1
|
Das R, Kumar A, Singh C, Kayastha AM. Innovative synthesis approaches and health implications of organic-inorganic Nanohybrids for food industry applications. Food Chem 2024; 464:141905. [PMID: 39504907 DOI: 10.1016/j.foodchem.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Recent advancements in nanomaterials have significantly impacted various sectors, including medicine, energy, and manufacturing. Among these, organic/inorganic nanohybrids have emerged as transformative tools in the food industry. This review focuses on the innovative applications of these nanohybrids in food packaging, enzyme immobilization, and contamination detection. By combining organic and inorganic components, nanohybrids enable the customization of properties such as barrier performance, mechanical strength, and antimicrobial activity. Organic-inorganic nanohybrids offer promising solutions for the food industry, enhancing safety, quality, and processing efficiency. Examples include gold nanoparticles (AuNPs) used in biosensors for rapid detection of foodborne pathogens, graphene oxide (GO) nanosheets in advanced filtration membranes, and nanocellulose as a fat replacer in low-fat yogurt to improve texture and taste. Quantum dots (QDs) also aid in food traceability by detecting product authenticity. While these technologies showcase transformative potential, challenges like scalability, regulatory compliance, environmental impact, and potential toxicity must be addressed to ensure safe and sustainable adoption. However, to fully harness their benefits, it is crucial to thoroughly assess their toxicological profiles to mitigate potential adverse health effects. This necessitates comprehensive studies on their interactions with biological systems, dose-response relationships, and long-term impacts. Establishing standardized safety protocols and regulatory guidelines is essential to ensure that the utilization of these nanomaterials does not compromise human health while maximizing their advantages.
Collapse
Affiliation(s)
- Ranjana Das
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chandan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Ali MH, Dutta SK, Sultana MS, Habib A, Dhar PK. Green synthesized CeO 2 nanoparticles-based chitosan/PVA composite films: Enhanced antimicrobial activities and mechanical properties for edible berry tomato preservation. Int J Biol Macromol 2024; 280:135976. [PMID: 39326598 DOI: 10.1016/j.ijbiomac.2024.135976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The current study is intended to enhance unique bioactive and eco-friendly composite films following a simple solvent-casting approach by incorporating cerium oxide nanoparticles (CeO2 NPs) with a chitosan (CS)/polyvinyl alcohol (PVA) matrix. Antimicrobial activity, preservation impact, mechanisms for the edible berry tomatoes and physicochemical properties of the produced films were tested. FTIR, SEM-EDX, XRD, UV-vis spectroscopy and contact angle were used to characterize the films. Incorporated (3.0 wt%) CeO2 NPs practically developed composite film's thermal stability, structural, mechanical, bioactive, antioxidant, barrier and wettability properties. The tomatoes' look, weight loss and stiffness were better preserved after 25 days of storage at room temperature (25 ± 5 °C) when 3.0 wt% CeO2 NPs films were used instead of the original CS/PVA film. CS and CeO2 NPs have unique physiochemical and antibacterial properties. Food packaging extensively investigates the modified films as antimicrobials and preservatives to increase the shelf life of packaged foods, owing to their ability to inhibit gram-positive bacteria (Bacillus cereus and Staphylococcus aureus), gram-negative bacteria (Klebsiella pneumoniae and Pseudomonas aeruginosa), and filamentous fungi (Bipolaris sorokiniana, Fusarium op., and Alternaria sp.). Our findings indicated that the CeO2/CS/PVA composite films could be used as effective wrapping materials for food preservation.
Collapse
Affiliation(s)
- Md Hridoy Ali
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | | | | | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | | |
Collapse
|
3
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
4
|
Nitikornwarakul C, Wangpradid R, Rakkapao N. Impact of Molar Composition on the Functional Properties of Glutinous Rice Starch-Chitosan Blend: Natural-Based Active Coating for Extending Mango Shelf Life. Polymers (Basel) 2024; 16:1375. [PMID: 38794568 PMCID: PMC11124971 DOI: 10.3390/polym16101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates natural-based blends of glutinous rice starch (GRS) and chitosan (CS), varying their molar composition (0:100, 30:70, 50:50, 70:30, and 100:0) to explore their interaction dynamics. Our findings illustrate the versatility of these blends in solution and film forms, offering applications across diverse fields. Our objective is to understand their impact on coatings designed to extend the post-harvest shelf life of mangoes. Results reveal that increasing chitosan content in GRS/CS blends enhances mechanical strength, hydrophobicity, and resistance to Colletotrichum gloeosporioides infection, a common cause of mango anthracnose. These properties overcome limitations of GRS films. Advanced techniques, including FTIR analysis and stereo imaging, confirmed robust interaction between GRS/CS blend films and mango cuticles, improving coverage with higher chitosan content. This comprehensive coverage reduces mango dehydration and respiration, thereby preserving quality and extending shelf life. Coating with a GRS/CS blend containing at least 50% chitosan effectively prevents disease progression and maintains quality over a 10-day storage period, while uncoated mangoes fail to meet quality standards within 2 days. Moreover, increasing the starch proportion in GRS/CS blends enhances film density, optical properties, and reduces reliance on acidic solvents, thereby minimizing undesirable changes in product aroma and taste.
Collapse
Affiliation(s)
- Chawakwan Nitikornwarakul
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand; (C.N.); (R.W.)
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Rodjanawan Wangpradid
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand; (C.N.); (R.W.)
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand
- Membrane Science and Technology Research Center, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Othman SH, Shapi'i RA, Ronzi NDA. Starch biopolymer films containing chitosan nanoparticles: A review. Carbohydr Polym 2024; 329:121735. [PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
Collapse
Affiliation(s)
- Siti Hajar Othman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ruzanna Ahmad Shapi'i
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Diana Arisya Ronzi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
7
|
Hasanin MS, El Saied H, Morsy FA, Hassan Abdel Latif Rokbaa H. Green nanocoating-based polysaccharides decorated with ZnONPs doped Egyptian kaolinite for antimicrobial coating paper. Sci Rep 2023; 13:11461. [PMID: 37454158 PMCID: PMC10349886 DOI: 10.1038/s41598-023-38467-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
Paper coating plays an important role in the paper properties, printability and application. The nanocoating is a multifunction layer that provides the paper with unique features. In this work, nanocoating formulas were prepared using a green method and component. The nanocoating formulas were based on biopolymers nanostarch NSt and nanochitosan NCh (NCS) decorated with Egyptian kaolinite Ka doped with zinc nanoparticles NCS@xka/ZnONPs (x represents different ratios) support for multifunctional uses. The nanocoating formulas were characterized using a physiochemical analysis as well as a topographical study. FTIR, XRD, SEM and TEM techniques were used. Additionally, the antimicrobial activity of the tested samples was assessed against six microorganisms including Gram-negative and Gram-positive bacteria. The prepared nanocoating formulas affirmed excellent antimicrobial activity as a broad-spectrum antimicrobial active agent with excellent activity against all representative microbial communities. The nanocoating with the highest ratio of Ka/ZnONPs (NCS@40 ka/ZnONPs) showed excellent antimicrobial activity with an inhibition percentage of more than 70% versus all microorganisms presented. The paper was coated with the prepared suspensions and characterized concerning optical, mechanical and physical properties. When Ka/ZnONPs were loaded into NCS in a variety of ratios, the characteristics of coated paper were enhanced compared to blank paper. The sample NCS@40 ka/ZnONPs increased tensile strength by 11%, reduced light scattering by 12%, and improved brightness and whiteness by 1%. Paper coated with NCh suspension had 35.32% less roughness and 188.6% less porosity. When coated with the sample NCS@10 ka/ZnONPs, the coated paper's porosity was reduced by 94% and its roughness was reduced by 10.85%. The greatest reduction in water absorptivity was attained by coating with the same sample, with a reduction percentage of 132%.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Houssni El Saied
- Cellulose and Paper Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Fatma A Morsy
- Paper and Printing Lab., Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | | |
Collapse
|
8
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
9
|
Grzebieniarz W, Tkaczewska J, Juszczak L, Krzyściak P, Cholewa-Wójcik A, Nowak N, Guzik P, Szuwarzyński M, Mazur T, Jamróz E. Improving the quality of multi-layer films based on furcellaran by immobilising active ingredients and impact assessment of the use of a new packaging material. Food Chem 2023; 428:136759. [PMID: 37418883 DOI: 10.1016/j.foodchem.2023.136759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
To improve the quality of multi-layer film, four-layer films based on furcellaran and active ingredients: gelatin hydrolysate, curcumin, capsaicin, montmorillonite and AgNPs, were produced in an innovative manner. The films were characterised by SEM and AFM analysis. Along with an increase in the concentration of active ingredients, the structure of the film becomes less homogeneous, which may affect the functional properties. The objective of the study was to analyse changes in the functional properties of the newly-obtained films and to verify their potential as packaging materials for fish products. With the increase in active ingredient concentration, water properties also improved, but there were no noticeable significant effects on mechanical properties. For antioxidant properties, the obtained values were within 1.04-2.74 mM Trolox/mg (FRAP) and 7.67-40.49% (DPPH). The obtained multi-layer films were examined with regard to the shelf-life of salmon. For this purpose, salmon fillets were packed in films having good antioxidant and functional properties. The films were effective in microorganism growth inhibition responsible for fillet spoilage during storage. The microorganism number in the active film-stored samples was lower by 0.13 log CFU/g on day 12 versus the control. However, film application did not retard lipid oxidation in the salmon fillets. Nonetheless, the films show great potential as active packaging materials, extending the shelf-life of the packed foods.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, PL-31-121 Kraków, Poland
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Michał Szuwarzyński
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Tomasz Mazur
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| |
Collapse
|
10
|
Karami A, Ghanbarzadeh B, Fakhri LA, Falcone PM, Hosseini M. Physico-Mechanical Optimization and Antimicrobial Properties of the Bionanocomposite Films Containing Gallic Acid and Zinc Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111769. [PMID: 37299672 DOI: 10.3390/nano13111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/12/2023]
Abstract
The mechanical and physical properties of the bionanocomposite films based on κ-carrageenan (KC)-gelatin (Ge) containing zinc oxide nanoparticles (ZnONPs) and gallic acid (GA) were optimized using the response surface method, and the optimum amounts of 11.19 wt% GA and 1.20 wt% ZnONPs were obtained. The results of XRD, SEM, and FT-IR tests showed the uniform distribution of the ZnONPs and GA in the film microstructure, and suitable interactions between biopolymers and these additives, which led to increasing the structural cohesion of the biopolymer matrix and improving the physical and mechanical properties of the KC-Ge-based bionanocomposite. In the films containing gallic acid and ZnONPs, an antimicrobial effect was not observed against E. coli; however, the GA-loaded and optimum films show an antimicrobial effect against S. aureus. The optimum film showed a higher inhibition effect against S. aureus compared to the ampicillin- and gentamicin-loaded discs.
Collapse
Affiliation(s)
- Azin Karami
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Northern Cyprus, Turkey
| | - Leila Abolghasemi Fakhri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Pasquale M Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Para-Veterinary, Ilam University, Ilam P.O. Box 69315-516, Iran
| |
Collapse
|
11
|
Jiang A, Patel R, Padhan B, Palimkar S, Galgali P, Adhikari A, Varga I, Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel) 2023; 15:polym15102235. [PMID: 37242810 DOI: 10.3390/polym15102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials.
Collapse
Affiliation(s)
- Andre Jiang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | | | - Padmaja Galgali
- Aadarsh Innovations, Balewadi, Pune 411045, Maharashtra, India
| | | | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Fabrication of starch-based packaging materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
This chapter aims to provide the reader with some information about the possibility of starch as a suitable substitute for synthetic polymers in biodegradable food packaging. This is due to the starch has good characteristics which are great biodegradability, low cost and also easy to gain from natural resources. However, some of technical challenges are also introduced before starch-based polymers can be used in more applications. These technical challenges involved preparation methods and incorporation of additives and these are being summarized in this topic. Hence, the enhancement of starch can be done in order to prepare innovative starch-based biodegradable materials.
Collapse
|
13
|
Potential of pectin-chitosan based composite films embedded with quercetin-loaded nanofillers to control meat associated spoilage bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Cheng J, Wang H. Construction and application of nano ZnO/eugenol@yam starch/microcrystalline cellulose active antibacterial film. Int J Biol Macromol 2023; 239:124215. [PMID: 36996962 DOI: 10.1016/j.ijbiomac.2023.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The goal of this study was to develop new biocomposite films that can better protect and prolong the shelf life of food. Here, a ZnO: eugenol@yam starch/microcrystalline cellulose (ZnO:Eu@SC) antibacterial active film was constructed. Because of the advantages of metal oxides and plant essential oils, codoping with these can effectively improve the physicochemical and functional properties of composite films. The addition of an appropriate amount of nano-ZnO improved the compactness and thermostability, reduced the moisture sensitivity, and enhanced the mechanical and barrier properties of the film. ZnO:Eu@SC exhibited good controlled release of nano-ZnO and Eu in food simulants. Nano-ZnO and Eu release was controlled by two mechanisms: diffusion (primary) and swelling (secondary). After loading Eu, the antimicrobial activity of ZnO:Eu@SC was significantly enhanced, resulting in a synergistic antibacterial effect. Z4:Eu@SC film extended the pork shelf life by 100 % (25 °C). In humus, the ZnO:Eu@SC film was effectively degraded into fragments. Therefore, the ZnO:Eu@SC film has excellent potential in food active packaging.
Collapse
Affiliation(s)
- Junfeng Cheng
- School of Food and Health, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| |
Collapse
|
15
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
16
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
17
|
Pavlátková L, Sedlaříková J, Pleva P, Peer P, Uysal-Unalan I, Janalíková M. Bioactive zein/chitosan systems loaded with essential oils for food-packaging applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1097-1104. [PMID: 35522046 DOI: 10.1002/jsfa.11978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND There has recently been increased interest in biodegradable and sustainable packaging within the food industry. Biopolymer materials based on renewable biomass can be used as alternatives to conventional plastic packaging. A corn protein, zein, possesses excellent film-forming properties because of its hydrophobic nature. It can be used for making edible films and for producing nanofibrous layers. Combination with polysaccharides like chitosan offers promising prospects for the production of delivery systems for the controlled release of active substances. The current trend is to minimize the content of chemical additives; thus essential oils are suitable alternatives to synthetic antimicrobials. RESULTS This study aimed to develop various zein/chitosan-based film-forming solutions, films, and coatings with antimicrobial substances to prepare active food packaging. Thymol and three essential oils (thyme, cinnamon, oregano) were applied as bioactive ingredients against bacteria, yeasts, and fungi. The incorporation of these natural active compounds led to a decrease in particle size in most film-forming solutions and a reduction of zeta potential compared to controls. Release of the bioactive compound into an aqueous environment was proved by antimicrobial test. A zein/chitosan-based coating with thymol was applied on fresh strawberries. Microbiological analysis over 10 days confirmed the efficient control of bacterial and fungal growth. CONCLUSION Zein/chitosan (7:1) systems are suitable as bioactive compound carriers to make barriers and to prevent moisture loss, ensuring microbial food quality and prolonging the shelf life of fruits. These systems can serve as sustainable active food packaging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucie Pavlátková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic
| | - Petra Peer
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Aarhus N, Denmark
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Czech Republic
| |
Collapse
|
18
|
Pérez-Esteve É, Alcover A, Barat JM, Fernández-Segovia I. What do Spanish consumers think about employing nanotechnology in food packaging? Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
20
|
Hasan M, Khaldun I, Zatya I, Rusman R, Nasir M. Facile fabrication and characterization of an economical active packaging film based on corn starch–chitosan biocomposites incorporated with clove oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
22
|
Ghasemzaie N, Hadjizadeh A, Niknejad H. Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Electrospinning is a trendy method because of the ease of use and the high surface-to-volume ratio. The mechanical and biological properties of polylactic acid (PLA) make it one of the most enticing polymers. Gelatin and PLA together are thought to enhance cellular behavior and hydrophilicity of scaffolds. Furthermore, chitosan nanoparticles (CNPs) can be incorporated into PLA fibers to achieve controlled growth factor release. This study utilized PLA–gelatin nanofibrous scaffolds in which CNPs were encapsulated within PLA fibers to achieve a controlled release of basic fibroblast growth factor (bFGF). To produce CNPs, a simple ionic gelation reaction was used. The optimal diameter of CNPs was determined by investigating chitosan to tricalciumphosphatesodium (TPP) ratio and TPP concentration. Using a spectrophotometer, we measured the release rate of bFGF from CNPS and scaffolds. Images from a scanning electron microscope (SEM) were used to assess the effect of various concentrations of PLA and gelatin on fiber diameter. The results showed that PLA–gelatin scaffolds could stimulate the release of growth factors and promote cell proliferation. Using a two-jet electrospinning device to produce PLA–gelatin fibers in combination with CNPs incorporated within PLA fibers to release the bFGF growth factor is the novelty of this study.
Collapse
Affiliation(s)
- Niloofar Ghasemzaie
- Biomaterials and Tissue Engineering Group , Department of Biomedical Engineering, Amirkabir University of Technology , Tehran 1591634311 , Iran
| | - Afra Hadjizadeh
- Biomaterials and Tissue Engineering Group , Department of Biomedical Engineering, Amirkabir University of Technology , Tehran 1591634311 , Iran
| | - Hassan Niknejad
- Department of Pharmacology , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
23
|
Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
25
|
Zarrin NK, Mottaghitalab F, Reis RL, Kundu SC, Farokhi M. Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. Int J Biol Macromol 2022; 213:352-368. [DOI: 10.1016/j.ijbiomac.2022.05.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
|
26
|
de Freitas ADSM, da Silva APB, Montagna LS, Nogueira IA, Carvalho NK, de Faria VS, Dos Santos NB, Lemes AP. Thermoplastic starch nanocomposites: sources, production and applications - a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:900-945. [PMID: 34962857 DOI: 10.1080/09205063.2021.2021351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of materials based on thermoplastic starch (TPS) is an excellent alternative to replace or reduce the use of petroleum-derived polymers. The abundance, renewable origin, biodegradability, biocompatibility, and low cost of starch are among the advantages related to the application of TPS compared to other thermoplastic biopolymers. However, through the literature review, it was possible to observe the need to improve some properties, to allow TPS to replace commonly used polyolefins. The studies reviewed achieved these modifications were achieved by using plasticizers, adjusting processing conditions, and incorporating fillers. In this sense, the addition of nanofillers proved to be the main modification strategy due to the large number of available nanofillers and the low charge concentration required for such improvement. The improvement can be seen in thermal, mechanical, electrical, optical, magnetic, antimicrobial, barrier, biocompatibility, cytotoxicity, solubility, and swelling properties. These modification strategies, the reviewed studies described the development of a wide range of materials. These are products with great potential for targeting different applications. Thus, this review addresses a wide range of essential aspects in developing of this type of nanocomposite. Covering from starch sources, processing routes, characterization methods, the properties of the obtained nanocomposites, to the various applications. Therefore, this review will provide an overview for everyone interested in working with TPS nanocomposites. Through a comprehensive review of the subject, which in most studies is done in a way directed to a specific area of study.
Collapse
Affiliation(s)
| | - Ana Paula Bernardo da Silva
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Larissa Stieven Montagna
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Iury Araújo Nogueira
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nathan Kevin Carvalho
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Vitor Siqueira de Faria
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Natali Bomfim Dos Santos
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Ana Paula Lemes
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
27
|
Garavand F, Rouhi M, Jafarzadeh S, Khodaei D, Cacciotti I, Zargar M, Razavi SH. Tuning the Physicochemical, Structural, and Antimicrobial Attributes of Whey-Based Poly (L-Lactic Acid) (PLLA) Films by Chitosan Nanoparticles. Front Nutr 2022; 9:880520. [PMID: 35571878 PMCID: PMC9097867 DOI: 10.3389/fnut.2022.880520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Recently, the research and innovation to produce raw materials from microbial processes has gained much attention due to their economic and environmental impacts. Lactic acid is a very important microbial product due to its wide application in the food, pharmaceutical, cosmetic, and chemical industries. In the current study, poly (L-lactic acid) (PLLA) was produced by the ring opening polymerization (ROP) technique of L-lactic acid recovered from whey fermentation, and was used for the production of nanocomposites films reinforced with chitosan nanoparticles (CNPs) (average diameter ca. 100–200 nm). Three different CNPs concentrations, namely 1, 3, and 5% w/w, were tested, and their influence on the physical, mechanical, thermal, antibacterial and structural attributes of PLLA film was assessed. The results showed that the addition of CNPs up to 3% caused a significant improvement in water vapor permeability, appearance, tensile strength and elongation at break. The antibacterial properties of nanocomposites followed a dose-depended pattern as a result of CNPs addition. Therefore, the best inhibitory effects on Escherichia coli and Staphylococcus aureus was made by the addition of 5% of CNPs and lower dosages slightly affected the growth of pathogens or didn't cause any inhibitory effects (in 1% of CNPs). It can be concluded that the incorporation of CNPs into the PLLA matrix allows to improve the structural, thermal, physical, mechanical and antibacterial properties of the polymer, generating promising systems for food packaging and biomedical applications.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, County Cork, Ireland
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- *Correspondence: Farhad Garavand
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, WA, Australia
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Galway-Mayo Institute of Technology (GMIT), Galway, Ireland
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Rome, Italy
- Ilaria Cacciotti
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, Australia
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Seyed Hadi Razavi
| |
Collapse
|
28
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
29
|
Antibacterial chitosan-Dioscorea alata starch film enriched with essential oils optimally prepared by following response surface methodology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Sáez-Orviz S, Marcet I, Rendueles M, Díaz M. Preparation of Edible Films with Lactobacillus plantarum and Lactobionic Acid Produced by Sweet Whey Fermentation. MEMBRANES 2022; 12:membranes12020115. [PMID: 35207037 PMCID: PMC8875862 DOI: 10.3390/membranes12020115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
Cheese whey, one of the most abundant by-products of the dairy industry, causes economic losses and pollution problems. In this study, deproteinised sweet whey was fermented by Pseudomonas taetrolens LMG 2336 to produce a prebiotic compound (lactobionic acid, LBA). Endotoxins produced by these microorganisms were successfully removed using microfiltration techniques, allowing the fermented whey permeate to be used in the food industry. The fermented whey permeate was used to develop prebiotic edible films by adding two different concentrations of gelatine (0.45 and 0.9 g gelatine g−1 LBA; LBA45 and LBA90). Furthermore, Lactobacillus plantarum CECT 9567 was added as a probiotic microorganism (LP45 and LP90), creating films containing both a prebiotic and a probiotic. The mechanical properties, water solubility, light transmittance, colour, and microstructure of the films were fully characterised. Additionally, the LBA and probiotic concentration in LP45 and LP90 were monitored under storage conditions. The strength and water solubility of the films were affected by the presence of LBA, and though all these films were homogeneous, they were slightly opaque. In LP45 and LP90, the presence of LBA as a prebiotic improved the viability of L. plantarum during cold storage, compared to the control. Therefore, these films could be used in the food industry to coat different foodstuffs to obtain functional products.
Collapse
|
31
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
32
|
Maniglia BC, Silveira TMG, Tapia-Blácido DR. Starch isolation from turmeric dye extraction residue and its application in active film production. Int J Biol Macromol 2022; 202:508-519. [PMID: 35007637 DOI: 10.1016/j.ijbiomac.2021.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022]
Abstract
In this study, we have isolated starch from turmeric dye extraction residue by steeping in acid medium (AS), steeping in water (WS), or steeping in alkaline medium (KS) and assessed the filmogenic capacity of the resulting starches. We have also characterized the chemical composition, morphology, swelling power, solubility, crystallinity, and active properties of the AS, WS, and KS starches and investigated the mechanical, functional, antioxidant, and antimicrobial properties of the corresponding films. The AS and KS starches showed lower apparent amylose content and higher purity, relative crystallinity, swelling power, and solubility than the WS starch. All the starches retained phenolic compounds and curcuminoids; their phenolic and curcuminoid contents were higher than the contents in the residue, especially in the case of the AS starch, which yielded films with the best antioxidant and antimicrobial activities. The AS and KS starches yielded films that were more resistant at break, less soluble in water, and less hydrophilic than the film obtained from the WS starch. Thus, submitting turmeric dye extraction residue to AS in ascorbic acid yielded a starch that resulted in films with good mechanical properties and better antioxidant and antimicrobial properties, to ensure safe and prolonged food shelf life.
Collapse
Affiliation(s)
- Bianca Chieregato Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| | - Thamiris Maria Garcia Silveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
|
34
|
Perera KY, Jaiswal S, Jaiswal AK. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging. Food Chem 2021; 376:131912. [PMID: 34971895 DOI: 10.1016/j.foodchem.2021.131912] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/21/2023]
Abstract
With an increasing demand for a novel, eco-friendly, high-performance packaging material "bio-nanocomposites" has attracted great attention in recent years. The review article aims at to evaluating recent innovation in bio-nanocomposites for food packaging applications. The current trends and research over the last three years of the various bio-nanocomposites including inorganic, organic nanomaterials, and nanohybrids, which are suitable as food packaging materials due to their advanced properties such as high mechanical, thermal, barrier, antimicrobial, and antioxidant are described in detail. In addition, the legislation, migration studies, and SWOT analysis on bio-nanocomposite film have been discussed. It has been observed that the multifunctional properties of the bio-nanocomposite materials, has the potential to improve the quality and safety of the food together with no /or fewer negative impact on the environment. However, more studies need to be performed on bio-nanocomposite materials to determine the migration levels and formulate relevant legislation.
Collapse
Affiliation(s)
- Kalpani Y Perera
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
35
|
Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021; 146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
Collapse
Affiliation(s)
- V Gopinath
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - S Manjunath Kamath
- Department of Translational Medicine and Research, SRM Medical College Hospital and Research, SRMIST, Kattankulathur 603203, India.
| | - S Priyadarshini
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman H Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Daza LD, Eim VS, Váquiro HA. Influence of Ulluco Starch Concentration on the Physicochemical Properties of Starch-Chitosan Biocomposite Films. Polymers (Basel) 2021; 13:polym13234232. [PMID: 34883736 PMCID: PMC8659859 DOI: 10.3390/polym13234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
This work aimed to prepare ulluco starch (US)/chitosan (Ch) edible films and evaluate the effect of the concentration of US on their physicochemical properties. The use of edible films is a means of adding value to the ulluco crop and evaluating the viability of using new sources to produce packaging materials. Different samples were prepared at different US concentrations (2%, 3%, 4%, and 5% w/v) and a fixed chitosan concentration (1.5% w/v); then, samples were analyzed, considering their physical, mechanical, and thermal properties. The US/Ch edible films showed an increase in solubility from 17.5% to 21.7%, swelling power (SP) from 38.9% to 267%, tensile strength (TS) from 3.69 MPa to 10.7 MPa, Young modulus (YM) from 18.0 Pa to 652 Pa, and thermal stability as the US concentration increased. However, samples with low US concentrations showed higher elongation at break (EB) (36.6%) and better barrier properties (WVP) (5.61 × 10−11 g/m s Pa). The films evaluated in this work presented good physical, mechanical, and barrier properties, revealing their potential as packaging material ensuring food security, and demonstrating the technological potential of US.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Valeria Soledad Eim
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Correspondence: (V.S.E.); (H.A.V.)
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
- Correspondence: (V.S.E.); (H.A.V.)
| |
Collapse
|
37
|
Physical, Mechanical, and Water Vapor Barrier Properties of Starch/Cellulose Nanofiber/Thymol Bionanocomposite Films. Polymers (Basel) 2021; 13:polym13234060. [PMID: 34883563 PMCID: PMC8659141 DOI: 10.3390/polym13234060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The application of starch films, such as food packaging materials, has been restricted due to poor mechanical and barrier properties. However, the addition of a reinforcing agent, cellulose nanofibers (CNF) and also thymol, into the films, may improve the properties of films. This work investigates the effects of incorporating different concentrations of thymol (3, 5, 7, and 10 wt.%) on physical, mechanical, water vapor barrier, and antibacterial properties of corn starch films, containing 1.5 wt.% CNF produced using the solvent casting method. The addition of thymol does not significantly affect the color and opacity of the films. It is found that the tensile strength and Young’s modulus of the films decreases from 10.6 to 6.3 MPa and from 436.9 to 209.8 MPa, respectively, and the elongation at break increased from 110.6% to 123.5% with the incorporation of 10 wt.% thymol into the films. Furthermore, the addition of thymol at higher concentrations (7 and 10 wt.%) improved the water vapor barrier of the films by approximately 60.0%, from 4.98 × 10—9 to 2.01 × 10—9 g/d.m.Pa. Starch/CNF/thymol bionanocomposite films are also found to exhibit antibacterial activity against Escherichia coli. In conclusion, the produced starch/CNF/thymol bionanocomposite films have the potential to be used as antibacterial food packaging materials.
Collapse
|
38
|
Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM. Antimicrobial Activity of Chemically and Biologically Treated Chitosan Prepared from Black Soldier Fly ( Hermetia illucens) Pupal Shell Waste. Microorganisms 2021; 9:microorganisms9122417. [PMID: 34946019 PMCID: PMC8706517 DOI: 10.3390/microorganisms9122417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 °C for 2 h and 1 M NaOH for 4 h at 100 °C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 °C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm−1—wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis,Pseudomonas aeruginosa,Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.
Collapse
Affiliation(s)
- Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Francis Ndwigah
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
39
|
Maniglia BC, La Fuente CIA, Siqueira LDV, Tadini CC. Carbohydrate Nanomaterials Addition to Starch‐Based Packaging: A Review about Fundamentals and Application. STARCH-STARKE 2021. [DOI: 10.1002/star.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Chieregato Maniglia
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) ‐ Universidade de São Paulo Ribeirão Preto SP 14040–900 Brazil
| | - Carla Ivonne Arias La Fuente
- Department of Agri‐food Industry Food and Nutrition (LAN), School of Agriculture Luiz de Queiroz (ESALQ) Universidade de São Paulo Piracicaba SP 13418–900 Brazil
| | - Larissa do Val Siqueira
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| |
Collapse
|
40
|
Taherimehr M, YousefniaPasha H, Tabatabaeekoloor R, Pesaranhajiabbas E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr Rev Food Sci Food Saf 2021; 20:5321-5344. [PMID: 34611989 DOI: 10.1111/1541-4337.12832] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
The ultimate goal of new food packaging technologies, in addition to maintaining the quality and safety of food for the consumer, is to consider environmental concerns and reduce its impacts. In this regard, one of the solutions is to use eco-friendly biopolymers instead of conventional petroleum-based polymers. However, the challenges of using biopolymers in the food packaging industry should be carefully evaluated, and techniques to eliminate or minimize their disadvantages should be investigated. Many studies have been conducted to improve the properties of biopolymer-based packaging materials to produce a favorable product for the food industry. This article reviews the structure of biopolymer-based materials and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan YousefniaPasha
- Department of Agricultural Machinery Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Reza Tabatabaeekoloor
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
41
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
42
|
La Fuente Arias CI, Kubo MTKN, Tadini CC, Augusto PED. Bio-based multilayer films: A review of the principal methods of production and challenges. Crit Rev Food Sci Nutr 2021; 63:2260-2276. [PMID: 34486888 DOI: 10.1080/10408398.2021.1973955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of biodegradable packaging materials has been drawing attention worldwide to minimize the environmental impact of traditional petroleum-based plastics. Nevertheless, it is challenging to obtain bio-based materials with suitable properties for packaging applications. Films produced from a single biopolymer often lack some important properties. An alternative to overcome this limitation is the multilayer assembly. Under this technology, two or more materials with specific and complementary properties are combined into a single-layered structure, thus improving the performance of bio-polymer plastics. This review presents the main aspects of bio-based multilayer film production technologies, discussing their advantages and disadvantages, which have to be considered to produce the most suitable film for each specific application. Most of the studies reported that such films resulted in increased mechanical performance and decreased water, oxygen, and dioxide carbon permeability. This approach allows the addition of compounds leading to antioxidant or antibacterial activity. Finally, a discussion about the future challenges is also presented.
Collapse
Affiliation(s)
- Carla Ivonne La Fuente Arias
- School of Agriculture Luiz de Queiroz (ESALQ), Department of Agri-food Industry, Food and Nutrition (LAN), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mirian Tiaki Ka-Neiwa Kubo
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Universidade Estadual de São Paulo (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Universidade de São Paulo, Escola Politéccnica, São Paulo, São Paulo, Brazil.,Food Research Center (FoRC/NAPAN), Universidade de São Paulo, São Paulo, Brazil.,Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Pedro Esteves Duarte Augusto
- School of Agriculture Luiz de Queiroz (ESALQ), Department of Agri-food Industry, Food and Nutrition (LAN), Universidade de São Paulo, Piracicaba, São Paulo, Brazil.,Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Lipatova I, Yusova A, Makarova L. Fabrication and characterization of starch films containing chitosan nanoparticles using in situ precipitation and mechanoactivation techniques. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
45
|
Comparison of Antimicrobial Activity of Chitosan Nanoparticles against Bacteria and Fungi. COATINGS 2021. [DOI: 10.3390/coatings11070769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan nanoparticles (CSNPs) have attracted wide interest; however, there has been no substantial information about a direct comparison of the antimicrobial activity of CSNPs on bacteria and fungi. Thus, in this study, simple, economically feasible CSNPs were synthesized and assessed for their antimicrobial activity. This investigation indicated that the coordination inducing effect of CSNPs could dissociate the tryptophan (Trp) and tyrosine (Tyr) residue groups on the peptide chain of the bovine serum albumin (BSA) molecule, thereby increasing the absorption intensity. The growth of E. coli and S. aureus could be completely inhibited when the concentration of CSNPs in the solution was higher than 0.6 mg/mL. The CSNPs showed more potent antibacterial activity against Gram-negative bacteria (E. coli) than against Gram-positive bacteria (S. aureus). In addition, the CSNPs were effective at initiating cellular leakage of fungal mycelia and damping off fungal pathogens, and their antifungal effects were stronger on P. steckii than on A. oryzae. Furthermore, the antimicrobial activity of the CSNPs was found to be more effective against bacteria than against fungi. This study thus ascertained the antimicrobial activity of synthesized CSNPs against different microorganisms, as well as their different degrees of inhibition.
Collapse
|
46
|
Huang SW, Yeh FC, Ji YR, Su YF, Su YS, Chiang MH, Tzeng SC, Fu CY, Cheng A, Wang YC, Lee YT. Chitosan-based hydrogels to treat hydrofluoric acid burns and prevent infection. Drug Deliv Transl Res 2021; 11:1532-1544. [PMID: 34125402 DOI: 10.1007/s13346-021-01007-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
There is an urgent need for treatments for hydrofluoric acid (HF) burns and their derivative problems that prevent hydrogen ion dissociation and fluoride ion binding to tissues. This study evaluated the ability of chitosan-based hydrogels combined with a buffer solution containing either boric acid or Tris and calcium gluconate (CHS-BA-CG and CHS-Tris-CG) to repair HF burn wounds and prevent wound infections. We assessed calcium release rates and biocompatability and constructed a mouse HF burn model to assess the tissue repair effects of the hydrogels. Finally, we performed disc diffusion tests from burn tissue and quantified the bacterial counts to assess the anti-infection properties of the hydrogels. Calcium was gradually released in the CHS-BA-CG and CHS-Tris-CG groups (73% and 43%, respectively, after 48 h). The cell viabilities at 48 h after HF burn in these groups were significantly higher than those in the phosphate-buffered saline (PBS) and CG-treated groups. Histopathological evaluation showed a clear boundary between the epidermal and dermal layers in both CHS-BA-CG and CHS-Tris-CG-treated groups, indicating their effectiveness in tissue repair. In the disc diffusion test, CHS-BA-CG and CHS-Tris-CG exhibited larger inhibition zones against Acinetobacter baumannii than those for PBS and CG. The bacterial counts on HF burn wounds were significantly lower in the CHS-BA-CG and CHS-Tris-CG-treated groups than those in the PBS and CG-treated groups. The in vitro studies demonstrated the biocompatibility and antimicrobial effects of the CHS-BA-CG and CHS-Tris-CG hydrogels. Both gels also demonstrated tissue repair and anti-infection effects. Thus, chitosan-based hydrogels may be candidates for HF burn therapy.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, 11217, Taipei, Taiwan
| | - Fang-Ching Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, 40466, Taiwan
| | - You-Ren Ji
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10023, Taiwan
| | - Ying-Fu Su
- Department of Emergency, Kuang Tien General Hospital, Taichung, 43303, Taiwan
| | - Ying-Shih Su
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taipei, 11608, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 10031, Taiwan
| | - Ming-Hsien Chiang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shian-Chiuan Tzeng
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Yao Fu
- Division of Orthopedics, Taichung Armed Forces General Hospital, Taichung, 40466, Taiwan
| | - Aristine Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, 11217, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, shirani N, Musavi SH. Edible coating and films as promising packaging: a mini review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00979-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Biodegradable Antimicrobial Films for Food Packaging: Effect of Antimicrobials on Degradation. Foods 2021; 10:foods10061256. [PMID: 34205937 PMCID: PMC8228111 DOI: 10.3390/foods10061256] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
The environmental problem generated by the massive consumption of plastics makes necessary the developing of biodegradable antimicrobial materials that can extend food shelf-life without having a negative impact on the environment. The current situation regarding the availability of biodegradable food packaging materials has been analysed, as well as different studies where antimicrobial compounds have been incorporated into the polymer matrix to control the growth of pathogenic or spoilage bacteria. Thus, the antimicrobial activity of active films based on different biodegradable polymers and antimicrobial compounds has been discussed. Likewise, relevant information on biodegradation studies carried out with different biopolymers in different environments (compost, soil, aquatic), and the effect of some antimicrobials on this behavior, are reviewed. In most of the studies, no relevant effect of the incorporated antimicrobials on the degradation of the polymer were observed, but some antimicrobials can delay the process. The changes in biodegradation pattern due to the presence of the antimicrobial are attributed to its influence on the microorganism population responsible for the process. More studies are required to know the specific influence of the antimicrobial compounds on the biodegradation behavior of polymers in different environments. No studies have been carried out or marine media to this end.
Collapse
|
49
|
Ragab E, Shaban M, Khalek AA, Mohamed F. Design and characterization of PANI/starch/Fe 2O 3 bio composite for wastewater remediation. Int J Biol Macromol 2021; 181:301-312. [PMID: 33713774 DOI: 10.1016/j.ijbiomac.2021.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
A new synthesized polyaniline/starch/hematite bio composite (PANI/S/Fe2O3 BC) has been studied as an effective material for on-site water remediation. PANI/S/Fe2O3 BC was developed by combining the techniques of co-precipitation and interfacial polymerization in the presence of aqueous starch solution in an acidic medium under ultrasonic irradiation. The nano-morphologies and structures of the designed PANI/S/Fe2O3 BC were evaluated by various techniques relative to PANI and Fe2O3 nanoparticles. In single and multiple systems, PANI/S/Fe2O3 BC was evaluated as a possible adsorbent for different heavy metals, including As3+, Zn2+, and Co2+, relative to PANI and Fe2O3 nanoparticles. In terms of pH value, operating temperature, initial heavy metal concentration, contact time, adsorbent dose and competitive ions in the solutions, the adsorption process was optimized. For 92% overall adsorption of Co2+ and 100% overall adsorption of both As3+ and Zn2+, the adsorption equilibrium was achieved within 60 and 120 min, respectively. In addition, adsorption thermodynamic analysis shows that the As3+ ions adsorption process was not random and the pseudo-second-order fitted with experimental results. Moreover, PANI/S/Fe2O3 BC was evaluated as an antibacterial agent against Gram-negative bacteria (Salmonella typhimurium) and Gram-positive bacteria (S. aureus, Methicillin-Resistant Staphylococcus, Aureus Clinical isolate and Bacillus subtilis). The reported performances indicated that the PANI/S/Fe2O3 BC is a potent candidate for industrial water bioremediation.
Collapse
Affiliation(s)
- Eman Ragab
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, AlMadinah Almonawara 42351, Saudi Arabia
| | - Ahmed Abdel Khalek
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
50
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|