1
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Khan MA, Li MC, Lv K, Sun J, Liu C, Liu X, Shen H, Dai L, Lalji SM. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr Polym 2024; 342:122355. [PMID: 39048218 DOI: 10.1016/j.carbpol.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.
Collapse
Affiliation(s)
- Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Shaine Mohammadali Lalji
- Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Sun J, Wen Z, Khan MA, Lv K, Shen H, Dai L, Li Y, Ding Y, Liu C, Li MC. A review of cellulose nanomaterial-stabilized Pickering foam: Formation, properties, and emerging oilfield applications. Int J Biol Macromol 2024; 281:136274. [PMID: 39374724 DOI: 10.1016/j.ijbiomac.2024.136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The rapid development of the petroleum industry has led to increasing demands for high-performance oilfield working fluids, such as drilling fluids, fracturing fluids, and fluids for enhanced oil recovery. Liquid foam is widely utilized as the oilfield working fluids due to its advantages, including low density, high mobility, superior cutting suspending ability, excellent fluid diversion capacity, and outstanding sweep efficiency. However, the short lifespan of foam limits its broad application in the oilfield. Considering the advantages of environmental protection, renewability, high specific surface area, tailorable surface chemistry, and excellent rheological properties of cellulose nanomaterials (CNMs), Pickering foams stabilized by CNMs offer improved eco-friendliness and foam stability. In this review, the classification and preparation methods of CNMs are briefly introduced. Subsequently, the preparation methods, properties, and application prospects of CNM-stabilized Pickering foams as oilfield working fluids are summarized. Finally, the challenges and prospects of CNM-stabilized Pickering foam are outlined, aiming to pave the way for the development of petroleum industry in an eco-friendlier manner.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Department of Petroleum Engineering, NED University of Engineering & Technology, Pakistan
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yang Ding
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
5
|
Zheng D, Zhu Y, Sun X, Sun H, Yang P, Yu Z, Zhu J, Ye Y, Zhang Y, Jiang F. Equilibrium Moisture Mediated Esterification Reaction to Achieve Over 100% Lignocellulosic Nanofibrils Yield. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402777. [PMID: 38934355 DOI: 10.1002/smll.202402777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Lignocellulosic nanofibrils (LCNFs) isolation is recognized as an efficient strategy for maximizing biomass utilization. Nevertheless, achieving a 100% yield presents a formidable challenge. Here, an esterification strategy mediated by the equilibrium moisture in biomass is proposed for LCNFs preparation without the use of catalysts, resulting in a yield exceeding 100%. Different from anhydrous chemical thermomechanical pulp (CTMP0%), the presence of moisture (moisture content of 7 wt%, denoted as CTMP7%) introduces a notably distinct process for the pretreatment of CTMP, comprising the initial disintegration and the post-esterification steps. The maleic acid, generated through maleic anhydride (MA) hydrolysis, degrades the recalcitrant lignin-carbohydrate complex (LCC) structures, resulting in esterified CTMP7% (E-CTMP7%). The highly grafted esters compensate for the mass loss resulting from the partial removal of hydrolyzed lignin and hemicellulose, ensuring a high yield. Following microfluidization, favorable LCNF7% with a high yield (114.4 ± 3.0%) and a high charge content (1.74 ± 0.09 mmol g-1) can be easily produced, surpassing most previous records for LCNFs. Additionally, LCNF7% presented highly processability for filaments, films, and 3D honeycomb structures preparation. These findings provide valuable insights and guidance for achieving a high yield in the isolation of LCNFs from biomass through the mediation of equilibrium moisture.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Hao Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
6
|
Fu Q, Zheng T, Wan W, Niu C, Chen Y, Xu Y, Long T, Lu L, Jiang H. Liquid crystal phase behavior of oxalated cellulose nanocrystal and optical films with controllable structural color induced by centripetal force. Int J Biol Macromol 2024; 280:135883. [PMID: 39307494 DOI: 10.1016/j.ijbiomac.2024.135883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Cellulose nanocrystal (CNC) is a sustainable bio-nanomaterial. The distinctive left-handed polarization properties render cellulose nanocrystal a promising candidate for optical film. Due to eco-friendliness, reliability, mildness and simplicity, the oxalate hydrolysis method stands out among various preparation methods for CNC. This study delved into the liquid crystal phase behavior of oxalated cellulose nanocrystal derived from pulp, and discovered the influences of CNC concentration and pH on suspension stability and phase transition, and evaluated its optical properties. The results demonstrated that oxalated CNC presented two different liquid crystal phases, the nematic phase and the cholesteric phase. The stability mechanism of CNC suspension and the regulatory principle of the liquid crystal phase transition were revealed. A novel CNC film-forming technology, the multilayer spin-coating technique, was developed for cellulose nanocrystal optical films. Driven by centrifugal force, cellulose nanocrystals were induced to self-assembly and formed the optical film with circular dichroism and structural color. This simple and efficient film-forming technology promised rapid processing (1 h) and controllable film structure and optical properties compared to traditional technologies. This work provided a theoretical understanding and practical prospects for integrating oxalated cellulose nanocrystal into sustainable advanced optical film materials.
Collapse
Affiliation(s)
- Qian Fu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingting Zheng
- School of Science, Qiongtai Normal University, Haikou 571127, PR China
| | - Weixuan Wan
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Chenxi Niu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Youhui Chen
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yutao Xu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Teng Long
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lingbin Lu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Hong Jiang
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
7
|
Melenia AT, Jovita S, Utami DI, Tamim R, Holilah H, Bahruji H, Hamid ZAA, Mubarok F, Widiyastuti W, Wibisono AT, Suprapto S, Jalil AA, Prasetyoko D. Nanocrystalline cellulose from Calophyllum inophyllum shells waste by adjusting organic acid hydrolysis and optimization of reaction parameters using response surface methodology. Int J Biol Macromol 2024:135705. [PMID: 39482123 DOI: 10.1016/j.ijbiomac.2024.135705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 11/03/2024]
Abstract
Biodiesel production from Calophyllum inophyllum oil in Indonesia produces significant biomass waste, including seed shells. This study explores the conversion of the seed shell of Calophyllum inophyllum into nanocrystalline cellulose (NCC) via consecutive alkalization, bleaching and hydrolysis using various organic acids. Scanning electron microscopy (SEM) analysis showed a reduction in the diameter of cellulose fibers from 21.7 μm to 9.6 μm after alkalinization and bleaching. The hydrolysis process using several organic acids was optimized to produce thermally stable nanocellulose while maintaining its crystallinity. The diameter of the resulting nanofibrous cellulose was 20.53 nm for citric acid, 21.69 nm for maleic acid, and 22.06 nm for formic acid hydrolysis. In particular, lactic acid-derived NCC (NCC-LA) showed the highest crystallinity of 64.22 % with an average diameter of ~13.69 nm. Optimization of hydrolysis parameters using Response Surface Methodology (RSM) suggested 74.79 % crystallinity could be achieved with 6.01 M lactic acid following 3.46 h of hydrolysis at 91.12 °C.
Collapse
Affiliation(s)
- Alvina Tata Melenia
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Stella Jovita
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Diana Inas Utami
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Rustam Tamim
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Holilah Holilah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE 1410, Brunei
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fahmi Mubarok
- Department of Mechanical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Widiyastuti Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Alvian Toto Wibisono
- Department of Material and Metallurgical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Suprapto Suprapto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Aishah Abdul Jalil
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia.
| |
Collapse
|
8
|
Chen X, Liu Z, Zhou Z, Li R, Li L, Cao Y. The Synergetic Reduction of the Condensation Degree of Dissolved Lignin (DL) during the Refining Process of Wheat Straw Biomass Based on the MA/O 3 System. Molecules 2024; 29:3228. [PMID: 38999180 PMCID: PMC11243111 DOI: 10.3390/molecules29133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Lignin, a natural pol2ymer with a complex structure that is difficult to separate, is prone to C-C bond condensation during the separation process. To reduce the condensation of lignin, here, a novel method is proposed for separating the components by using a combination of maleic acid (MA)/ozone (O3) to co-treat wheat straw. The removal of lignin, glucan, and xylan was 38.07 ± 0.2%, 31.44 ± 0.1%, and 71.98 ± 0.1%, respectively, under the conditions of ball-milling of wheat straw for 6 h, reaction temperature of 60 °C, and O3 holding time of 9 min. Lignin-rich solutions were collected to extract the dissolved lignin (DL) after washing the treated samples. The DL obtained under MA/O3 conditions had a carboxyl group (-COOH) content of 2.96 mmol/g. The carboxyl group of MA underwent esterification with the hydroxyl group (-OH) at the γ position of lignin and O3 reacted on the positions of the lignin side chain or the phenolic ring, resulting in a break in the side chain and the opening of the phenolic ring to introduce the carboxyl group. The 2D-HSQC-NMR results revealed that the phenolic ring-opening reaction of lignin in the presence of O3 was essentially free of β-β and β-5 condensation bonds.
Collapse
Affiliation(s)
- Xiuguang Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Zhenyu Zhou
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Renai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Lizi Li
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| |
Collapse
|
9
|
Charoensopa K, Thangunpai K, Kong P, Enomae T, Ploysri W. Extraction of Nanocellulose from the Residue of Sugarcane Bagasse Fiber for Anti- Staphylococcus aureus ( S. aureus) Application. Polymers (Basel) 2024; 16:1612. [PMID: 38891557 PMCID: PMC11174382 DOI: 10.3390/polym16111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nanocellulose contains a large number of hydroxyl groups that can be used to modify its surface due to its structure. Owing to its appealing features, such as high strength, great stiffness, and high surface area, nanocellulose is currently gaining popularity in research and industry. The extraction of nanocellulose from the leftover bagasse fiber from sugarcane production by alkaline and acid treatment was successful in this study, with a production yield of 55.6%. The FTIR and XPS results demonstrated a difference in the functional and chemical composition of untreated sugarcane bagasse and extracted nanocellulose. SEM imaging was used to examined the size of the nanocellulose with ImageJ software v1.8.0. TGA, DTG, and XRD analyses were also performed to demonstrate the successful extraction of nanocellulose in terms of its morphology, thermal stability, and crystal structure before and after extraction. The anti-S. aureus activity of the extracted nanocellulose was discovered by using an OD600 test and a colony counting method, and an inhibitory rate of 53.12% was achieved. According to the results, nanocellulose produced from residual sugarcane bagasse could be employed as an antibacterial agent.
Collapse
Affiliation(s)
- Krairop Charoensopa
- Department of Industrial Arts and Science, Faculty of Engineering and Industrial Technology, Suan Sunandha Rajabhat University, 1 U Thong Nok Rd, Dusit, Bangkok 10300, Thailand;
| | - Kotchaporn Thangunpai
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; (K.T.); (P.K.)
| | - Peifu Kong
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; (K.T.); (P.K.)
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Wat Ploysri
- Department of Industrial Arts and Science, Faculty of Engineering and Industrial Technology, Suan Sunandha Rajabhat University, 1 U Thong Nok Rd, Dusit, Bangkok 10300, Thailand;
| |
Collapse
|
10
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
11
|
Chen Y, Huang C, Miao Z, Gao Y, Dong Y, Tam KC, Yu HY. Tailoring Hydronium ion Driven Dissociation-Chemical Cross-Linking for Superfast One-Pot Cellulose Dissolution and Derivatization to Build Robust Cellulose Films. ACS NANO 2024; 18:8754-8767. [PMID: 38456442 DOI: 10.1021/acsnano.3c11335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Concepts of sustainability must be developed to overcome the increasing environmental hazards caused by fossil resources. Cellulose derivatives with excellent properties are promising biobased alternatives for petroleum-derived materials. However, a one-pot route to achieve cellulose dissolution and derivatization is very challenging, requiring harsh conditions, high energy consumption, and complex solubilizing. Herein, we design a one-pot tailoring hydronium ion driven dissociation-chemical cross-linking strategy to achieve superfast cellulose dissolution and derivatization for orderly robust cellulose films. In this strategy, there is a powerful driving force from organic acid with a pKa below 3.75 to dissociate H+ and trigger the dissolution and derivatization of cellulose under the addition of H2SO4. Nevertheless, the driving force can only trigger a partial swelling of cellulose but without dissolution when the pKa of organic acid is above 4.26 for the dissociation of H+ is inhibited by the addition of inorganic acid. The cellulose film has high transmittance (up to ∼90%), excellent tensile strength (∼122 MPa), and is superior to commercial PE film. Moreover, the tensile strength is increased by 400% compared to cellulose film prepared by the ZnCl2 solvent. This work provides an efficient solvent, which is of great significance for emerging cellulose materials from renewable materials.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengling Huang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youjie Gao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Uşurelu CD, Frone AN, Oprică GM, Raduly MF, Ghiurea M, Neblea EI, Nicolae CA, Filip X, Teodorescu M, Panaitescu DM. Preparation and functionalization of cellulose nanofibers using a naturally occurring acid and their application in stabilizing linseed oil/water Pickering emulsions. Int J Biol Macromol 2024; 262:129884. [PMID: 38336328 DOI: 10.1016/j.ijbiomac.2024.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.01, 0.1, and 0.2 M) were used alongside LA to intensify cellulose hydrolysis. FTIR spectroscopy and solid-state 13C NMR confirmed the successful functionalization of CNFs with lactyl groups during isolation, while SEM, AFM, and rheological tests revealed that the addition of HCl governed the fibers' sizes and morphology. Notably, the treatment with LA and 0.2 M HCl resulted in a more efficient defibrillation, yielding smaller nanofibers sizes (62 nm) as compared to the treatment with LA or HCl alone (90 and 108 nm, respectively). The aqueous suspension of CNFs treated with LA and 0.2 M HCl showed the highest viscosity and storage modulus. LA-modified CNFs were tested as stabilizers for linseed oil/water (50/50 v/v) emulsions. Owing to the lactyl groups grafted on their surface and higher aspect ratio, CNFs produced with 0.1 and 0.2 M HCl led to emulsions with increased stability (a creaming index increase of only 3 % and 1 %, respectively, in 30 days) and smaller droplets sizes of 23.4 ± 1.2 and 35.5 ± 0.5 μm, respectively. The results showed that LA-modified CNFs are promising stabilizers for Pickering emulsions.
Collapse
Affiliation(s)
- Cătălina-Diana Uşurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Gabriela-Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Monica Florentina Raduly
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Marius Ghiurea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Iulia Neblea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Xenia Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Mircea Teodorescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
13
|
Li Z, Liu A, Wu H, Naeem A, Fan Q, Jin Z, Liu H, Ming L. Extraction of cellulose nanocrystalline from Camellia oleifera Abel waste shell: Study of critical processes, properties and enhanced emulsion performance. Int J Biol Macromol 2024; 254:127890. [PMID: 37931858 DOI: 10.1016/j.ijbiomac.2023.127890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cellulose nanocrystals (CNCs) extracted from the waste shell of Camellia oleifera Abel (C. oleifera) are gaining attention as valuable materials. In this study, CNCs were extracted from the agricultural waste shell of C. oleifera through phosphoric acid and sulfuric acid hydrolysis, respectively. Firstly, we optimized the alkaline treatment process for cellulose isolation by using response surface methodology. Furthermore, the properties of CNCs were investigated by neutralizing them with NaOH and NH3·H2O, and by dialysis in water. In addition, the characterization methods including FT-IR, TGA, AFM and TEM were used to analysis the properties of the synthesized CNCs. Finally, CNCs were studied for their application in essential oil-based Pickering emulsions. CNCs obtained from sulfuric acid showed the smallest particle size and good dispersibility. Moreover, the release profiles of essential oils in the emulsions were followed by Peppa's kinetic release model. The antibacterial activity of the emulsions against E. coli and S. aureus showed that CNCs-stabilized emulsions enhanced the antibacterial activity of essential oils. Therefore, neutralization treatments may enhance the properties of CNCs, and CNCs stabilized Pickering emulsions can enhance antibacterial activity of essential oil. This study provides insight into the potential application of CNCs derived from C. oleifera waste shells.
Collapse
Affiliation(s)
- Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Abid Naeem
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
14
|
Wang Y, Liu H, Wang Q, An X, Ji X, Tian Z, Liu S, Yang G. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review. Int J Biol Macromol 2023; 253:127353. [PMID: 37839592 DOI: 10.1016/j.ijbiomac.2023.127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
As a green and renewable nanomaterial, cellulose nanocrystals (CNC) have received numerous attention due to the unique structural features and superior physicochemical properties. Conventionally, CNC was isolated from lignocellulosic biomass mostly depending on sulfuric or hydrochloric acid hydrolysis. Although this approach is effective, some critical issues such as severe equipment corrosion, excessive cellulose degradation, serious environmental pollution, and large water usage are inevitable. Fortunately, solid acid hydrolysis is emerging as an economical and sustainable CNC production technique and has achieved considerable progress in recent years. Herein, the preparation of CNC by solid acid hydrolysis was summarized systematically, including organic solid acids (citric, maleic, oxalic, tartaric, p-toluenesulfonic acid) and inorganic solid acids (phosphotungstic, phosphoric, and Lewis acid). The advantages and disadvantages of organic and inorganic solid acid hydrolysis methods were evaluated comprehensively. Finally, the challenges and opportunities in the later exploitation and application of solid acid hydrolysis to prepare CNC in the industrial context are discussed. Considering the future development of this technology in the large-scale CNC production, much more efforts should be made in lowering CNC processing cost, fabricating high-solid-content and re-dispersible CNC, developing value-added applications of CNC, and techno-economic analysis and life cycle assessment on the whole process.
Collapse
Affiliation(s)
- Yingchao Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Xingye An
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shanshan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
15
|
Peng J, Huang Y, Fu R, Lu J, Wang W, Zhu W, Yu Y, Guo F, Mai H. Microscopic dissolution process of cellulose in alkaline aqueous solvents and its application in CNFs extraction - Investigating temperature as a variable. Carbohydr Polym 2023; 322:121361. [PMID: 37839827 DOI: 10.1016/j.carbpol.2023.121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
The target of this study is to gain a deeper understanding of the micro-dissolution process of cellulose in alkaline aqueous solutions and to develop a novel method for extracting cellulose nanofibrils (CNFs). Herein, the dissolution process of cellulose in alkaline aqueous solutions will be controlled by varying the temperature, and the undissolved cellulose will be analyzed to reveal the microscopic dissolution process of cellulose, and a novel process for extracting cellulose nanofibrils (CNFs) will be developed based on the findings. The crystalline structure of cellulose was gradually disrupted as the dissolution progressed, and the crystal form of cellulose changed gradually from cellulose I to cellulose II during the dissolution process, while all undissolved cellulose crystals remained as cellulose I. Cellulose, after its structure is disrupted during the dissolution process, will inevitably decompose into CNFs, and the microscopic dissolution process of cellulose follows a "top-down" dissolution sequence. The CNFs extraction method developed in this study can extract CNFs with high yield (>60 %) in a stable manner, as well as narrow particle size distribution, high crystallinity (>77 %), and good thermal stability. This study enhances the comprehension of the dissolution process of cellulose and paves a possible way for industrialization of CNFs production.
Collapse
Affiliation(s)
- Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yihui Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongwei Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinqing Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiquan Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Fan Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Mai
- Department of Pharmacy, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
16
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
17
|
Chen Z, Xie Z, Jiang H. Extraction of the cellulose nanocrystals via ammonium persulfate oxidation of beaten cellulose fibers. Carbohydr Polym 2023; 318:121129. [PMID: 37479458 DOI: 10.1016/j.carbpol.2023.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
The effect of beating starting pulp was investigated on the oxidation efficiency of ammonium persulfate (APS), the yield, and the properties of the CNCs. The beaten pulp and the subsequent CNCs were characterized, respectively, by different techniques. The CNCs were classified as CNC1 and CNC2, dependent on ultrasonication. It showed that the beating exposed more free OH groups in the pulp and enhanced the yield and surface charges of CNCs. Compared to the CNC2, the CNC1 had a higher surface charge, higher crystallinity, higher thermal stability, shorter length, smaller length distribution, and slightly larger width. The CNC1 and CNC2 had similar rheological properties. For the beaten pulp with a beating degree of 25°SR, the yields of the CNC1 and the total CNCs reached the maximum, 42.65 and 34.11 %, respectively. The surface charges of the CNC1 and the CNC2 also reached the maximum, -44.5 and - 33.6 mV, respectively. Their crystallinity indexes were 80.07 and 75.42 %, respectively. The lengths of the CNC1 and the CNC2 were 157.31 ± 30.61 and 214.92 ± 65.52 nm, and their widths were 10.13 ± 2.74 and 9.43 ± 2.99 nm, respectively. Therefore, proper beating enhanced the APS oxidation efficiency and influenced the CNCs properties.
Collapse
Affiliation(s)
- Zhangyun Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongyuan Xie
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hua Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
19
|
Yang T, Li X, Xu N, Guo Y, Liu G, Zhao J. Preparation of cellulose nanocrystals from commercial dissolving pulp using an engineered cellulase system. BIORESOUR BIOPROCESS 2023; 10:42. [PMID: 38647579 PMCID: PMC10992297 DOI: 10.1186/s40643-023-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/21/2023] [Indexed: 04/25/2024] Open
Abstract
There is increasing attention to the production of cellulose nanocrystals (CNCs) from lignocellulosic biomass by enzymatic hydrolysis with cellulase. In this study, the feasibility of the application of a cellulase system from engineered strain Penicillium oxalicum cEES in the production of CNCs was assessed. Using commercial eucalyptus dissolving pulp (EDP) as substrate, the CNCs were successfully obtained by enzymatic hydrolysis with the cellulase cEES, and the total yields of CNCs reached 15.7% through three-step enzymatic hydrolysis of total 72 h (24 h for each step). The prepared CNCs were characterized and found that their crystallinity and thermal stability were higher than that of EDP. In the later stage of enzymatic hydrolysis, the process efficiency of enzymatic preparation of CNCs greatly decreased because of the high crystallinity of cellulosic substrate, and a simple homogenization treatment can promote the enzymatic hydrolysis, as well as produce fusiform CNCs with more uniform size and more fermentable sugar that could be further converted into fuels and bulk chemicals through fermentation. This study provides a feasible enzymatic preparation process for CNCs with engineered cellulase and commercial cellulosic materials.
Collapse
Affiliation(s)
- Tiantian Yang
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Nuo Xu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
20
|
Wei LK, Abd Rahim SZ, Al Bakri Abdullah MM, Yin ATM, Ghazali MF, Omar MF, Nemeș O, Sandu AV, Vizureanu P, Abdellah AEH. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4635. [PMID: 37444950 DOI: 10.3390/ma16134635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production of new products from virgin raw materials. The use of metal scrap in rapid tooling (RT) for injection molding is an interesting and viable approach. Recycling methods enable the recovery of valuable metal powders from various sources, such as electronic, industrial, and automobile scrap. Mechanical alloying is a potential opportunity for sustainable powder production as it has the capability to convert various starting materials with different initial sizes into powder particles through the ball milling process. Nevertheless, parameter factors, such as the type of ball milling, ball-to-powder ratio (BPR), rotation speed, grinding period, size and shape of the milling media, and process control agent (PCA), can influence the quality and characteristics of the metal powders produced. Despite potential drawbacks and environmental impacts, this process can still be a valuable method for recycling metals into powders. Further research is required to optimize the process. Furthermore, ball milling has been widely used in various industries, including recycling and metal mold production, to improve product properties in an environmentally friendly way. This review found that ball milling is the best tool for reducing the particle size of recycled metal chips and creating new metal powders to enhance mechanical properties and novelty for mold additive manufacturing (MAM) applications. Therefore, it is necessary to conduct further research on various parameters associated with ball milling to optimize the process of converting recycled copper chips into powder. This research will assist in attaining the highest level of efficiency and effectiveness in particle size reduction and powder quality. Lastly, this review also presents potential avenues for future research by exploring the application of RT in the ball milling technique.
Collapse
Affiliation(s)
- Leong Kean Wei
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shayfull Zamree Abd Rahim
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Mohd Mustafa Al Bakri Abdullah
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Allice Tan Mun Yin
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Mohd Fathullah Ghazali
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Mohd Firdaus Omar
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Ovidiu Nemeș
- Department of Environmental Engineering and Sustainable Development Entrepreneurship, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. D. Mangeron 71, 700050 Iasi, Romania
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. D. Mangeron 71, 700050 Iasi, Romania
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| | - Abdellah El-Hadj Abdellah
- Laboratory of Mechanics, Physics and Mathematical Modelling (LMP2M), University of Medea, Medea 26000, Algeria
| |
Collapse
|
21
|
Liu A, Wu H, Naeem A, Du Q, Ni B, Liu H, Li Z, Ming L. Cellulose nanocrystalline from biomass wastes: An overview of extraction, functionalization and applications in drug delivery. Int J Biol Macromol 2023; 241:124557. [PMID: 37094644 DOI: 10.1016/j.ijbiomac.2023.124557] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Cellulose nanocrystals (CNC) have been extensively used in various fields due to their renewability, excellent biocompatibility, large specific surface area, and high tensile strength. Most biomass wastes contain significant amounts of cellulose, which forms the basis of CNC. Biomass wastes are generally made up of agricultural waste, and forest residues, etc. CNC can be produced from biomass wastes by removing the non-cellulosic components through acid hydrolysis, enzymatic hydrolysis, oxidation hydrolysis, and other mechanical methods. However, biomass wastes are generally disposed of or burned in a random manner, resulting in adverse environmental consequences. Hence, using biomass wastes to develop CNC-based carrier materials is an effective strategy to promote the high value-added application of biomass wastes. This review summarizes the advantages of CNC applications, the extraction process, and recent advances in CNC-based composites, such as aerogels, hydrogels, films, and metal complexes. Furthermore, the drug release characteristics of CNC-based material are discussed in detail. Additionally, we discuss some gaps in our understanding of the current state of knowledge and potential future directions of CNC-based materials.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Abid Naeem
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qing Du
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Bin Ni
- First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou 341000, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
22
|
Li X, Chen H, Zhang L, Wang Z, Wu S, Ma J. The interface design and properties enhancement of ZnO/cellulose composites: Branching fiber network to guide the assembly of ZnO flower. J Colloid Interface Sci 2023; 641:539-552. [PMID: 36958275 DOI: 10.1016/j.jcis.2023.03.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Using renewable biomass resources to regulate the growth and properties of catalysts is sustainable nanotechnology for achieving efficient photocatalysis and recycling. This work suggested a way to produce paper-based photocatalysts and resize the embedded zinc oxide (ZnO) flowers. The combination of experimental analysis and theoretical simulations demonstrated that small pores of the branching fiber network enhanced the interfacial interaction between ZnO flowers and cellulose fibers, thereby improving mechanical properties and optimizing flower structure. The interaction energy and electron density difference (EDD) simulation results demonstrated that the ZnO/cellulose interface structure shares significant attraction and charge transfer. Cellulose fibers ground for 20 cycles (CFG20) possessed dense branching fiber network and loaded with the smallest ZnO flowers, achieving a balance of strong mechanical properties and reaction efficiency. Remarkably, ZnO/CFG20 paper-based catalyst indicated strong photodegradation efficiency (100% for methyl orange, 100% for phenol, and 85.23% for aniline) and excellent reusability. This work will pave the way for the green regulation of catalysts.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Haojie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Zhang F, Shen R, Li N, Yang X, Lin D. Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydr Polym 2023; 304:120497. [PMID: 36641166 DOI: 10.1016/j.carbpol.2022.120497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, nanocellulose has gained growing interests in food science due to its many advantages including its broad resource of raw materials, renewability, interface stability, high surface area, mechanical strength, prebiotic characteristics, surface chemistry versatility and easy modification. Since then, this review summarized the sources, morphology, and structure characteristics of nanocellulose. Meanwhile, the mechanical, chemical, and combined treatment methods for the preparation of nanocellulose with desired properties were elaborated. Furthermore, the application of nanocellulose in Pickering emulsions, reinforced food packaging, functional food ingredient, food-grade hydrogels, and biosensors were emphasized. Finally, the safety, challenges, and future perspectives of nanocellulose were discussed. This work provided key developments and effective benefits of nanocellulose for future research opportunities in food.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
24
|
Srivastava RK, Nedungadi SV, Akhtar N, Sarangi PK, Subudhi S, Shadangi KP, Govarthanan M. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160260. [PMID: 36400296 DOI: 10.1016/j.scitotenv.2022.160260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products. Different wastes (organic/inorganic) generation with their negative issues are due to numbers of developmental and social activities, reported. Currently, various efforts are found for these wastes minimization via generation of different types of value-added products (biogas, bioH2, alcoholic fuel, organic acids and others products) and these wastes in municipal cities are also reported with production of advanced biofuels as promising outcomes. For hydrolysis of complex organic resources including lignocellulosic biomasses, physicochemical, structural or compositional changes are needed that aid in conversion into sugar and organic compounds such as biofuels. So, efficient and effective pretreatment processes selection (physical, biological, chemical or combined one) is critical to achieve these hydrolysis goals and resultant cellulose or hemicellulose components can be accessible by biological catalysis. These can achieve final hydrolysis and fermentative or monomer sugars. And later, synthesis of fuels or value-added products during microbial fermentation or biotransformation processes can be achieved. This review discusses pretreatment techniques for improved hydrolysis for fermentative sugar with emphasis on reduced quantities of toxic compounds (furfural compound) in hydrolyzed biomasses. Minimum deterioration fuel economy also reported with production of different bioproducts including biofuels. Additionally, impacts of toxic products and gasses emission are also discussed with their minimization.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India.
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | - Nasim Akhtar
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | | | - Sanjukta Subudhi
- Advanced Biofuels program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
25
|
Li C, An X, Ren Q, Liu L, Long Y, Zhang H, Yang J, Nie S, Tian Z, Yang G, Cheng Z, Cao H, Liu H. Nanogrinding/ethanol activation facilitating lignin fractionation for preparation of monodispersed lignin nanoparticles. Int J Biol Macromol 2023; 227:608-618. [PMID: 36495988 DOI: 10.1016/j.ijbiomac.2022.12.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Lignin nanoparticles (LNPs), as one of green and sustainable biological macromolecules, have attracted great attention owing to their promising potentials in many valorized fields. However, the lignin heterogeneity seriously restricts the controllable preparation of LNPs. Herein, a facile nanogrinding activation combining anhydrous ethanol dissolution process was developed to efficiently homogenize lignin prior to gradient ethanol fractionation. Two lignin fractions were obtained from nanogrinding activation/ethanol dissolution followed by gradient ethanol fractionation: L-fractions and S-fractions. Therefore, monodispersed LNPs with unique concave hollow nanostructure and large particle size, and monodispersed LNPs with solid core nanostructure and small particle size were successfully prepared from L-fractions and S-fractions, respectively, via a GVL/water anti-solvent method. The proposed LNPs formation mechanisms facilitated by nanogrinding activation/ethanol dissolution treatment were demonstrated. This study put forwards a facile and green integrated approach for monodispersed LNPs preparation with controllable morphology and particle size.
Collapse
Affiliation(s)
- Chenxi Li
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Qian Ren
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Liqin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Yinying Long
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Jian Yang
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhengbai Cheng
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Haibing Cao
- Zhejiang Jing Xing Paper Joint Stock Co., Ltd., No. 1, Jing Xing Industry Zone, Jing Xing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 29, 13(th) Street, TEDA, Tianjin 300457, P. R. China.
| |
Collapse
|
26
|
Kim MJ, Istianah N, So BR, Kang HJ, Woo MJ, Park SJ, Kim HJ, Jung YH, Jung SK. Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties. J Microbiol Biotechnol 2022; 32:1589-1598. [PMID: 36377200 PMCID: PMC9843813 DOI: 10.4014/jmb.2210.10009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansii-derived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and anti-oxidative marine cosmeceuticals.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nur Istianah
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Woo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Jin Park
- Research Center, Honest Co., Ltd., Daegu 41064, Republic of Korea
| | - Hyun Jeong Kim
- Research Center, Honest Co., Ltd., Daegu 41064, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding authors Y.H. Jung Phone: +82-53-950-7764 Fax: +82-53-950-7762 E-mail:
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea,
S.K. Jung Phone: +82-53-950-7764 Fax: +82-53-950-7762 E-mail:
| |
Collapse
|
27
|
Liu S, Tao W, Yu Y, Fakudze S, Wang C, Wang J, Han J, Chen J. Ball milling synthesis of robust sandwich-structured C/Si@SnO2 anode with porous silicon buffer layer for fast charging lithium-ion battery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Zhou L, Huang Y, He X, Qin Y, Dai L, Ji N, Xiong L, Sun Q. Efficient preparation of cellulose nanocrystals with a high yield through simultaneous acidolysis with a heat-moisture treatment. Food Chem 2022; 391:133285. [PMID: 35623278 DOI: 10.1016/j.foodchem.2022.133285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
This study developed a novel method for the facile and efficient preparation of the cellulose nanocrystals (CNCs) by using a simultaneous collaborative process combining sulfuric acid hydrolysis and heat-moisture treatment. In this work, we significantly reduced acid dosage compared to conventional acid solution hydrolysis methods to prepare CNCs. The weight of diluted sulfuric acid is no more than 25% on dry basis weight of microcrystalline cellulose. In a relatively short time (2 h), the yield could reach 93.68%, which is higher than the existing methods. The obtained CNCs displayed a normal rod-like shape (100 nm) and unusual spherical shape (10 nm) and showed high relative crystallinity ranged from 70.92% to 81.13%. The combination of acidolysis and heat-moisture treatment may be an economical and effective method for large-scale production of CNCs and provides a new method for preparing short CNCs, which can be used in membrane strengthening and food packages.
Collapse
Affiliation(s)
- Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Yu Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China.
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China; College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
29
|
Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 2022; 222:1400-1413. [PMID: 36195224 DOI: 10.1016/j.ijbiomac.2022.09.270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
As a clean and efficient method of lignocellulosic biomass separation, organic acid pretreatment has attracted extensive research. Hemicellulose or lignin is selectively isolated and the cellulose structure is preserved. Effective fractionation of lignocellulosic biomass is achieved. The separation characteristics of hemicellulose or lignin by different organic acids were summarized. The organic acids of hemicellulose were separated into hydrogen ionized, autocatalytic and α-hydroxy acids according to the separation mechanism. The separation of lignin depends on the dissolution mechanism and spatial effect of organic acids. In addition, the challenges and prospects of organic acid pretreatment were analyzed. The separation of hemicellulose and enzymatic hydrolysis of cellulose were significantly affected by the polycondensation of lignin, which is effectively inhibited by the addition of green additives such as ketones or alcohols. Lignin separation was improved by developing a deep eutectic solvent treatment based on organic acid pretreatment. This work provides support for efficient cleaning of carbohydrate polymers and lignin to promote global carbon neutrality.
Collapse
Affiliation(s)
- Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Linlin Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xinliang He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuxin Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry,1 Forestry Drive, Syracuse, NY 13210, United States
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
30
|
Chen C, Tan J, Wang X. Mechanical properties of toughened windmill palm fibre with different chemical compositions. Carbohydr Polym 2022; 297:119996. [DOI: 10.1016/j.carbpol.2022.119996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
|
31
|
In situ Green Synthesis of Cellulose based Silver Nanocomposite and its Catalytic Dye Removal Potential Against Methylene Blue. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02093-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
33
|
Optimization of Hemp Bast Microfiber Production Using Response Surface Modelling. Processes (Basel) 2022. [DOI: 10.3390/pr10061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Non-wood biomass is particularly attractive as a cellulose source because of the lower lignin content. However, optimal cellulose extraction conditions are required as lignin content varies between plant sources. Further, the use of organic acids in place of harsh mineral acids is of interest in “greening” the cellulose production process. This study sought to establish optimum parameters for the extraction of cellulose microfibers (CMFs) from hemp (Cannabis sativa) biomass, using maleic and formic acids. Hemp fibers were pre-treated in NaOH (4 wt%) and aqueous chlorite in acetate buffer before ultrasonic treatment to break down bundles. The CMFs produced were compared with those generated from sulfuric acid hydrolysis. Response surface methodology (RSM) was used to determine combinations of three processing conditions, including acid concentration (45–64%), hydrolysis time (30–90 min), and temperature (45–65 °C). A central composite design (RSM-CCD) model with 21 experimental runs was optimized using MODDE 13.1 software. The model suitably described the data (R2 = 0.99; R2adj = 0.96). Microfibers with an average width of 6.91 µm, crystallinity range 40–75%, and good thermal stability were produced. Crystallinity was influenced by all three factors. The optimal crystallinity predicted by the model was 83.21%, which could be achieved using formic acid 62 wt% formic acid, 36 min hydrolysis time, and 47 °C hydrolysis temperature. These conditions resulted in a crystallinity degree of 82%. These data suggest formic acid can be used as an alternative to sulfuric acid for synthesis of cellulose microfibers from biodegradable hemp waste fibers.
Collapse
|
34
|
Pradhan D, Jaiswal AK, Jaiswal S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydr Polym 2022; 285:119258. [DOI: 10.1016/j.carbpol.2022.119258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
|
35
|
Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications. NANOMATERIALS 2022; 12:nano12111828. [PMID: 35683684 PMCID: PMC9182373 DOI: 10.3390/nano12111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of renewable and low-attractive CNCs to conductive nanocomposites using green approaches. This review also addresses the key scientific achievements and industrial uses of nanoscale materials and composites for energy conversion and storage applications.
Collapse
|
36
|
Novel recycling of pineapple leaves into cellulose microfibers by two-step grinding of ball milling and high-speed rotor–stator homogenization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Chorfa N, Nlandu H, Belkacemi K, Hamoudi S. Physical and Enzymatic Hydrolysis Modifications of Potato Starch Granules. Polymers (Basel) 2022; 14:polym14102027. [PMID: 35631908 PMCID: PMC9143340 DOI: 10.3390/polym14102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, a valorization of the starch stemming from downgraded potatoes was approached through the preparation of starch nanoparticles using different physical methods, namely liquid and supercritical carbon dioxide, high energy ball milling (HEBM), and ultrasonication on the one hand and enzymatic hydrolysis on the other hand. Starch nanoparticles are beneficial as a reinforcement in food packaging technology as they enhance the mechanical and water vapor resistance of polymers. Also, starch nanoparticles are appropriate for medical applications as carriers for the delivery of bioactive or therapeutic agents. The obtained materials were characterized using X-ray diffraction as well as scanning and transmission electron microscopies (SEM and TEM), whereas the hydrolysates were analyzed using size exclusion chromatography coupled with pulsed amperometric detection (SEC-PAD). The acquired results revealed that the physical modification methods led to moderate alterations of the potato starch granules’ size and crystallinity. However, enzymatic hydrolysis conducted using Pullulanase enzyme followed by nanoprecipitation of the hydrolysates allowed us to obtain very tiny starch nanoparticles sized between 20 and 50 nm, much smaller than the native starch granules, which have an average size of 10 μm. The effects of enzyme concentration, temperature, and reaction medium pH on the extent of hydrolysis in terms of the polymer carbohydrates’ fractions were investigated. The most promising results were obtained with a Pullulanase enzyme concentration of 160 npun/g of starch, at a temperature of 60 °C in a pH 4 phosphate buffer solution resulting in the production of hydrolysates containing starch polymers with low molecular weights corresponding mainly to P-10, P-5, and fractions with molecular weights lower than P-5 Pullulan standards.
Collapse
Affiliation(s)
| | | | | | - Safia Hamoudi
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 408460)
| |
Collapse
|
38
|
Chen R, Ma Z, Sun D, Wang X, Han Y. Cellulose I nanocrystals (CNCs I) prepared in mildly acidic lithium bromide trihydrate (MALBTH) and their application for stabilizing Pickering emulsions. Int J Biol Macromol 2022; 201:59-66. [PMID: 34973269 DOI: 10.1016/j.ijbiomac.2021.12.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/13/2021] [Accepted: 12/18/2021] [Indexed: 01/04/2023]
Abstract
This study proposed a sustainable method to prepare cellulose I nanocrystals (CNCs I) from microcrystalline cellulose (MCC) in a mildly acidic lithium bromide trihydrate (MALBTH) system, a concentrated (50 wt%) solution of LiBr in water with recyclable formic acid (FA). First, the MCC was treated in the MALBTH system to generate CNCs with a uniform size, yield higher than 68.49% and crystallinity of 84.02%. Then, the CNCs could application for stabilizing Pickering emulsions for at least 15 days. Furthermore, FA was easily recycled from the MALBTH system, and the yield of the CNCs produced from the hydrolysis of MCC by using the recycled FA was still higher than 60%. Finally, this study provided a sustainable and green production of CNCs. A low-cost and environmentally friendly pathway to recover FA from the MALLBTH system at a high yield was still realized.
Collapse
Affiliation(s)
- Rui Chen
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University, Dalian 116034, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University, Dalian 116034, China.
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
39
|
Insight into the extraction and characterization of cellulose nanocrystals from date pits. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Liu XL, Dong C, Leu SY, Fang Z, Miao ZD. Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling. BIORESOURCE TECHNOLOGY 2022; 347:126721. [PMID: 35051568 DOI: 10.1016/j.biortech.2022.126721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Wheat straw was pretreated using ball milling (BM) promoted by solid particles (NaOH, NaCl, citric acid). NaOH showed the best synergistic interaction effect, due to the breakage of β-1,4-glycosidic bonds among cellulose molecules by the alkali solid particles induced by BM. NaOH-BM pretreatment decreased the straw crystallinity from 46% to 21.4% and its average particle size from 398.3 to 50.6 μm in 1 h. After 4 h milling, the reducing-end concentration of cellulose increased by 3.8 times from 12.5 to 60.2 μM, with glucose yield increased by 2.1 times from 26.6% to 82.4% for 72 h enzymatic hydrolysis at cellulase loading of 15 FPU/g dry substrate. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield by enzymatic hydrolysis. BM assisted with alkali particles was an effective approach for improving biomass enzymatic saccharification.
Collapse
Affiliation(s)
- Xiao-le Liu
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Chengyu Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China. http://biomass-group.njau.edu.cn/
| | - Zheng-Diao Miao
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
41
|
Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(VI) remediation. Carbohydr Polym 2022; 278:118930. [PMID: 34973748 DOI: 10.1016/j.carbpol.2021.118930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022]
Abstract
Because nanocellulose has a large specific surface area and abundant hydroxyl functional groups due to its unique nanomorphology, interest increases as an eco-friendly water treatment material. However, the distinctive properties of nanocellulose, which exists in a dispersion state, strongly hamper its usage in practical water treatment processes. Additionally, nanocellulose shows low performance in removing anionic pollutants because of its anionic characteristics. In an effort to address this challenge, regenerated cellulose (RC) hydrogel was fabricated through cellulose's dissolution and regeneration process using an eco-friendly aqueous solvent system. Subsequently, a crosslinking process was carried out to introduce the cationic functional groups to the RC surface PEI coating (P/RC). As a result, the PEI surface cationization process improved the mechanical rigidity of RC and showed an excellent Cr(VI) removal capacity of 578 mg/g. In addition, the prepared P/RC maintained more than 90% removal efficiency even after seven reuses.
Collapse
|
42
|
Nurhadi B, Angeline A, Sukri N, Masruchin N, Arifin HR, Saputra RA. Characteristics of microcrystalline cellulose from nata de coco: Hydrochloric acid versus maleic acid hydrolysis. J Appl Polym Sci 2022. [DOI: 10.1002/app.51576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bambang Nurhadi
- Department of Food Industrial Technology, Faculty of Agro‐Industrial Technology Universitas Padjadjaran Sumedang Indonesia
| | - Angeline Angeline
- Department of Food Industrial Technology, Faculty of Agro‐Industrial Technology Universitas Padjadjaran Sumedang Indonesia
| | - Nandi Sukri
- Department of Food Industrial Technology, Faculty of Agro‐Industrial Technology Universitas Padjadjaran Sumedang Indonesia
| | - Nanang Masruchin
- Research Center for Biomaterials Indonesia Institute of Science (LIPI) Cibinong Indonesia
| | - Heni Radiani Arifin
- Department of Food Industrial Technology, Faculty of Agro‐Industrial Technology Universitas Padjadjaran Sumedang Indonesia
| | - Rudy Adi Saputra
- Department of Food Industrial Technology, Faculty of Agro‐Industrial Technology Universitas Padjadjaran Sumedang Indonesia
| |
Collapse
|
43
|
The Role of Eucalyptus Species on the Structural and Thermal Performance of Cellulose Nanocrystals (CNCs) Isolated by Acid Hydrolysis. Polymers (Basel) 2022; 14:polym14030423. [PMID: 35160413 PMCID: PMC8840396 DOI: 10.3390/polym14030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact of the incorporation of sulphate groups on the crystalline structure was committed, changes in the hydrophilicity and water retention ability or thermal stability were observed. These effects were also corroborated by the apparent activation energy during thermal decomposition obtained through kinetic analysis. Low-sulphated CNCs (E. benthamii) involved hints of a more crystalline structure along with less water retention ability, higher thermal stability, and greater average apparent activation energy (233 kJ·mol−1) during decomposition. Conversely, the high-sulphated species (E. globulus) involved higher reactivity during preparation that endorsed a little greater water retention ability and lower thermal stability, with subsequently less average apparent activation energy (185 kJ·mol−1). The E. smithii (212 kJ·mol−1) and En × Eg (196 kJ·mol−1) showed an intermediate behavior according to their sulphate index.
Collapse
|
44
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
45
|
Zhang Y, Haque ANMA, Naebe M. Lignin-Cellulose Nanocrystals from Hemp Hurd as Light-Coloured Ultraviolet (UV) Functional Filler for Enhanced Performance of Polyvinyl Alcohol Nanocomposite Films. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3425. [PMID: 34947774 PMCID: PMC8708339 DOI: 10.3390/nano11123425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Lignin is a natural light-coloured ultraviolet (UV) absorber; however, conventional extraction processes usually darken its colour and could be detrimental to its UV-shielding ability. In this study, a sustainable way of fabricating lignin-cellulose nanocrystals (L-CNCs) from hemp hurd is proposed. A homogeneous morphology of the hemp particles was achieved by ball milling, and L-CNCs with high aspect ratio were obtained through mild acid hydrolysis on the ball-milled particles. The L-CNCs were used as filler in polyvinyl alcohol (PVA) film, which produced a light-coloured nanocomposite film with high UV-shielding ability and enhanced tensile properties: the absorption of UV at wavelength of 400 nm and transparency in the visible-light region at wavelength of 550 nm was 116 times and 70% higher than that of pure PVA, respectively. In addition to these advantages, the nanocomposite film showed a water vapour transmission property comparable with commercial food package film, indicating potential applications.
Collapse
Affiliation(s)
| | | | - Maryam Naebe
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (Y.Z.); (A.N.M.A.H.)
| |
Collapse
|
46
|
Zhang K, Wang W, Zhao K, Ma Y, Wang Y, Li Y. Recent development in foodborne nanocellulose: Preparation, properties, and applications in food industry. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Guo M, Li Y, Yan X, Song J, Liu D, Li Q, Su F, Shi X. Sustainable iridescence of cast and shear coatings of cellulose nanocrystals. Carbohydr Polym 2021; 273:118628. [PMID: 34561019 DOI: 10.1016/j.carbpol.2021.118628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
As an eco-friendly sustainable iridescent coating, cholesteric cellulose nanocrystal (CNC) is susceptible to substrate effects or shearing effects. In this work, interface interaction and liquid crystal phase transition were evaluated for fabricating iridescent cast or shear coatings of CNCs onto substrates of polystyrene, glass, ceramic, wood, stainless steel, metal, or metal alloy. Three types of substrate effects and four categories of shearing effects on the structure color mechanism of CNC coatings were proposed. Practically, several efficient approaches, such as increasing colloidal concentration, enhancing water-retention of substrates, raising processing temperature, slowing down shearing speed, or doping functional additives were involved. Hence, a feasible strategy was provided for preparing sustainable, iridescent, stable, and industrially scalable coatings of CNCs.
Collapse
Affiliation(s)
- Mengna Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xueyi Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianing Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fan Su
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingwei Shi
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
48
|
Fitriani F, Aprilia S, Arahman N, Bilad MR, Amin A, Huda N, Roslan J. Isolation and Characterization of Nanocrystalline Cellulose Isolated from Pineapple Crown Leaf Fiber Agricultural Wastes Using Acid Hydrolysis. Polymers (Basel) 2021; 13:polym13234188. [PMID: 34883691 PMCID: PMC8659882 DOI: 10.3390/polym13234188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Pineapple crown leaf fiber (PCLF) is one of the major biomass wastes from pineapple processing plants. It consists mostly of carbohydrate polymers, such as cellulose, hemicellulose, and lignin. It can be further processed to form a more valuable and widely used nanocrystalline cellulose (NCC). This study investigates the effect of hydrolysis time on the properties of the produced NCC. The acid hydrolysis was conducted using 1 M of sulfuric acid at hydrolysis times of 1–3 h. The resulting NCCs were then characterized by their morphology, functional groups, crystallinity, thermal stability, elemental composition, and production yield. The results show that the NCC products had a rod-like particle structure and possessed a strong cellulose crystalline structure typically found in agricultural fiber-based cellulose. The highest NCC yield was obtained at 79.37% for one hour of hydrolysis. This NCC also displayed a higher decomposition temperature of 176.98 °C. The overall findings suggest that PCLF-derived NCC has attractive properties for a variety of applications.
Collapse
Affiliation(s)
- Fitriani Fitriani
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence: (S.A.); (N.H.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Amri Amin
- Department of Mechanical Engineering, Engineering Faculty, University of Abulyatama, Lampoh Keudee, Aceh Besar, Banda Aceh 23372, Indonesia;
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia;
- Correspondence: (S.A.); (N.H.)
| | - Jumardi Roslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia;
| |
Collapse
|
49
|
Ma H, Liu L, Yu J, Fan Y. One-Step Preparation of Chitin Nanofiber Dispersion in Full pH Surroundings Using Recyclable Solid Oxalic Acid and Evaluation of Redispersed Performance. Biomacromolecules 2021; 22:4373-4382. [PMID: 34477363 DOI: 10.1021/acs.biomac.1c00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study proposed an efficient and economical preparation pathway from purified chitin to nanofibers that can be dispersed in full pH surroundings. Recyclable oxalic acid was applied to prepare chitin nanofibers in a mild environment along with concurrent modifications of the carboxylic groups on the surface. Pretreatment with oxalic acid significantly improved the mechanical disintegration of chitin into nanofibers, the length of nanofibers reached ∼1100 nm, and the crystallinity and thermal stability of the chitin were basically unchanged with mild treatment. Oxalic acid can be reused many times with a high recovery of over 91%. Most importantly, the obtained nanofibers can be fabricated into films and hydrogels with certain mechanical properties, which can be redispersed into nanofibers using mild mechanical treatment. This method not only produces nanofibers in a green, reusable system but also provides a reference for the potential application of chitin nanofibers in commercial transportation and wide applicability.
Collapse
Affiliation(s)
- Huazhong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| |
Collapse
|
50
|
Lu Q, Yu X, Yagoub AEA, Wahia H, Zhou C. Application and challenge of nanocellulose in the food industry. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|