol Pharm 2020; 18:74-86. [PMID: 33084332 DOI: 10.1021/acs.molpharmaceut.0c00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis are the major causes of high mortality in breast cancer. We previously constructed pH-sensitive nanoparticles (D/D NPs) for the codelivery of docetaxel (DTX) and dihydroartemisinin (DHA) and demonstrated that D/D NPs showed anticancer activity in breast cancer cells in vitro. The present study further investigated the therapeutic effect of D/D NPs on orthotopic breast cancer in vivo and examined the antitumor mechanism of D/D NPs. D/D NPs significantly increased the apoptosis of 4T1 cells with a synergistic effect of DTX and DHA. D/D NPs increased reactive oxygen species, reduced mitochondrial membrane potential, increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. In an orthotopic metastatic breast cancer mouse model derived from 4T1 cells, D/D NPs inhibited tumor growth and prevented lung metastasis due to the synergistic effect of DTX and DHA. No distinct changes were observed in the histology of major organs. These results indicate that pH-sensitive D/D NP-based combination therapy may be a promising strategy for the treatment of metastatic breast cancers via the ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Diao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangcheng Chen
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ao Shen
- The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shutian Wang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Hongyan Jin
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Danwei Cai
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
25
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|
26
|
Fan Y, Yu D, Li D, Wang X. Prevention of Local Tumor Recurrence After Surgery by Thermosensitive Gel-Based Chemophotothermal Therapy in Mice. Lasers Surg Med 2019; 52:682-691. [PMID: 31854013 DOI: 10.1002/lsm.23206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Local recurrence of cancer after surgery has long been a tough problem. In the present study, thermosensitive gel-based chemophotothermal therapy was applied to prevent the recurrence of liver cancer after surgery. STUDY DESIGN/MATERIALS AND METHODS Mesoporous silica nanoparticles (MSNs) were used as first-level carrier to co-load doxorubicin (DOX) and ICG. Then, the drug-loaded MSNs (D-I@MSN) were incorporated into poloxamer gel. A mimic model of liver cancer recurrence after surgery was prepared by subcutaneously injecting H22 cells into the armpit of mice. Then the two-level composite gel (D-I@MSN/gel) was also subcutaneously injected at the same site before the formation of tumor, followed by 808 nm laser irradiation. RESULTS The loading efficiency and entrapment efficiency of DOX were as high as 8.85% and 96.9%, and that of ICG were 9.24% and 99.3%, respectively. The results of in vitro cytotoxicity showed that cell viability in D-I@MSN+Laser group was only 5.8% after being irradiated by 808 nm laser for 5 minutes (0.5 W/cm2 ). In animal studies, tumor formation (tumor recurrence) was greatly inhibited in D-I@MSN+Laser group. CONCLUSIONS The thermosensitive gel-based chemophotothermal therapy showed excellent safety and efficacy when applied in the prevention of mimic local tumor replase after surgery in mice, presenting its great potential clinically. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanyan Fan
- Department of Gynecology, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Dujuan Yu
- Department of Respiratory, China-Japan Union Hospital, Jilin University, Changchun, 130021, P. R. China
| | - Duan Li
- The First People's Hospital of Tianmen, Tianmen, Hubei, 431700, P. R. China
| | - Xue Wang
- Physical Examination Center, China-Japan Union Hospital, Jilin University, Changchun, 130031, P. R. China
| |
Collapse
|
27
|
Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019; 11:E306. [PMID: 31266194 PMCID: PMC6680516 DOI: 10.3390/pharmaceutics11070306] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea.
| |
Collapse
|