1
|
Mao J, Wu C, Zheng L, Li Y, Yang R, Yuan P, Jiang J, Li C, Zhou X. Advances in stimulus-responsive nanomedicine for treatment and diagnosis of atherosclerosis. Colloids Surf B Biointerfaces 2025; 245:114298. [PMID: 39378703 DOI: 10.1016/j.colsurfb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Atherosclerosis (AS), an inflammatory cardiovascular disease driven by lipid deposition, presents global prevalence with high mortality. Effective anti-inflammatory or lipid removal is a promising strategy. However, current conventional drug delivery methods may face challenges in targeting disease sites and are deficient in the treatment of AS because of the nonspecific tissue distribution and uncontrollable release of the drug. In contrast, stimulus-responsive nanodrug delivery systems (NDDSs) can respond to stimulation and achieve controlled drug release rates at specific disease sites owing to the abnormal pathological microenvironment in plaques with low pH, excessive reactive oxygen species (ROS) and enzymes, and high shear stress. As a consequence, the efficacy of treatment is improved, and adverse reactions are reduced. On the other hand, NDDSs can combine exogenous stimulus responses (photothermal, ultrasound, etc.) to precisely control their function in time and space. This review for the first time focuses on the application of stimulus-responsive NDDSs in the treatment and diagnosis of AS in the last five years. In addition, its pivotal challenges and prospects are emphasized, aiming to facilitate its application for AS.
Collapse
Affiliation(s)
- Jingying Mao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lixin Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaoyao Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ronghao Yang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Shen Z, Wang X, Lu L, Wang R, Hu D, Fan Z, Zhu L, Zhong R, Wu M, Zhou X, Cao X. Bilirubin-Modified Chondroitin Sulfate-Mediated Multifunctional Liposomes Ameliorate Acute Kidney Injury by Inducing Mitophagy and Regulating Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62693-62709. [PMID: 39492707 DOI: 10.1021/acsami.4c14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Acute kidney injury (AKI) is a dynamic process associated with inflammation, oxidative stress, and lipid peroxidation, in which mitochondrial mitophagy and macrophage polarization play a critical role in the pathophysiology. Based on the expression of the CD44 receptor on renal tubular epithelial cells (RTECs) and activated M1 macrophages being abnormally increased, accompanied by up-regulation of reactive oxygen species (ROS) during AKI, the conjugates of bilirubin (BR), an endogenous antioxidant which has the property of anti-inflammation, and chondroitin sulfate (CS) with CD44-targeting property could be a promising therapeutic carrier. In this study, we develop a CD44-targeted/ROS-responsive CS-BR-mediated multifunctional liposome loading celastrol (CS-BR@CLT) for the targeted therapy of AKI. CS-BR@CLT is shown to selectively accumulate in AKI mouse kidneys via targeting of CD44 receptors. Treatment with CS-BR@CLT significantly ameliorates acute kidney injury caused by ischemia-reperfusion and protects renal function. Mechanistically, CS-BR@CLT inhibits apoptosis, protects mitochondria, promotes autophagy, regulates macrophage polarization, and alleviates interstitial inflammation. Overall, our study demonstrates that CS-BR@CLT could be a promising strategy to ameliorate acute kidney injury.
Collapse
Affiliation(s)
- Ziqi Shen
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230031, China
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Xiaohua Wang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Li Lu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230031, China
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Runkong Wang
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Danni Hu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230031, China
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Ziyan Fan
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230031, China
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| | - Liyang Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Ruixue Zhong
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Mingquan Wu
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Xu Zhou
- Sichuan Provincial Orthopedic Hospital, Chengdu 610041, China
| | - Xi Cao
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230031, China
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230031, China
| |
Collapse
|
3
|
Ouyang Q, Zhao Y, Xu K, He Y, Qin M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. SMALL METHODS 2024; 8:e2400513. [PMID: 39039982 DOI: 10.1002/smtd.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide found in the extracellular matrix with broad applications in disease treatment. HA possesses good biocompatibility, biodegradability, and the ability to interact with various cell surface receptors. Its wide range of molecular weights and modifiable chemical groups make it an effective drug carrier for drug delivery. Additionally, the overexpression of specific receptors for HA on cell surfaces in many disease states enhances the accumulation of drugs at pathological sites through receptor binding. In this review, the modification of HA with drugs, major receptor proteins, and the latest advances in receptor-targeted nano drug delivery systems (DDS) for the treatment of tumors and inflammatory diseases are summarized. Furthermore, the functions of HA with varying molecular weights of HA in vivo and the selection of drug delivery methods for different diseases are discussed.
Collapse
Affiliation(s)
- Qiuhong Ouyang
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuechen He
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Qin
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Wei Y, Zhang F, Li J, Qi Z, Wang JH, Wang Z. Composition Tuning of Semi-Open Cell Carriers via Phase Freeze-Shrink Self-Molding. ACS NANO 2024; 18:26872-26881. [PMID: 39299910 DOI: 10.1021/acsnano.4c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets. The universality of this shape transition principle is demonstrated with six types of polysaccharides dispersed in a poly(ethylene glycol) diacrylate (PEGDA) or methacrylate gelatin (GelMA) matrix. By doping the microcradles with the major ECM component, hyaluronic acid sodium, we demonstrate a label-free selective culture of CD44 receptor-rich cells and the formation of cell spheroids within 3 days. This cryo-induced cradle-shaping strategy enables the functionalization of microcarriers for selective cell culture, thereby allowing them to be used for intercellular communication, drug delivery, and the construction of structural units for osteogenesis and 3D printing.
Collapse
Affiliation(s)
- Yanan Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fei Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaqi Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhijie Qi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Liu J, Zhang Z, Lin X, Hu J, Pan X, Jin A, Lei L, Dai M. Magnesium metal-organic framework microneedles loaded with curcumin for accelerating oral ulcer healing. J Nanobiotechnology 2024; 22:594. [PMID: 39350179 PMCID: PMC11443737 DOI: 10.1186/s12951-024-02873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Oral ulcers are a common oral mucosal disease that seriously affect the quality of life. Traditional drug treatments have shown unsatisfactory efficacy and potential adverse reactions. In this study, curcumin-loaded multifunctional magnesium metal-organic framework-embedded hyaluronic acid-soluble microneedles patches were developed to optimize treatment strategies for oral ulcers. This microneedles patch achieves efficient release of curcumin and Mg2+ in the ulcer through precisely targeted delivery and controllable release mechanism, significantly regulates inflammation, promotes cell migration and angiogenesis, and accelerates the ulcer healing process. At the same time, the synergistic effect of curcumin and gallic acid effectively alleviated oxidative stress, while the backplate ε-poly-L-lysine and needle tip Mg2+ jointly constructed an antibacterial barrier to effectively inhibit pathogens. Verification using an oral ulcer rat model showed that the microneedles patch exhibited excellent therapeutic effects. This not only opens up a new avenue for clinical oral treatment but also marks a breakthrough in nanobiomaterials science and drug delivery technology and heralds a broad prospect in the field of oral ulcer treatment in the future.
Collapse
Affiliation(s)
- Junhui Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Zhipeng Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Xiufei Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Jun Hu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
7
|
Lu X, Fan M, Ma Y, Feng Y, Pan L. Redox-sensitive hydrogel based on hyaluronic acid with selenocystamine cross-linking for the delivery of Limosilactobacillus reuteri in a DSS-induced colitis mouse model. Int J Biol Macromol 2024; 276:133855. [PMID: 39032895 DOI: 10.1016/j.ijbiomac.2024.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Disrupted gut microbiota homeostasis is an important cause of inflammatory colitis. Studies have shown that effective supplementation with probiotics can maintain microbial homeostasis and alleviate colitis. Here, to increase the viability of probiotics in the harsh gastrointestinal environments and enable targeted delivery, a redox-sensitive selenium hyaluronic acid (HA-Se) hydrogel encapsulating probiotics was developed. HA was modified with selenocystamine dihydrochloride and crosslinked by an amide reaction to generate a redox-sensitive hydrogel with stable mechanical properties, a low hemolysis rate and satisfactory biocompatibility. The HA-Se hydrogel exhibited suitable sensitivity to 10 mM GSH or 100 μM H2O2. The encapsulation of Limosilactobacillus reuteri (LR) in the HA-Se hydrogel (HA-Se-LR) significantly increased the survival rate of the probiotics in simulated gastric and intestinal fluid. HA-Se-LR administration increased the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis, significantly alleviated oxidative stress and inflammation, and increased the effect of LR on microbiota α diversity. These results indicate that the HA-Se hydrogel constructed in this study can be used as a delivery platform to treat colitis, expanding the targeted applications of the natural polymer HA in disease treatment and the administration of probiotics as drugs to alleviate disease symptoms.
Collapse
Affiliation(s)
- Xi Lu
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China.
| | - Mingming Fan
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yuzhe Ma
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yimeng Feng
- Mathematics Teaching and Research Group, Dajindian Town Junior High School, Zhengzhou 450000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| |
Collapse
|
8
|
Wang Y, Chen Z, Zhu Q, Chen Z, Fu G, Ma B, Zhang W. Aiming at early-stage vulnerable plaques: A nanoplatform with dual-mode imaging and lipid-inflammation integrated regulation for atherosclerotic theranostics. Bioact Mater 2024; 37:94-105. [PMID: 38523705 PMCID: PMC10957523 DOI: 10.1016/j.bioactmat.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The vulnerable plaques in atherosclerosis can cause severe outcome with great danger of acute cardiovascular events. Thus, timely diagnosis and treatment of vulnerable plaques in early stage can effectively benefit the clinical management of atherosclerosis. In this work, a targeting theranostic strategy on early-stage vulnerable plaques in atherosclerosis is realized by a LAID nanoplatform with X-CT and fluorescent dual-mode imaging and lipid-inflammation integrated regulation abilities. The iodinated contrast agents (ICA), phenylboronic acid modified astaxanthin and oxidized-dextran (oxDEX) jointly construct the nanoparticles loaded with the lipid-specific probe LFP. LAID indicates an active targeting to plaques along with the dual-responsive disassembly in oxidative stress and acidic microenvironment of atherosclerosis. The X-CT signals of ICA execute the location of early-stage plaques, while the LFP combines with lipid cores and realizes the recognition of vulnerable plaques. Meanwhile, the treatment based on astaxanthin is performed for restraining the progression of plaques. Transcriptome sequencing suggests that LAID can inhibit the lipid uptake and block NF-κB pathway, which synergistically demonstrates a lipid-inflammation integrated regulation to suppression the plaques growing. The in vivo investigations suggest that LAID delivers a favorable theranostics to the early-stage vulnerable plaques, which provides an impressive prospect for reducing the adverse prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhebin Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Jia J, Li L, Wu Z, Li S. Fluorescent probes for imaging: a focus on atherosclerosis. NANOSCALE 2024; 16:11849-11862. [PMID: 38836376 DOI: 10.1039/d4nr01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Atherosclerosis, as a chronic cardiovascular disease driven by inflammation, can lead to arterial stenosis and thrombosis, which seriously threatens human life and health. Achieving the timely monitoring of atherosclerosis is an important measure to reduce acute cardiovascular diseases. Compared with other imaging platforms, fluorescence imaging technology has the characteristics of excellent sensitivity, high spatiotemporal resolution and real-time imaging, which is very suitable for direct visualization of molecular processes and abnormalities of atherosclerosis. Recently, researchers have strived to design a variety of fluorescent probes, from single-mode fluorescent probes to fluorescent-combined dual/multimode probes, to enrich the imaging and detection of atherosclerosis. Therefore, this review aims to provide an overview of currently investigated fluorescent probes in the context of atherosclerosis, summarize relevant published studies showing applications of different types of fluorescent probes in the early-stage and other stages to detect atherosclerosis, give effective biological targets and discuss the latest progress and some limitations. Finally, some insights are provided for the development of a new generation of more accurate and efficient fluorescent probes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
- Collaborative Innovation Center for Molecular Imaging, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
13
|
Chen T, Miao W, Yang Z, Yang F. From Nanovesicles to Nanobubbles Based on Repeated Compression Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16740-16749. [PMID: 37962381 DOI: 10.1021/acs.langmuir.3c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanobubbles have been increasingly applied in biomedicine, which is attributed to their ability to work as ultrasound imaging contrast agents and powerful gene/drug carriers. Different production techniques or approaches have been developed to generate uniform and stable shelled nanobubbles. However, these shelled nanobubbles are usually prepared based on disordered shell materials, such as free phospholipids and polymers. In recent years, the continuous repeated compression method for a gas-liquid mixture has been developed to produce free and lipid-shelled nanobubbles. In this study, to explore the response of well-organized nanostructures to this method, the repeated compression method was used to treat preprepared liposomes and polymeric nanovesicles. Size distribution, morphologies, and ultrasound image contrast enhancement of these nanovesicles were determined before and after repeated compression. Results demonstrate that the presence of a phospholipid bilayer is vital to form liposome-based nanobubbles. And the low elastic modulus of the polymeric membrane is key to encapsulate gases into polymeric nanovesicles. Overall, it demonstrated the advantages of well-organized nanostructures to produce nanobubble structures, giving new insights into the preparation and understanding of nanobubbles.
Collapse
Affiliation(s)
- Tiandong Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Weiling Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Zhenrong Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
14
|
Wu C, Mao J, Wang X, Yang R, Wang C, Li C, Zhou X. Advances in treatment strategies based on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnology 2023; 21:271. [PMID: 37592345 PMCID: PMC10433664 DOI: 10.1186/s12951-023-02058-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The development of atherosclerosis (AS) is closely linked to changes in the plaque microenvironment, which consists primarily of the cells that form plaque and the associated factors they secrete. The onset of inflammation, lipid deposition, and various pathological changes in cellular metabolism that accompany the plaque microenvironment will promote the development of AS. Numerous studies have shown that oxidative stress is an important condition that promotes AS. The accumulation of reactive oxygen species (ROS) is oxidative stress's most important pathological change. In turn, the effects of ROS on the plaque microenvironment are complex and varied, and these effects are ultimately reflected in the promotion or inhibition of AS. This article reviews the effects of ROS on the microenvironment of atherosclerotic plaques and their impact on disease progression over the past five years and focuses on the progress of treatment strategies based on scavenging ROS of nanoparticles for AS. Finally, we also discuss the prospects and challenges of AS treatment.
Collapse
Affiliation(s)
- Chengxi Wu
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Jingying Mao
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, people's Hospital of Deyang, Deyang, Sichuan, 618000, China
| | - Ronghao Yang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China.
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
15
|
Shi Y, Jiang M, Zhang Y, Diao Y, Li N, Liu W, Qiu Z, Qiu Y, Jia A. Hyperoside Nanomicelles Alleviate Atherosclerosis by Modulating the Lipid Profile and Intestinal Flora Structure in High-Fat-Diet-Fed Apolipoprotein-E-Deficient Mice. Molecules 2023; 28:5088. [PMID: 37446750 DOI: 10.3390/molecules28135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a serious threat to human health and the main pathological basis of cardiovascular disease. Hyperoside (Hyp), a flavonoid found mainly in traditional Chinese herbs, can exert antitumor, anti-inflammatory, antioxidant, and cardiovascular-protective effects. Herein, we prepared hybrid nanomicelles (HFT) comprising Hyp loaded into pluronic F-127 and polyethylene glycol 1000 vitamin E succinate and assessed their effects on AS. To establish an AS model, apolipoprotein-E-deficient (ApoE-/-) mice were fed a high-fat diet. We then analyzed the effects of HFT on AS-induced changes in aortic tissues and metabolic markers, simultaneously assessing changes in gut flora community structure. In mice with AS, HFT significantly reduced the aortic plaque area; decreased levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, inflammatory factors, and inducible nitric oxide synthase (NOS); increased high-density lipoprotein cholesterol, endothelial NOS, superoxide dismutase, catalase, and glutathione levels; and promoted the proliferation of beneficial gut bacteria. HFT could regulate intestinal flora structure and lipid metabolism and inhibit inflammatory responses. These beneficial effects may be mediated by inhibiting nuclear factor kappa B signal activation, reducing inflammatory factor expression and improving gut microflora structure and dyslipidemia. The present study provides an empirical basis for the development and clinical application of new dosage forms of Hyp.
Collapse
Affiliation(s)
- Yuwen Shi
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengcheng Jiang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuhang Zhang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuanyuan Diao
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Na Li
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Weipeng Liu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhidong Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ye Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ailing Jia
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
16
|
Gao X, Yin Y, Liu S, Dong K, Wang J, Guo C. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int J Biol Macromol 2023:125541. [PMID: 37355076 DOI: 10.1016/j.ijbiomac.2023.125541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Fucoidan (FU) is a natural polymer from marine organisms, which has been widely studied and applied in drug delivery. In this study, FU nanoparticles loaded with proanthocyanidins (PCs) (FU/PCs NPs) were prepared and their effect and mechanism in protecting cisplatin-induced acute kidney injury (AKI) were studied. The in vitro studies confirmed that FU/PCs NPs increased the antioxidant activity of free PCs and protected the death of human kidney proximal tubule (HK-2) cells induced by cisplatin. Further mechanism studies showed that FU/PCs NPs protected the mitochondrial damage induced by cisplatin, activated mitophagy, inhibited the release of mitochondrial DNA (mtDNA), and inhibited the cGAS/STING signal pathway. The in vivo results also indicated that FU/PCs NPs protected cisplatin-induced AKI, including inhibiting the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels induced by cisplatin. The mechanism studies confirmed that cisplatin induced an increase in the expression of mitophagy-related protein Pink/Pakrin, mitochondrial mtDNA release and cGAS/STING expression in mice kidney tissues. Pre-administration of FU/PCs NPs further activated mitophagy, as well as inhibiting mtDNA release and cGAS/STING expression. In conclusion, our research proved the role of mitophagy-mtDNA-cGAS/STING signal was involved in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China.
| |
Collapse
|
17
|
Ma B, Xiao Y, Lv Q, Li G, Wang Y, Fu G. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206129. [PMID: 36394179 DOI: 10.1002/adma.202206129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerosis, as a life-threatening cardiovascular disease with chronic inflammation and abnormal lipid enrichment, is often difficult to treat timely due to the lack of obvious symptoms. In this work, a theranostic nanoplatform is constructed for the noninvasive in vivo diagnosis, plaque-formation inhibition, and the lesion reversal of atherosclerosis. A three-in-one therapeutic complex is constructed and packaged along with a polymeric photoacoustic probe into nanoparticles named as PLCDP@PMH, which indicates an atherosclerosis-targeting accumulation and a reactive oxygen species (ROS)/matrix metalloproteinase (MMP) dual-responsive degradation. The photoacoustic probe suggests a lesion-specific imaging on atherosclerotic mice with an accurate and distinct recognition of plaques. At the same time, the three-in-one complex performs an integrated lipid management through the inhibition of macrophages M1-polarization, liver X receptor (LXR)-mediated up-regulation of ATP-binding cassette transporter A1/G1 (ABCA1/G1) and the cyclodextrin-assisted lipid dissolution, which lead to the reduced lipid uptake, enhanced lipid efflux, and actuated lipid removal. The in vivo evaluations reveal that PLCDP@PMH can suppress the lesion progression and further reverse the formed plaques under a diet without high fat. Hence, PLCDP@PMH provides a candidate for the theranostics of early-stage atherosclerosis and delivers an impressive potential on the reversal of formed atherosclerotic lesions.
Collapse
Affiliation(s)
- Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Yun Xiao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
18
|
He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H, Liu J. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact Mater 2023; 19:115-126. [PMID: 35475030 PMCID: PMC9010555 DOI: 10.1016/j.bioactmat.2022.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nanoparticle-based therapeutics represent potential strategies for treating atherosclerosis; however, the complex plaque microenvironment poses a barrier for nanoparticles to target the dysfunctional cells. Here, we report reactive oxygen species (ROS)-responsive and size-reducible nanoassemblies, formed by multivalent host-guest interactions between β-cyclodextrins (β-CD)-anchored discoidal recombinant high-density lipoprotein (NP3ST) and hyaluronic acid-ferrocene (HA-Fc) conjugates. The HA-Fc/NP3ST nanoassemblies have extended blood circulation time, specifically accumulate in atherosclerotic plaque mediated by the HA receptors CD44 highly expressed in injured endothelium, rapidly disassemble in response to excess ROS in the intimal and release smaller NP3ST, allowing for further plaque penetration, macrophage-targeted cholesterol efflux and drug delivery. In vivo pharmacodynamicses in atherosclerotic mice shows that HA-Fc/NP3ST reduces plaque size by 53%, plaque lipid deposition by 63%, plaque macrophage content by 62% and local inflammatory factor level by 64% compared to the saline group. Meanwhile, HA-Fc/NP3ST alleviates systemic inflammation characterized by reduced serum inflammatory factor levels. Collectively, HA-Fc/NP3ST nanoassemblies with ROS-responsive and size-reducible properties exhibit a deeper penetration in atherosclerotic plaque and enhanced macrophage targeting ability, thus exerting effective cholesterol efflux and drug delivery for atherosclerosis therapy. HA-Fc/NP3ST is designed for long blood circulation and deep plaque penetration. Nanoassemblies are formed by multivalent host-guest interactions of β-CD/ferrocene. Release of NP3ST triggered by excess ROS aims for macrophage-targeted drug delivery. FRET method is utilized to characterize the ROS-responsiveness of nanoassemblies. Biomimic cell coculture model is constructed to simulate the atherosclerotic plaque.
Collapse
|
19
|
Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioeng 2022; 6:041501. [PMCID: PMC9726224 DOI: 10.1063/5.0127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/09/2022] Open
Abstract
Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.
Collapse
Affiliation(s)
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, China,Authors to whom correspondence should be addressed:; ; and
| | | | - Aiguo Wu
- Authors to whom correspondence should be addressed:; ; and
| | - Wenzhi Ren
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
20
|
Ma J, Chen X, Zhang L, Ma L, Li J, Li J, Zang J. The stability and absorption of naturally occurring cAMP by its weak interactions with jujube polysaccharides were greatly improved. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhou X, Chen Q, Guo C, Su Y, Guo H, Cao M, Liu Z, Zhang D, Diao N, Fan H, Chen D. CD44 Receptor-Targeted and Reactive Oxygen Species-Responsive H 2S Donor Micelles Based on Hyaluronic Acid for the Therapy of Renal Ischemia/Reperfusion Injury. ACS OMEGA 2022; 7:42339-42346. [PMID: 36440107 PMCID: PMC9686187 DOI: 10.1021/acsomega.2c05407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
For the therapy attenuating renal ischemia-reperfusion (IR) injury, a novel drug delivery system was urgently needed, which could precisely deliver drugs to the pathological renal tissue. Here, we have prepared new nanomaterials with a reactive oxygen species (ROS)-responsive hydrogen sulfide (H2S) donor and hyaluronic acid that targets CD44 receptor. The novel material was synthesized and characterized via related experiments. Then, rapamycin was loaded, which inhibited kidney damage. In the in vitro study, we found that the micelles had ROS-responsiveness, biocompatibility, and cell penetration. In addition, the experimental results showed that the intracellular H2S concentration after administration was threefold higher than that of the control group. The western blot assay revealed that they have anti-inflammatory effects via H2S donor blocking the NF-κB signaling pathway. Consequently, the rising CD44 receptor-targeting and ROS-sensitive H2S donor micelles would provide a promising way for renal IR injury. This work provides a strategy for improving ischemia/reperfusion injury for pharmaceuticals.
Collapse
Affiliation(s)
- Xiudi Zhou
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
- Department
of Pharmacy, Binzhou People’s Hospital
Affiliated to Shandong First Medical University, China, Binzhou256600, P. R. China
| | - Qiang Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Chunjing Guo
- College
of Marine Life Science, Ocean University
of China, Qingdao266003, P. R. China
| | - Yanguo Su
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huimin Guo
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Min Cao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Zhongxin Liu
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Dandan Zhang
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Ningning Diao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huaying Fan
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Daquan Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| |
Collapse
|
22
|
Zhang P, Ouyang Q, Zhai T, Sun J, Wu J, Qin F, Zhang N, Yue S, Yang X, Zhang H, Hou Y, Deng L, Wang F, Zhan Q, Yu Q, Qin M, Gan Z. An inflammation-targeted nanoparticle with bacteria forced release of polymyxin B for pneumonia therapy. NANOSCALE 2022; 14:15291-15304. [PMID: 36039653 DOI: 10.1039/d2nr02026b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The epidemic of multidrug-resistant Gram-negative bacteria is an ever-growing global concern. Polymyxin B (PMB), a kind of "old fashioned" antibiotic, has been revived in clinical practice and mainly used as last-line antibiotics for otherwise untreatable serious infections because the incidence of the resistance to PMB is currently relatively low in comparison with other antibiotics in vivo owing to the unique bactericidal mechanism of PMB. However, serious adverse side effects, including nephrotoxicity and neurotoxicity, hamper its clinical application. Herein, we describe the development of a nanoparticle that can target sites of inflammation and forcedly release PMB specifically in the area of Gram-negative bacteria. This particle was constructed through the electrostatic self-assembly of hyaluronic acid (HA) and PMB molecules in order to realize the safe and effective treatment of pneumonia. After systemic administration, PMB-HA nanoparticles were found to actively accumulate in the lungs, precisely target the CD44 receptors over-expressed on the membrane of activated endothelial cells in inflammatory sites, and then come into contact with the bacteria resident in the damaged alveolar-capillary membrane. Due to the electrostatic and hydrophobic interactions between PMB and the lipopolysaccharide (LPS) in the outer membranes of bacteria, the PMB molecules in the PMB-HA nanoparticles are expected to escape from the nanoparticles to insert into the bacteria via competitive binding with LPS. Through shielding the cationic nature of PMB, PMB-HA nanoparticles also possess outstanding biosafety performance in comparison to free PMB. It is thus believed that this smart delivery system may pave a new way for the resurrection of PMB in the future clinical treatment of bacterial inflammatory diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qiuhong Ouyang
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianshu Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chaoyang District, Beijing 100029, PR China
| | - Jun Wu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ni Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Saisai Yue
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xinchen Yang
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hanyi Zhang
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yi Hou
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Li Deng
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fang Wang
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Qingsong Yu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Meng Qin
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zhihua Gan
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
23
|
Wang T, Yang J, Kang H, Zhang L, Chen H. Facile preparation of a novel hyaluronic acid-modified metal-polyphenol photothermal nanoformulation for tumor therapy. Int J Biol Macromol 2022; 222:3066-3076. [DOI: 10.1016/j.ijbiomac.2022.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
24
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
25
|
Xu H, She P, Ma B, Zhao Z, Li G, Wang Y. ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials 2022; 288:121734. [PMID: 35999079 DOI: 10.1016/j.biomaterials.2022.121734] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerosis, which is triggered by endothelial damage, progressive local inflammation and excessive lipid accumulation, is one of the most common cardiovascular diseases in recent years. Drug delivery systems have shown great potential for the accurate diagnosis and effective treatment of early atherosclerosis, but are accompanied by disadvantages such as poor stability, lack of active targeting and non-specific recognition capabilities, which still need to be further developed. In our work, a multifunctional nanoparticle (LFP/PCDPD) with reactive oxygen species (ROS) responsive drug release, lipid removal, and lipid-specific AIE fluorescence imaging was constructed. Cyclodextrin structure with lipid removal function and PMEMA blocks with ROS-response-mediated hydrophobic to hydrophilic conversion were simultaneously introduced into the structure of LFP/PCDPD to load the anti-inflammatory drug prednisolone (Pred) and lipid-specific AIEgen (LFP). The active targeting function of LFP/PCDPD was conferred by the high affinity of dextran to the vascular adhesion molecule-1 (VCAM-1) and CD44 receptor on the surface of broken endothelial cells. After intravenous injection into ApoE-/- mice, LFP/PCDPD actively enriched in the microenvironment of local ROS overexpression and rich lipids in atherosclerosis. Pred and LFP were released while lipids were removed, thus enabling proactive targeting of atherosclerosis and efficient "two-pronged" treatment.
Collapse
Affiliation(s)
- Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Peiyi She
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
26
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Chen Q, Guo C, Zhou X, Su Y, Guo H, Cao M, Li J, Zhang Y, Zhao W, Gao X, Mi S, Chen D. N-acetylneuraminic acid and chondroitin sulfate modified nanomicelles with ROS-sensitive H 2S donor via targeting E-selectin receptor and CD44 receptor for the efficient therapy of atherosclerosis. Int J Biol Macromol 2022; 211:259-270. [PMID: 35513096 DOI: 10.1016/j.ijbiomac.2022.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Currently, very limited therapeutic approaches are available for the drug treatment of atherosclerosis(AS). H2S-donor is becoming a common trend in much life-threatening research. Several studies have documented that H2S-lyase is predominantly present in endothelial cells. N-Acetylneuraminic acid (SA), natural carbohydrate, binds specifically to the E-selectin receptor of endothelial cells. Meanwhile, recent studies related to Chondroitin sulfate have excellent target binding ability with CD44 receptor. We conjecture that the N-Acetylneuraminic acid and Chondroitin sulfate modified nanomicelles not only enhances the accumulation of the drug but also cleaves the H2S donor in the lesion, thus one stone two birds. Given these findings, we synthesized two kinds of nanoparticles, Carrier I (SCCF) and Carrier II (SCTM), for atherosclerosis to validate our guesses. Initially, S-allyl-L-cysteine and 4-methoxyphenylthiourea were used as H2S donors for SCCF and SCTM, respectively. After the introduction of ROS-sensitive groups. Then, micelles with N-Acetylneuraminic acid and Chondroitin sulfate were prepared to load rapamycin(RAP). Further, in atherosclerosis Oil Red O staining (ORO) results confirmed remarkable treatment effect with SCCF@RAP and SCTM@RAP. Thus, we conclude that the effect of dual-targeting nanomicelles with ROS-sensitive H2S donor based on N-Acetylneuraminic acid and Chondroitin sulfate will have a better role in atherosclerosis.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xiudi Zhou
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jing Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yue Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Weiyi Zhao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xin Gao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Shuqi Mi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
28
|
Zhang Y, Luo D, Zhou SK, Yang L, Yao WF, Cheng FF, Zhu JJ, Zhang L. Analytical and biomedical applications of nanomaterials in Chinese herbal medicines research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Li Y, Guo C, Chen Q, Su Y, Guo H, Liu R, Sun C, Mi S, Wang J, Chen D. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. Int J Biol Macromol 2022; 202:691-706. [PMID: 35124019 DOI: 10.1016/j.ijbiomac.2022.01.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
Pneumonia can lead to high morbidity and mortality secondary to uncontrolled inflammation of the lung tissue. Blocking cytokine storm storms may be the key to saving the life of patients with severe pneumonia. According to the medicinal guide theory of Traditional Chinese Medicine (TCM) and the inherent affinity with macrophages for the site of inflammation, we constructed the drug delivery platform (MNPs) derived from macrophage-membrane encapsulated reaction oxygen species (ROS)-responsive Platycodon grandiflorum polysaccharides (PGP) nanoparticles (PNPs) to calm the cytokine storm and improve lung inflammation. By loading the anti-inflammatory agent Curcumin (Cur), we demonstrated that MNPs@Cur significantly attenuated inflammation and cytokine storm syndrome in acute lung injury (ALI) mice by suppressing pro-inflammatory factor production and inflammatory cell infiltration. Interestingly, we observed that the PNPs also have potent pulmonary targeting ability compared to other polysaccharide carriers, which is in line with the medicinal guide theory of TCM. Our study revealed the rational design of drug delivery platforms to improve the treatment of lung injury, which inherits and develops the important theories of TCM through the perfect combination of guide theory and biomimetic nanotechnology and provides the experimental scientific basis for the clinical application of channel ushering drugs.
Collapse
Affiliation(s)
- Yi Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Industrial Technology Institute of Chinese Medicine, Weifang 261100, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Industrial Technology Institute of Chinese Medicine, Weifang 261100, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Ruoyang Liu
- Qilu Normal University, Jinan 250200, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, PR China
| | - Shuqi Mi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jinqiu Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
30
|
Zeng X, Wang H, Zhang Y, Xu X, Yuan X, Li J. pH-Responsive Hyaluronic Acid Nanoparticles for Enhanced Triple Negative Breast Cancer Therapy. Int J Nanomedicine 2022; 17:1437-1457. [PMID: 35369031 PMCID: PMC8965017 DOI: 10.2147/ijn.s360500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Xiangle Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Hairong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Yawen Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Xue Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Xinyi Yuan
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
- Correspondence: Jianchun Li, School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China, Tel +86 552-3175066, Email
| |
Collapse
|
31
|
Yu C, Liu H, Guo C, Chen Q, Su Y, Guo H, Hou X, Zhao F, Fan H, Xu H, Zhao Y, Mu X, Wang G, Xu H, Chen D. Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis. Drug Deliv 2022; 29:454-465. [PMID: 35119317 PMCID: PMC8855847 DOI: 10.1080/10717544.2022.2032482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an ordinarily occurring autoimmune disease with systemic inflammatory. Targeted drug delivery systems have many successful applications in the treatment of rheumatoid arthritis. In order to develop nanoparticles for targeted delivery of Celastrol (Cel) to rheumatoid arthritis and specific drug release, the dextran sulfate (DS) was modified as the targeting molecular by binding to the scavenger receptor of macrophage. The dextran-sulfate-PVGLIG-celastrol (DS-PVGLIG-Cel), named DPC, amphiphilic polymeric prodrug was synthesized and characterized. The resulting DPC@Cel micelles had the average size of 189.9 nm. Moreover, the micelles had ultrahigh entrapment efficiency (about 44.04%) and zeta potential of −11.91 mV. In the in vitro release study, due to the excessive production of matrix metalloproteinase-2 (MMP-2) at the inflammatory joint, the MMP-2 reactive peptide was used to crack in the inflammatory microenvironment to accelerate the release of Cel. The results have shown that the nanoparticles can effectively deliver Cel to activated macrophages and significantly improve the bioavailability. In vivo experiments showed that DPC@Cel have better anti-rheumatoid arthritis effects and lower systemic toxicity than free Cel. This study provided a new therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Caiwei Yu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Hui Liu
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, P. R. China
| | - Qiang Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Yanguo Su
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Huimin Guo
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Xiaoya Hou
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Hui Xu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Yan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Xiaofeng Mu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Guohua Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daquan Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, P. R. China
| |
Collapse
|
32
|
|
33
|
Li Z, xue C, zhang L, zhang Y, yu Y, guo X, liu Q, zhang Z. H2O2-responsive prodrug-nanosystem based on auto-fluorescent perylenetetracarboxylic diimide hinders foaming progress in RAW264.7 cells. J Mater Chem B 2022; 10:2899-2911. [DOI: 10.1039/d2tb00175f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress can lead to a variety of diseases, and oxalate bond can consume excess reactive oxygen species(ROS)in cells. In this study, the H2O2 responsive prodrug-nanosystem was synthesized by oxalate...
Collapse
|
34
|
Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q, Chen D, Mu H. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv 2021; 29:138-148. [PMID: 34967268 PMCID: PMC8725898 DOI: 10.1080/10717544.2021.2021324] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on the tumor hypoxic microenvironment and the new programmed cell death mode of combined ferroptosis, an angelica polysaccharide-based nanocarrier material was synthesized. The polymer contains hydrophilic angelica polysaccharide (ASP) that is linked by azobenzene (AZO) linker with ferrocene (Fc), and then the side chain was covalently modified with arachidonic acid (AA). It was postulated that the polymer micelles could work as an instinctive liver targeting drug delivery carrier, owing to the existence of ASP with liver targeting. Moreover, the aim was to engineer hypoxia-responsive polymer micelles which was modified by AA, for selective enhancement of ferroptosis in solid tumor, via diminishing glutathione (GSH) under hypoxia. Finally, we synthesized the amphiphilic polymer micelles AA/ASP-AZO-Fc (AAAF) by self-assembling. The structure of AAAF was confirmed by 1H-NMR and FT-IR. Then, we exemplified the hydrophobic medication curcumin into polymer micelles AAAF@Cur, which has smooth and regular spheres. In vitro release test affirmed that AAAF@Cur can achieve hypoxia response to drug release. In addition, a series of cell experiments confirmed that hypoxia could enhance cell uptake and effectively improve the proliferation inhibitory activity of HepG2 cells. In conclusion, AAAF, as an effective cell carrier, is expected to develop in sensitizing ferroptosis and anti-tumor.
Collapse
Affiliation(s)
- Xue Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, PR China
| | - Qingming Liu
- Shandong Academy of Chinese Medicine, Jinan, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Hongjie Mu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| |
Collapse
|
35
|
Shen M, Yao S, Li S, Wu X, Liu S, Yang Q, Du J, Wang J, Zheng X, Li Y. A ROS and shear stress dual-sensitive bionic system with cross-linked dendrimers for atherosclerosis therapy. NANOSCALE 2021; 13:20013-20027. [PMID: 34842887 DOI: 10.1039/d1nr05355h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atherosclerosis is an important pathological basis for cardiovascular disease. Thus, the treatment of atherosclerosis can effectively improve the prognosis and reduce the mortality of cardiovascular diseases. In this study, we developed simvastatin acid (SA)-loaded cross-linked dendrimer nanoparticles (SA PAM) that were adsorbed to the surface of red blood cells (RBCs) to obtain SA PAM@RBCs, a ROS and shear stress dual response drug delivery system for the treatment of atherosclerosis. SA PAM could continuously release SA in an H2O2-triggered manner, and effectively eliminate excessive H2O2 in LPS-stimulated RAW 264.7 cells, achieving the target of using the special microenvironment at the plaque to release drugs. At the same time, the shear sensitive model also proved that only 12.4% of SA PAM detached from the RBCs under low shear stress (20 dynes per cm2), while 61.3% SA PAM desorbed from the RBCs under a high shear stress (100 dynes per cm2) stimulus, revealing that SA PAM could desorb in response to the shear stress stimulus. Both the FeCl3 model and ApoE-/- model showed that SA PAM@RBCs had better therapeutic effects than free SA, and with excellent safety in vivo. Therefore, a biomimetic drug delivery system with dual sensitivity to ROS and shear stress would become a promising strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meili Shen
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shunyu Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shaojing Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaodong Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shun Liu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R China
| | - Jingyuan Wang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiangyu Zheng
- Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, China.
- The National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
36
|
ROS-Based Nanoparticles for Atherosclerosis Treatment. MATERIALS 2021; 14:ma14226921. [PMID: 34832328 PMCID: PMC8619986 DOI: 10.3390/ma14226921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (AS), a chronic arterial disease, is the leading cause of death in western developed countries. Considering its long-term asymptomatic progression and serious complications, the early prevention and effective treatment of AS are particularly important. The unique characteristics of nanoparticles (NPs) make them attractive in novel therapeutic and diagnostic applications, providing new options for the treatment of AS. With the assistance of reactive oxygen species (ROS)-based NPs, drugs can reach specific lesion areas, prolong the therapeutic effect, achieve targeted controlled release and reduce adverse side effects. In this article, we reviewed the mechanism of AS and the generation and removal strategy of ROS. We further discussed ROS-based NPs, and summarized their biomedical applications in scavenger and drug delivery. Furthermore, we highlighted the recent advances, challenges and future perspectives of ROS-based NPs for treating AS.
Collapse
|
37
|
Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021; 112:1603-1614. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|
39
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
40
|
Cheng M, Liu Q, Gan T, Fang Y, Yue P, Sun Y, Jin Y, Feng J, Tu L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021; 26:molecules26154481. [PMID: 34361634 PMCID: PMC8348076 DOI: 10.3390/molecules26154481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.
Collapse
Affiliation(s)
- Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Qiaoming Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tiantian Gan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Pengfei Yue
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| |
Collapse
|
41
|
Wu Y, Vazquez-Prada KX, Liu Y, Whittaker AK, Zhang R, Ta HT. Recent Advances in the Development of Theranostic Nanoparticles for Cardiovascular Diseases. Nanotheranostics 2021; 5:499-514. [PMID: 34367883 PMCID: PMC8342263 DOI: 10.7150/ntno.62730] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. CVD includes a group of disorders of the heart and blood vessels such as myocardial infarction, ischemic heart, ischemic injury, injured arteries, thrombosis and atherosclerosis. Amongst these, atherosclerosis is the dominant cause of CVD and is an inflammatory disease of the blood vessel wall. Diagnosis and treatment of CVD remain the main challenge due to the complexity of their pathophysiology. To overcome the limitations of current treatment and diagnostic techniques, theranostic nanomaterials have emerged. The term "theranostic nanomaterials" refers to a multifunctional agent with both therapeutic and diagnostic abilities. Theranostic nanoparticles can provide imaging contrast for a diversity of techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT). In addition, they can treat CVD using photothermal ablation and/or medication by the drugs in nanoparticles. This review discusses the latest advances in theranostic nanomaterials for the diagnosis and treatment of CVDs according to the order of disease development. MRI, CT, near-infrared spectroscopy (NIR), and fluorescence are the most widely used strategies on theranostics for CVDs detection. Different treatment methods for CVDs based on theranostic nanoparticles have also been discussed. Moreover, current problems of theranostic nanoparticles for CVDs detection and treatment and future research directions are proposed.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karla X. Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yajun Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the University of Queensland, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, Jasinski K, Węglarz WP, Zapotoczny S, Chlopicki S. Low Dose Curcumin Administered in Hyaluronic Acid-Based Nanocapsules Induces Hypotensive Effect in Hypertensive Rats. Int J Nanomedicine 2021; 16:1377-1390. [PMID: 33658778 PMCID: PMC7917338 DOI: 10.2147/ijn.s291945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Vascular drug delivery becomes a promising direction in the development of novel therapeutic strategies in the treatment of cardiovascular pathologies, such as hypertension. However, targeted delivery of hydrophobic substances, with poor bioavailability, remains a challenge. Here, we described the hypotensive effects of a low dose of curcumin delivered to the vascular wall using hyaluronic acid-based nanocapsules. Methods The group of hypertensive TGR(m-Ren2)27 rats, was administrated respectively with the vehicle, curcumin solution or curcumin delivered using hyaluronic acid-based nanocapsules (HyC12-Cur), for 7 days each, maintaining the wash-out period between treatments. Arterial blood pressure (systolic - SBP, diastolic – DBP) and heart rate (HR) were monitored continuously using a telemetry system (Data Science International), and Mean Arterial Pressure (MAP) was calculated from SBP and DBP. Results In hypertensive rats, a low dose of curcumin (4.5 mg/kg) administrated in HyC12-Cur for 7 days resulted in a gradual inhibition of SBP, DBP and MAP increase without an effect on HR. At the end of HyC12-Cur – based treatment changes in SBP, DBP and MAP amounted to −2.0±0.8 mmHg, −3.9±0.7 mmHg and −3.3±0.7 mmHg, respectively. In contrast, the administration of a curcumin solution (4.5 mg/kg) did not result in a significant hypotensive effect and the animals constantly developed hypertension. Vascular delivery of capsules with curcumin was confirmed using newly developed fluorine-rich nanocapsules (HyFC10-PFOB) with a shell based on a HA derivative and similar size as HyC12-Cur. HyFC10-PFOB gave fluorine signals in rat aortas analyzed ex vivo with a 19F NMR technique after a single intragastric administration. Conclusion These results suggest that nanocapsules based on hyaluronic acid, the ubiquitous glycosaminoglycan of the extracellular matrix and an integral part of endothelial glycocalyx, may represent a suitable approach to deliver hydrophobic, poorly bioavailable compounds, to the vascular wall.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland
| | | | - Joanna Szafraniec-Szczęsny
- Jagiellonian University, Faculty of Chemistry, Krakow, 30-387, Poland.,Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Krakow, 30-688, Poland
| | - Krzysztof Jasinski
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | - Władysław P Węglarz
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | | | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland.,Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Krakow, 31-531, Poland
| |
Collapse
|
44
|
Yin-Ku L, Shiu-Wei W, Ren-Shen L. Photo and redox dual-stimuli-responsive β-cyclodextrin-ferrocene supramolecules for drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2020.1814158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Yin-Ku
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Wang Shiu-Wei
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Lee Ren-Shen
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
45
|
Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J Nanobiotechnology 2020; 18:179. [PMID: 33287831 PMCID: PMC7720571 DOI: 10.1186/s12951-020-00744-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are two major factors that are involved in the pathogenesis of atherosclerosis. A smart drug delivery system that responds to the oxidative microenvironment of atherosclerotic plaques was constructed in the present study. Simvastatin (SIM)-loaded biodegradable polymeric micelles were constructed from hyaluronic acid (HA)-coated poly(ethylene glycol)-poly(tyrosine-ethyl oxalyl) (PEG-Ptyr-EO) for the purpose of simultaneously inhibiting macrophages and decreasing the level of reactive oxygen species (ROS) to treat atherosclerosis. HA coating endows the micelle system the ability of targeting CD44-positive inflammatory macrophages. Owing to the ROS-responsive nature of PEG-Ptyr-EO, the micelles can not only be degraded by enzymes, but also consumes ROS by itself at the pathologic sites, upon which the accumulation of pro-inflammatory macrophages is effectively suppressed and oxidative stress is alleviated. Consequently, the cellular uptake experiment demonstrated that SIM-loaded HA-coated micelles can be effectively internalized by LPS-induced RAW264.7 cells and showed high cytotoxicity against the cells, but low cytotoxicity against LO2 cells. In mouse models of atherosclerosis, intravenously SIM-loaded HA-coated micelles can effectively reduce plaque content of cholesterol, resulting in remarkable therapeutic effects. In conclusion, the SIM-loaded micelle system provides a promising and innovative option against atherosclerosis.![]()
Collapse
|
46
|
Ma B, Xu H, Zhuang W, Wang Y, Li G, Wang Y. ROS Responsive Nanoplatform with Two-Photon AIE Imaging for Atherosclerosis Diagnosis and "Two-Pronged" Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003253. [PMID: 33078569 DOI: 10.1002/smll.202003253] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Atherosclerosis, characterized by endothelial injury, progressive inflammation, and lipid deposition, can cause cardiovascular diseases. Although conventional anti-inflammatory drugs reveal a certain amount of therapeutic effect, more reasonable design on plaque targeting, local anti-inflammation, and lipid removal are still required for comprehensive atherosclerosis therapy. In this work, a theranostic nanoplatform is developed for atherosclerosis recognition and inhibition. A two-photon aggregation-induced emission (AIE) active fluorophore (TP) developed is linked to β-cyclodextrin (CD) with a ROS responsive bond, which can carry prednisolone (Pred) in its entocoele via supramolecular interaction to build a diagnosis-therapy compound two-photon fluorophore-cyclodextrin/prednisolone complexes (TPCDP). With TPCDP packaged by nanosized micelles based on a ROS sensitive copolymer poly (2-methylthio ethanol methacrylate)-poly (2-methacryloyloxyethyl phosphorylcholine), the TPCDP@PMM can accumulate in atherosclerotic tissue through the damaged vascular endothelium. Activated by the local overexpressed ROS and rich lipid, the micelles are interrupted and TPCDP is further disintegrated with Pred release due to the relatively stronger interaction of lipid with CD, resulting in anti-inflammatory activity and lipid removal for atherosclerosis inhibition. Besides, labeled with the TP, TPCDP@PMM indicates a distinct two-photon AIE imaging on atherosclerosis recognition. The "two-pronged" therapeutic effect and plaque location ability has been confirmed in vivo on ApoE-/- mice, holding TPCDP@PMM a great promise for atherosclerosis theranostics.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|