1
|
Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Alginate and chitosan surface coating reduces the phytotoxicity of CeO 2 nanoparticles to duckweed (Lemna minor L.). CHEMOSPHERE 2024; 362:142649. [PMID: 38901699 DOI: 10.1016/j.chemosphere.2024.142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Yuan H, Zeng Z, Li D, Huang R, Li W. Multifunctional thiolated chitosan/puerarin composite hydrogels with pH/glutathione dual responsiveness for potential drug carriers. Int J Biol Macromol 2024; 265:130841. [PMID: 38553389 DOI: 10.1016/j.ijbiomac.2024.130841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/18/2024]
Abstract
Puerarin (PUE), a natural and biologically active isoflavone extracted from Chinese medicine Pueraria lobata, can self-assemble to form a hydrogel without other chemical modifications. However, although PUE hydrogel has pH responsivity, but it is difficult to adapt to the changeable pathological environment. Therefore, thiolated chitosan (TCS) is synthesized and hybridized with PUE hydrogel to prepare TCS10/PUE composite hydrogel. The results of rheological measurement showed that the resultant composite hydrogels inherited the low loss performance of TCS hydrogel, which means that they have stronger elasticity. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images displayed that TCS10/PUE composite hydrogel has a fibrous-network structure. X-Ray Diffractometer (XRD) and Fourier transform infrared spectroscopy (FT-IR) proved the existence of hydrogen bonds and disulfide bonds in the formation of composite hydrogel. Degradation experiment showed that TCS10/PUE composite hydrogels have pH and glutathione (pH/GSH) dual sensitivity. Furthermore, TCS10/PUE composite hydrogels exhibited multi-functionality including thixotropy, cytocompatibility, antibacterial and anti-inflammatory properties. Berberine chloride hydrate (BCH) was further used as a model drug for in vitro release study. BCH and PUE could be released cooperatively under pH/GSH dual responsivity. These results indicated that the resultant composite hydrogel has eminent pH/GSH dual responsivity and could act as a potential new intelligent drug carrier.
Collapse
Affiliation(s)
- Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongzeng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Hubei Provincial Key Laboratory for Chinese Medicine Resources and Chinese Medicine Chemistry, Wuhan, China.
| | - Wan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Hubei Provincial Key Laboratory for Chinese Medicine Resources and Chinese Medicine Chemistry, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
3
|
Liu H, Zhang M, Meng F, Wubuli A, Li S, Xiao S, Gu L, Li J. HAuCl 4-mediated green synthesis of highly stable Au NPs from natural active polysaccharides: Synthetic mechanism and antioxidant property. Int J Biol Macromol 2024; 265:130824. [PMID: 38492708 DOI: 10.1016/j.ijbiomac.2024.130824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Polysaccharide-functionalized gold nanoparticles (Polysaccharide-Au NPs) with high stability were successfully prepared by a straightforward method. Notably, the Au (III) ion acts as a strong Lewis acid to facilitate glycosidic bond breaking. Subsequently, the polysaccharide conformation was transformed to an open-chain form, exposing highly reduced aldehyde or ketone groups that reduce Au (III) to Au (0) crystal species, further growing into Au NPs. As-prepared Au NPs displayed excellent stability over a longer storage period (more than 70 days), a wide range of temperatures (25-60 °C), and pH range (3-11), varying concentrations (0-200 mM) and types of salt ions (Na+, K+, Ca2+, Mg2+), and glutathione solutions (5 mM). More interestingly, polysaccharide-Au NPs retained the antioxidant activity of polysaccharides and reduced oxidative damage at the cellular level through decreased reactive oxygen species (ROS) production. The intracellular levels of ROS pretreated with polysaccharide and polysaccharide-Au NPs were decreased 53.12-75.85 % compared to the H2O2 group, respectively. Therefore, the green synthesized Au NPs from natural active polysaccharides exhibit potential applications in biomedical fields.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Abudukahaer Wubuli
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Suxin Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Shuang Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liyu Gu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Vu TT, Jo SH, Kim SH, Kim BK, Park SH, Lim KT. Injectable and Multifunctional Hydrogels Based on Poly( N-acryloyl glycinamide) and Alginate Derivatives for Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470564 DOI: 10.1021/acsami.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Chemotherapy is a conventional treatment that uses drugs to kill cancer cells; however, it may induce side effects and may be incompletely effective, leading to the risk of tumor recurrence. To address this issue, we developed novel injectable thermal/near-infrared (NIR)-responsive hydrogels to control drug release. The injectable hydrogel formulation was composed of biocompatible alginates, poly(N-acryloyl glycinamide) (PNAGA) copolymers with an upper critical solution temperature, and NIR-responsive cross-linkers containing coumarin groups, which were gelated through bioorthogonal inverse electron demand Diels-Alder reactions. The hydrogels exhibited quick gelation times (120-800 s) and high drug loading efficiencies (>90%). The hydrogels demonstrated a higher percentage of drug release at 37 °C than that at 25 °C due to the enhanced swelling behavior of temperature-responsive PNAGA moieties. Upon NIR irradiation, the hydrogels released most of the entrapped doxorubicin (DOX) (97%) owing to the cleavage of NIR-sensitive coumarin ester groups. The hydrogels displayed biocompatibility with normal cells, while induced antitumor activity toward cancer cells. DOX/hydrogels treated with NIR light inhibited tumor growth in nude mice bearing tumors. In addition, the injected hydrogels emitted red fluorescence upon excitation at a green wavelength, so that the drug delivery and hydrogel degradation in vivo could be tracked in the xenograft model.
Collapse
Affiliation(s)
- Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Seon-Hwa Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Byeong Kook Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
5
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
7
|
Inam A, Oncu-Oner T, Deniz I. Algae in Biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:147-163. [PMID: 38353867 DOI: 10.1007/5584_2024_795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Algae, which live in marine or freshwater, are photosynthetic organisms. They vary greatly in size, morphology, and degree of complexity of their body structures. Algae are generally divided into two main groups, microalgae, which are small in size, and macroalgae, which are larger in size. These aquatic organisms have rich and valuable compounds including sterols, polysaccharides, pigments, fatty acids, proteins, enzymes, minerals, and vitamins that could be used in different application fields due to their bioactive functions. In recent years, algae and their components have attracted interest in biomedicine and health applications as their bioactive components could show antioxidant, anticancer, anti-inflammatory, antiviral, antiangiogenic, antidiabetic, antiobesity, immunostimulatory, vaccine adjuvant, and hypolipidemic activities. In this chapter, these activities and bioactive components underlying these properties are reviewed.
Collapse
Affiliation(s)
- Aysegul Inam
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Tulay Oncu-Oner
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Irem Deniz
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey.
| |
Collapse
|
8
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
9
|
Wang T, Yu Y, Wang B, Jiang T, Meng X, Zhao X. Photothermal hyaluronic acid composite hydrogel targeting cancer stem cells for inhibiting recurrence and metastasis of breast cancer. Int J Biol Macromol 2023; 252:126358. [PMID: 37598824 DOI: 10.1016/j.ijbiomac.2023.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Recurrence and metastasis have been recognized as a great challenge in cancer treatment. Cancer stem cells (CSCs), as a small subset of cancer cells, are closely associated with tumor metastasis and recurrence due to their resistance and multi-differentiation characteristics. Herein, we developed a local injectable hyaluronic acid (HA) composite hydrogel (HAAG) that targets CSCs, which can continuously release all-trans retinoic acid (ATRA) and gold nanoparticles (AuNPs) at tumor sites. The composite hydrogel was endowed with the ability to target CSCs through the specific binding of HA to CD44. ATRA was loaded into HA micelles to induce CSCs to differentiate into normal cancer cells, while AuNPs was incorporated into the hydrogel for photothermal therapy (PTT). HAAG exhibited good injectability, photothermal properties and CSCs targeting ability. HAAG not only significantly inhibited the growth of 4T1 mouse breast cancer cells and 4T1-CSCs in vitro, but also effectively inhibited tumor recurrence and metastasis in a 4T1-CSC mouse model in vivo. Our study provides a novel strategy of local differentiation combined with PTT for inhibiting the recurrence and metastasis of breast cancer.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yang Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Meng
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
11
|
Nauryzgaliyeva Z, Goux Corredera I, Garreta E, Montserrat N. Harnessing mechanobiology for kidney organoid research. Front Cell Dev Biol 2023; 11:1273923. [PMID: 38077999 PMCID: PMC10704179 DOI: 10.3389/fcell.2023.1273923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 10/16/2024] Open
Abstract
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
Collapse
Affiliation(s)
- Zarina Nauryzgaliyeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
13
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
14
|
Mohammadsadeghi F, Afsharmanesh M, Salarmoini M, Bami MK. The effect of replacing sodium selenite with selenium-chitosan in laying hens on production performance, egg quality, egg selenium concentration, microbial population, immunological response, antioxidant enzymes, and fatty acid composition. Poult Sci 2023; 102:102983. [PMID: 37598554 PMCID: PMC10458345 DOI: 10.1016/j.psj.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The purpose of this study was to investigate into the effects of Se-chitosan and Na selenite supplementation on laying hen production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant enzymes activity, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 27-wk-old laying hens were randomly divided into 4 treatment groups and 7 replications. Se source (Na selenite and Se-chitosan) and Se level (0.3 and 0.6 mg/kg) were used as treatments. Se-chitosan enhanced egg production percentage and egg mass (P < 0.05) when compared with Na selenite. There was an interaction, with 0.6 mg Se-chitosan/kg causing an increase in albumen height, Haugh unit, albumen index, and shell thickness of fresh eggs (P < 0.05). Se-chitosan increased yolk share, yolk color, and shape index of fresh eggs and shape index, albumen index, albumen height, Haugh unit, yolk color, shell thickness, and specific gravity of stored eggs (P < 0.05). The interaction showed that, 0.6 mg Se-chitosan/kg increased albumen Se concentration and decreased the level of malondialdehyde (MDA) in fresh egg yolk compared with 0.3 and 0.6 mg Na selenite/kg (P < 0.05). When compared with Na selenite, Se-chitosan increased the Se concentration in the yolk and decreased level of MDA in stored egg yolk (P < 0.01). When compared with Na selenite, Se-chitosan reduced coliforms (P < 0.01), increased lactic acid bacteria, and the lactic acid bacteria/coliform ratio (P < 0.05). Se-chitosan supplementation increased antibody response to sheep red blood cells and IgM titers and the activities of glutathione peroxidase and superoxide dismutase in plasma (P < 0.05). Furthermore, compared with Na selenite, supplementing diets with Se-chitosan decreased ∑ n-6 PUFA/∑ n-3 PUFA ratio (P < 0.01). In conclusion, Se-chitosan supplementation of laying hen feed improved production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzymes activity, and yolk fatty acid profile, with 0.6 mg Se-chitosan/kg supplementation being optimal.
Collapse
Affiliation(s)
- Farimah Mohammadsadeghi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohsen Afsharmanesh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439.
| | - Mohammad Salarmoini
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohammad Khajeh Bami
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| |
Collapse
|
15
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. ENVIRONMENTAL RESEARCH 2023; 225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Sedghi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Ettehadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shafagh Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Razieh Beiranvand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
16
|
Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
17
|
Wei Q, Dong Q, Sun DW, Pu H. Synthesis of recyclable SERS platform based on MoS 2@TiO 2@Au heterojunction for photodegradation and identification of fungicides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121895. [PMID: 36228505 DOI: 10.1016/j.saa.2022.121895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates based on metal/semiconductors have attracted much attention due to their excellent photocatalytic activity and SERS performance. However, they generally exhibit low light utilization and photocatalytic efficiencies. Herein, molybdenum disulfide coated titanium dioxide modified with gold nanoparticles (MoS2@TiO2@Au) as a heterojunction-based recyclable SERS platform was fabricated for the efficient determination of fungicides. Results showed that the MoS2@TiO2@Au platform could rapidly degrade 90.7% crystal violet in 120 min under solar light irradiation and enable reproducible and sensitive SERS analysis of three fungicides (methylene blue, malachite green, and crystal violet) and in-situ monitor of the photodegradation process. The platform could also be reused five times due to the unique integrated merits of the MoS2@TiO2@Au heterojunction. Meanwhile, experiments in determining methylene blue in prawn protein solution achieved a limit of detection of 1.509 μg/L. Therefore, it is hoped that this work could expand detection applications of photocatalytic materials.
Collapse
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qirong Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
18
|
John Jayeoye T, Supachettapun C, Muangsin N. Ascorbic acid supported Carboxymethyl cellulose stabilized silver nanoparticles as optical nanoprobe for Au3+ detection in environmental sample. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Suneetha G, Ayodhya D, Sunitha Manjari P. Schiff base stabilized gold nanoparticles: Synthesis, characterization, catalytic reduction of nitroaromatic compounds, fluorometric sensing, and biological activities. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Iravani S, Varma RS. Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy. Mar Drugs 2022; 20:598. [PMID: 36286422 PMCID: PMC9604960 DOI: 10.3390/md20100598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
Alginates have been widely explored due to their salient advantages of hydrophilicity, biocompatibility, mucoadhesive features, bioavailability, environmentally-benign properties, and cost-effectiveness. They are applied for designing micro- and nanosystems for controlled and targeted drug delivery and cancer therapy as alginate biopolymers find usage in encapsulating anticancer drugs to improve their bioavailability, sustained release, pharmacokinetics, and bio-clearance. Notably, these nanomaterials can be applied for photothermal, photodynamic, and chemodynamic therapy of cancers/tumors. Future explorations ought to be conducted to find novel alginate-based (nano)systems for targeted cancer therapy using advanced drug delivery techniques with benefits of non-invasiveness, patient compliance, and convenience of drug administration. Thus, some critical parameters such as mucosal permeability, stability in the gastrointestinal tract environment, and drug solubility ought to be considered. In addition, the comprehensive clinical translational studies along with the optimization of synthesis techniques still need to be addressed. Herein, we present an overview of the current state of knowledge and recent developments pertaining to the applications of alginate-based micro- and nanosystems for targeted cancer therapy based on controlled drug delivery, photothermal therapy, and chemodynamic/photodynamic therapy approaches, focusing on important challenges and future directions.
Collapse
|
22
|
Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S, He N, Zheng Z, Lee MS. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29:1142-1149. [PMID: 35384787 PMCID: PMC9004504 DOI: 10.1080/10717544.2022.2058646] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Hui Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Son Hai Vu
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea.,Institute of Applied Sciences, Ho Chi Minh City University of Technology HUTECH, Ho Chi Minh City, Viet Nam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhou Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
23
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
24
|
Abstract
Organoids-cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature-are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.
Collapse
Affiliation(s)
- Mark T Kozlowski
- DEVCOM US Army Research Laboratory, Weapons and Materials Research Directorate, Science of Extreme Materials Division, Polymers Branch, 6300 Rodman Rd. Building 4600, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA.
| | - Christiana J Crook
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
25
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
26
|
Huang H, Wang J, Zhang J, Cai J, Pi J, Xu JF. Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13101599. [PMID: 34683892 PMCID: PMC8538820 DOI: 10.3390/pharmaceutics13101599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Cobalt is essential to the metabolism of all animals due to its key role in cobalamin, also known as vitamin B12, the primary biological reservoir of cobalt as an ultra-trace element. Current cancer treatment strategies, including chemotherapy and radiotherapy, have been seriously restricted by their side effects and low efficiency for a long time, which urges us to develop new technologies for more effective and much safer anticancer therapies. Novel nanotechnologies, based on different kinds of functional nanomaterials, have been proved to act as effective and promising strategies for anticancer treatment. Based on the important biological roles of cobalt, cobalt oxide nanoparticles (NPs) have been widely developed for their attractive biomedical applications, especially their potential for anticancer treatments due to their selective inhibition of cancer cells. Thus, more and more attention has been attracted to the preparation, characterization and anticancer investigation of cobalt oxide nanoparticles in recent years, which is expected to introduce novel anticancer treatment strategies. In this review, we summarize the synthesis methods of cobalt oxide nanoparticles to discuss the advantages and restrictions for their preparation. Moreover, we emphatically discuss the anticancer functions of cobalt oxide nanoparticles as well as their underlying mechanisms to promote the development of cobalt oxide nanoparticles for anticancer treatments, which might finally benefit the current anticancer therapeutics based on functional cobalt oxide nanoparticles.
Collapse
Affiliation(s)
- Huanshao Huang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiajun Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
27
|
Maldonado-Ortega DA, Navarro-Tovar G, Martínez-Castañón G, Gonzalez C. Effect of gold nanoparticles (AuNPs) on isolated rat tracheal segments. Toxicol Rep 2021; 8:1412-1418. [PMID: 34345594 PMCID: PMC8319458 DOI: 10.1016/j.toxrep.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
AuNPs at 100 μg/mL induce a contractile effect on isolated trachea rings of female and male rats. Nitric oxide (NO) is a potential mediator of the AuNPs actions upon the smooth muscle of isolated rat tracheal rings. Formation of AuNPs in physiological solution in controls with HAuCl4 trigger similar contractile effects than AuNPs.
The AuNPs have been used in biomedicine as therapeutic tools for cancer. However, its role in the context of respiratory physiology has been little studied. This study aimed to determine the impact of AuNPs on respiratory smooth muscle tone, using a model of isolated tracheal rings from female and male rats precontracted with acetylcholine (ACh). AuNPs exerted a contractile effect only in the concentration of 100 ug/ml. This contractile effect was not modified by gender. The possible mediator +could be nitric oxide (NO), measured in a physiological solution containing the tracheal rings treated with different concentrations of AuNPs. The results obtained in this study show that the AuNPs are bio-inert in a concentration range of 0.1−10 μg/mL; however, 100 μg/mL could trigger airway hyperresponsiveness. Similar effects were obtained in isolated trachea rings treated with 100 μg/mL HAuCl4. An evaluation of HAuCl4 in physiological buffer at various HEPES concentrations (0–20 mM) showed the formation of AuNPs that could explain the contractile effect on the tracheal smooth muscle.
Collapse
Affiliation(s)
- Daniel Alberto Maldonado-Ortega
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico.,Consejo Nacional de Ciencia y Tecnologia, Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, 03940, México City, Mexico
| | - Gabriel Martínez-Castañón
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Parque Chapultepec 1570, 78210, San Luis Potosi, SLP, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico
| |
Collapse
|
28
|
Research Progress of Chitosan-Based Biomimetic Materials. Mar Drugs 2021; 19:md19070372. [PMID: 34199126 PMCID: PMC8307383 DOI: 10.3390/md19070372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Chitosan is a linear polysaccharide produced by deacetylation of natural biopolymer chitin. Owing to its good biocompatibility and biodegradability, non-toxicity, and easy processing, it has been widely used in many fields. After billions of years of survival of the fittest, many organisms have already evolved a nearly perfect structure. This paper reviews the research status of biomimetic functional materials that use chitosan as a matrix material to mimic the biological characteristics of bivalves, biological cell matrices, desert beetles, and honeycomb structure of bees. In addition, the application of biomimetic materials in wound healing, hemostasis, drug delivery, and smart materials is briefly overviewed according to their characteristics of adhesion, hemostasis, release, and adsorption. It also discusses prospects for their application and provides a reference for further research and development.
Collapse
|
29
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
30
|
Stamer KS, Pigaleva MA, Abramchuk SS, Gallyamov MO. Principles of Gold Nanoparticles Stabilization with Chitosan in Carbonic Acid Solutions Under High CO2 Pressure. DOKLADY PHYSICAL CHEMISTRY 2021. [DOI: 10.1134/s0012501620110020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
32
|
Real-Time Tracking of Highly Luminescent Mesoporous Silica Particles Modified with Europium β-Diketone Chelates in Living Cells. NANOMATERIALS 2021; 11:nano11020343. [PMID: 33573005 PMCID: PMC7919370 DOI: 10.3390/nano11020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Highly luminescent europium complexes modified mesoporous silica particles (MSP) were synthesized as an imaging probes for both in-vitro diagnostic and in-vivo cellular tracking agents. Europium β-diketone chelates (4,4,4-trifluoro-l-(2-thienyl)-l,3-butanedione) trioctylphosphine europium (III) (Eu(TTA)3(P(Oct)3)3) were incorporated inside the nanocavities that existed in hierarchical MSP (Eu@MSP). The MSP and Eu@MSP on mouse bone marrow-derived macrophages (BMDMs) did not show any toxic effect. The MSP and Eu@MSP in the BMDMs were found at cytoplasm without any degradation and immunogenicity. However, both pro- and anti-inflammatory cytokines of macrophages were significantly increased when lipopolysaccharide and a high concentration (100 μg/mL) of MSP and Eu@MSP were treated simultaneously.
Collapse
|
33
|
Zhang D, Ouyang Q, Hu Z, Lu S, Quan W, Li P, Chen Y, Li S. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol 2021; 173:591-606. [PMID: 33508359 DOI: 10.1016/j.ijbiomac.2021.01.157] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Chitosan-based thermosensitive hydrogels have been widely used in drug delivery and tissue engineering, but their poor bioactivity has limited their further applications. Integral active oyster peptide microspheres (OPM) with an average particle diameter of 3.9 μm were prepared with high encapsulation efficiency (72.8%) and loading capacity (11.9%), exhibiting desirable sustained release effects. Using catechol functionalized chitosan (CS-C) as the polymeric matrix, OPM as the filler, and β-sodium glycerophosphate (β-GP) as a thermal sensitizer, the thermosensitive hydrogel CS-C/OPM/β-GP was prepared. Besides, the application of the hydrogel on wound healing was studied, and its biosafety was evaluated. The results of cell migration in vitro showed that the cell migration rate of CS-C/OPM/β-GP reached 97.47 ± 5.41% within 48 h, indicating that the hydrogel accelerated the migration of L929 cells. As demonstrated in the mouse skin wound experiment, CS-C/OPM/β-GP hydrogel not only inhibited the aggregation of diversified inflammatory cells and accelerated the generation of collagen fibers and new blood vessels of the wound, but also enhanced the synthesis of total protein (TP) in granulation tissue, and up-regulated the expression of Ki-67 and VEGF in the injury, thereby achieving fast wound healing. Safety evaluation results showed that CS-C/OPM/β-GP hydrogel was not cytotoxic to L929 cells, and the hemolysis ratio was less than 5% within 1 mg/mL. In conclusion, CS-C/OPM/β-GP hydrogel is expected as a promising medical dressing for wound healing.
Collapse
Affiliation(s)
- Dongying Zhang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China
| | - Qianqian Ouyang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Sitong Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiyan Quan
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Puwang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Yu Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sidong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
34
|
Ho TTT, Dang CH, Huynh TKC, Hoang TKD, Nguyen TD. In situ synthesis of gold nanoparticles on novel nanocomposite lactose/alginate: Recyclable catalysis and colorimetric detection of Fe(III). Carbohydr Polym 2021; 251:116998. [DOI: 10.1016/j.carbpol.2020.116998] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
|
35
|
Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer. Cancers (Basel) 2020; 12:cancers12123776. [PMID: 33333858 PMCID: PMC7765304 DOI: 10.3390/cancers12123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a common urological cancer, with poor prognosis for advanced/metastatic stages. Various intensive treatments, including radical cystectomy, chemotherapy, immune therapy, and radiotherapy are commonly used for these patients. However, these treatments often cause complications and adverse events. Therefore, researchers are exploring the efficacy of natural product-based treatment strategies in BC patients. Fucoidan, derived from marine brown algae, is recognized as a multi-functional and safe substrate, and has been reported to have anti-cancer effects in various types of malignancies. Additionally, in vivo and in vitro studies have reported the protective effects of fucoidan against cancer-related cachexia and chemotherapeutic agent-induced adverse events. In this review, we have introduced the anti-cancer effects of fucoidan extracts in BC and highlighted its molecular mechanisms. We have also shown the anti-cancer effects of fucoidan therapy with conventional chemotherapeutic agents and new treatment strategies using fucoidan-based nanoparticles in various malignancies. Moreover, apart from the improvement of anti-cancer effects by fucoidan, its protective effects against cancer-related disorders and cisplatin-induced toxicities have been introduced. However, the available information is insufficient to conclude the clinical usefulness of fucoidan-based treatments in BC patients. Therefore, we have indicated the aspects that need to be considered regarding fucoidan-based treatments and future directions for the treatment of BC.
Collapse
|
36
|
Versatile Types of Polysaccharide-Based Drug Delivery Systems: From Strategic Design to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239159. [PMID: 33271967 PMCID: PMC7729619 DOI: 10.3390/ijms21239159] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.
Collapse
|
37
|
Rapid synthesis of gold nanoparticles for photocatalytic reduction of 4-nitrophenol. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|