1
|
Karnam S, Jindal AB, Paul AT. Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis. Int J Pharm 2024; 666:124829. [PMID: 39406305 DOI: 10.1016/j.ijpharm.2024.124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease. Combination therapy is anticipated to surpass monotherapy by targeting multiple pathways involved in RA progression. The present aim is to develop a combination of Teriflunomide (TFD) and Quercetin (QCN) loaded transferosomal gel to enhance permeability and achieve localized delivery to joint tissues. TFD or QCN transferosomes were optimized employing a 3-level, 3-factorial design Box-Behnken design (BBD). The transferosomes exhibited sustained in-vitro drug release. The topical combination gel underwent thorough evaluation of rheology, and also ex-vivo studies showed enhanced permeability through rat skin. The synergistic combination of TFD and QCN effectively suppressed NO, TNF-α and IL-6 levels in in-vitro RAW 264.7 cells. The cytotoxicity in HaCaT cell lines indicates non-toxicity of the gel, further confirmed by skin irritation study conducted in rats. The in-vivo anti-arthritic activity was evaluated in complete freund's adjuvant induced rat paw edema model illustrates the effectiveness of the combination transferosomal gel compared to other treatment groups. In conclusion, the topical delivery of TFD and QCN combination transferosomal gel demonstrated anti-arthritic activity through localized delivery whichallows for dose reduction, thereby may reduce the systemic drug exposure and mitigate the side effects associated with oral administration of TFD.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
2
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
3
|
Zewail M. Leflunomide nanocarriers: a new prospect of therapeutic applications. J Microencapsul 2024; 41:715-738. [PMID: 39320955 DOI: 10.1080/02652048.2024.2407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Fu W, Shentu C, Chen D, Qiu J, Zong C, Yu H, Zhang Y, Chen Y, Liu X, Xu T. Network pharmacology combined with affinity ultrafiltration to elucidate the potential compounds of Shaoyao Gancao Fuzi Decoction for the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118268. [PMID: 38677569 DOI: 10.1016/j.jep.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Fuzi Decoction (SGFD), has been employed for thousands of years in the treatment of rheumatoid arthritis (RA) with remarkable clinical efficacy. However, the material basis underlying the effectiveness of SGFD still remains unclear. AIM OF THE REVIEW This study aims to elucidate the material basis of SGFD through the application of network pharmacology and biological affinity ultrafiltration. RESULTS UPLC-Q-TOF-MS/MS was employed to characterize the components in SGFD, the identified 145 chemical components were mainly categorized into alkaloids, flavonoids, triterpenoids, and monoterpenoids according to the structures. Network pharmacology method was utilized to identify potential targets and signaling pathways of SGFD in the RA treatment, and the anti-inflammatory and anti-RA effects of SGFD were validated through in vivo and in vitro experiments. Moreover, as the significant node in the pharmacology network, TNF-α, a classical therapeutic target in RA, was subsequent employed to screen the interacting compounds in SGFD via affinity ultrafiltration screening method, 6 active molecules (i.e.,glycyrrhizic acid, paeoniflorin, formononetin, isoliquiritigenin, benzoyl mesaconitine, and glycyrrhetinic acid) were exhibited significant interactions. Finally, the significant anti-inflammatory and anti-TNF-α effects of these compounds were validated at the cellular level. CONCLUSIONS In conclusion, this study comprehensively elucidates the pharmacodynamic material basis of SGFD, offering a practical reference model for the systematic investigation of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Junjie Qiu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Chuhong Zong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yiwei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| |
Collapse
|
5
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
6
|
Garg U, Jain N, Kaul S, Nagaich U. Role of Albumin as a Targeted Drug Carrier in the Management of Rheumatoid Arthritis: A Comprehensive Review. Mol Pharm 2023; 20:5345-5358. [PMID: 37870420 DOI: 10.1021/acs.molpharmaceut.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
7
|
Shang W, Sun Q, Zhang C, Liu H, Yang Y, Liu Y, Gao W, Shen W, Yin D. Drug in Therapeutic Polymer: Sinomenine-Loaded Oxidation-Responsive Polymeric Nanoparticles for Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47552-47565. [PMID: 37768213 DOI: 10.1021/acsami.3c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that frequently involves cartilage damage and the destruction of the bone structure, ultimately resulting in disability and long-term pain. It is clear that overexpression of reactive oxygen species (ROS) and the complex inflammatory microenvironment are the main causes of RA pathogenesis; thereby, the efficacy of any single-drug treatment is limited. Herein, we formulated a therapeutic hyaluronic acid derivative (PAM-HA) with adsorption capacity to the subchondral bone, a long retention time within inflamed joints, and ROS-scavenging capacity, which was used as a drug carrier for realizing the controlled release of sinomenine (Sin) within arthritic joints. This "drug in therapeutic polymer" design strategy was aimed at realizing antioxidant and anti-inflammatory combination therapy for RA. In vivo experiments suggest that PAM-HA@Sin NPs can be retained in the inflamed joints of rats for a long time compared with commercially available free Sin injections. As expected, therapeutic PAM-HA polymeric carriers can increase joint lubrication and reduce oxidative stress, while the released Sin induces downregulation of proinflammatory factors (TNF-α and IL-1β) and upregulation of anti-inflammatory factors (Arg-1 and IL-10) via the NF-κB pathway. In summary, a ROS-scavenging hyaluronic acid (HA) derivative was developed as the nanocarrier for Sin delivery to simultaneously remodel the oxidative/inflammatory microenvironment in RA, which opens up new horizons for the development of therapeutic polymers and the combined therapeutic strategies.
Collapse
Affiliation(s)
- Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenxu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
- Anhui Provincial Key Laboratory of Research & Chinese Medicine, Hefei 230012, China
| |
Collapse
|
8
|
Siddiqui L, Hasan N, Mishra PK, Gupta N, Singh AT, Madaan A, Jaggi M, Saad S, Ekielski A, Iqbal Z, Kesharwani P, Talegaonkar S. CD44 mediated colon cancer targeting mutlifaceted lignin nanoparticles: Synthesis, in vitro characterization and in vivo efficacy studies. Int J Pharm 2023; 643:123270. [PMID: 37499773 DOI: 10.1016/j.ijpharm.2023.123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Hyaluronic acid (HA) coated irinotecan loaded lignin nanoparticles (HDLNPs) were synthesized using ionic interaction method. Optimized nanoparticles were characterized for their active chemotherapeutic targeting potential to CD44 receptors overly-expressed on cancer cells. Blood component interaction studies supported hemocompatible nature of HDLNPs and also demonstrated their sustained plasma residence property. Cell anti-proliferation and mitochondrial depolarization studies on HT-29 cells suggest significantly (p < 0.01) improved chemotherapeutic efficacy of HDLNPs. In vitro cell based studies showed that nanoparticles have retained antioxidant activity of lignin that can prevent cancer relapse. In vivo biodistribution studies in tumor-bearing Balb/c mice confirmed improved drug localization in tumor site for longer duration. Tumor regression and histopathological studies indicated the efficacy ofligand-assisted targeting chemotherapy over the conventional therapy. Hematological and biochemical estimation suggested that irinotecan-associated myelosuppression, liver steatosis and rare kidney failure can be avoided by its encapsulation in HA-coated lignin nanoparticles. HDLNPs were found to be stable over a period of 12 months.
Collapse
Affiliation(s)
- Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic.
| | - Neha Gupta
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, Ghaziabad, UP, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
10
|
Gorantla S, Rao Puppala E, Naidu V, Saha RN, Singhvi G. Design of chondroitin sulphate coated proglycosomes for localized delivery of tofacitinib for the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 186:43-54. [PMID: 36940886 DOI: 10.1016/j.ejpb.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Long-term oral tofacitinib (TOF) administration has been linked to serious side effects majorly immunological suppression. The aim of this work was to enhance the therapeutic efficacy of TOF by chondroitin sulphate (CS) coated proglycosomes through the anchoring of high-affinity CS to CD44 receptors on immune cells in the inflammatory region. The CS was coated onto the TOF-loaded proglycosomes (CS-TOF-PG) formulations and they were evaluated for in vitro drug release, ex vivo (permeation, dermatokinetics) studies. In vivo efficacy studies were carried out in Freund's complete adjuvant (CFA) induced arthritis model. The optimized CS-TOF-PG showed particle sizes of 181.13 ± 7.21 nm with an entrapment efficiency of 78.85 ± 3.65 %. Ex-vivo studies of CS-TOF-PG gel exhibited 1.5-fold high flux and 1.4-fold dermal retention compared to FD-gel. The efficacy study revealed that CS-TOF-PG showed a significant (P < 0.001) reduction in inflammation in arthritic rat paws compared to the TOF oral and FD gel. The current study ensured that the CS-TOF-PG topical gel system would provide a safe and effective formulation for localization and site-specific delivery of TOF at the RA site and overcome the adverse effects associated with the TOF.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031.
| |
Collapse
|
11
|
Yang L, Huang H, Zeng H, Zhao X, Wang R, Ma Z, Fan Z, Liang YM, Ma S, Zhou F. Biomimetic chitosan nanoparticles with simultaneous water lubricant and anti-inflammatory. Carbohydr Polym 2023; 304:120503. [PMID: 36641169 DOI: 10.1016/j.carbpol.2022.120503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory immune and lubrication dysfunction disease that causes great damage to the joints. Herein, inspired by the unique biochemistry structure and excellent hydration of chondroitin sulfate (CHI) existing in joint system, one kind of novel polysaccharide nanoparticle lubricant, that is chitosan nanoparticles (CS NPs) grafting CHI (CS-CHI), is synthesized by one-step surface chemistry reaction. CHI with negative charges can form hydration layers on the surface of CS NPs, thus improving the lubricity of nanoparticles. Simultaneously, CS-CHI NPs have effective loading and sustained drug release ability for anti-inflammatory drug diclofenac sodium (DS), along with good biocompatibility. Finally, based on a collagen-induced rat RA model, in vitro animals experimental results indicate that the as-synthesized CS-CHI@DS NPs has obvious inhibitory effects on inflammatory factors and can effectively prevent the damaged cartilage from further destruction.
Collapse
Affiliation(s)
- Lumin Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Huang
- School of the Stomatology and Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Huajing Zeng
- School of the Stomatology and Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Zengjie Fan
- School of the Stomatology and Second Hospital, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
12
|
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
14
|
Nawaz T, Iqbal M, Khan BA, Ahmed N, Nawaz A, Rasul A, Rizg WY, Jali AM, Ahmed RA, Safhi AY. Polycaprolactone based pharmaceutical nanoemulsion loaded with acriflavine: optimization and in vivo burn wound healing activity. Drug Deliv 2022; 29:3233-3244. [PMID: 36299245 PMCID: PMC9621282 DOI: 10.1080/10717544.2022.2136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022] Open
Abstract
Cutaneous burn wounds are a common and troublesome critical issue of public health. Over the last decade, many researchers have investigated the development of novel therapeutic modalities which are capable of fully regeneration and reinstatement of structure and function of the skin with no or limited scar formation. Novel pharmaceutical carriers are offering a potential platform to deliver the drug effectively and to overcome the limitation associated with conventional wound dressings. The aim of this study was to investigate a pharmaceutical acriflavine-loaded polycaprolactone nanoemulsion (ACR-PCL-NE) for burn wound healing. Nanoemulsion was prepared by using the double emulsion solvent evaporation technique and it was subjected to thermodynamic stability testing, droplet size, polydispersity, zeta potential, pH, and surface morphology analysis. The in vivo study was performed to evaluate the efficacy of nanoemulsion using Sprague-Dawley rats as an animal model. The results of this study revealed that the optimized nanoemulsion was stable and had desirable physicochemical properties. The pH was about 4.02 at 25 °C and the particle size was found to be in the range of 302 ± 4.62 nm while the zeta potential was -7.8 ± 1.22 mV and the polydispersity index of 0.221 ± 0.017. The wound regeneration process was evaluated in vivo by different techniques, the formulation group (FG) showed high wound healing potential as compared to the standard group (SD) and control group (CG). These findings reveal that this nanoemulsion formulation can be used effectively for wound healing.
Collapse
Affiliation(s)
- Touseef Nawaz
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Iqbal
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Barkat Ali Khan
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Pakistan
| | - Asif Nawaz
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
15
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
16
|
Gorantla S, Puppala ER, Naidu V, Saha RN, Singhvi G. Hyaluronic acid-coated proglycosomes for topical delivery of tofacitinib in rheumatoid arthritis condition: Formulation design, in vitro, ex vivo characterization, and in vivo efficacy studies. Int J Biol Macromol 2022; 224:207-222. [DOI: 10.1016/j.ijbiomac.2022.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
17
|
Aguilar-Pérez KM, Medina DI, Parra-Saldívar R, Iqbal HMN. Nano-Size Characterization and Antifungal Evaluation of Essential Oil Molecules-Loaded Nanoliposomes. Molecules 2022; 27:5728. [PMID: 36080492 PMCID: PMC9457754 DOI: 10.3390/molecules27175728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoliposomes, bilayer vesicles at the nanoscale, are becoming popular because of their safety, patient compliance, high entrapment efficiency, and prompt action. Several notable biological activities of natural essential oils (EOs), including fungal inhibition, are of supreme interest. As developed, multi-compositional nanoliposomes loaded with various concentrations of clove essential oil (CEO) and tea tree oil (TTO) were thoroughly characterized to gain insight into their nano-size distribution. The present work also aimed to reconnoiter the sustainable synthesis conditions to estimate the efficacy of EOs in bulk and EO-loaded nanoliposomes with multi-functional entities. Following a detailed nano-size characterization of in-house fabricated EO-loaded nanoliposomes, the antifungal efficacy was tested by executing the mycelial growth inhibition (MGI) test using Trichophyton rubrum fungi as a test model. The dynamic light scattering (DLS) profile of as-fabricated EO-loaded nanoliposomes revealed the mean size, polydispersity index (PdI), and zeta potential values as 37.12 ± 1.23 nm, 0.377 ± 0.007, and -36.94 ± 0.36 mV, respectively. The sphere-shaped morphology of CEO and TTO-loaded nanoliposomes was confirmed by a scanning electron microscope (SEM). The existence of characteristic functional bands in all tested counterparts was demonstrated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Compared to TTO-loaded nanoliposomes, the CEO-loaded nanoliposomes exhibited a maximum entrapment efficacy of 91.57 ± 2.5%. The CEO-loaded nanoliposome fraction, prepared using 1.5 µL/mL concentration, showed the highest MGI of 98.4 ± 0.87% tested against T. rubrum strains compared to the rest of the formulations.
Collapse
Affiliation(s)
- Katya M. Aguilar-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Hafiz M. N. Iqbal
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
18
|
Zhang W, Xu R, Jin X, Wang Y, Hu L, Zhang T, Du G, Kang Z. Enzymatic Production of Chondroitin Oligosaccharides and Its Sulfate Derivatives. Front Bioeng Biotechnol 2022; 10:951740. [PMID: 35910011 PMCID: PMC9326237 DOI: 10.3389/fbioe.2022.951740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) has a wide range of physiological functions and clinical applications. However, the biosynthesis of chondroitin oligosaccharides (o-CHs) and sulfate derivatives with specific length is always challenging. Herein, we report enzymatic strategies for producing homogeneous o-CHs and its sulfate derivatives from microbial sourced chondroitin. Chondroitin disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides with defined structure were produced by controllably depolymerizing microbial sourced chondroitin with an engineered chondroitinase ABC I. The highest conversion rates of the above corresponding o-CHs were 65.5%, 32.1%, 12.7%, 7.2%, and 16.3%, respectively. A new efficient enzymatic sulfation system that directly initiates from adenosine 5′-triphosphate (ATP) and sulfate was developed and improved the sulfation of chondroitin from 8.3% to 85.8% by optimizing the temperature, sulfate and ATP concentration. o-CHs decasaccharide, octasaccharide, hexasaccharide, tetrasaccharide and disaccharide were modified and the corresponding sulfate derivatives with one sulfate group were prepared. The enzymatic approaches constructed here for preparing o-CHs and its sulfate derivatives pave the way for the study of structure-activity relationship and applications.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xuerong Jin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Tianmeng Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Guocheng Du, ; Zhen Kang,
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Guocheng Du, ; Zhen Kang,
| |
Collapse
|
19
|
Jiang Y, Zheng Y, Dong Q, Liao W, Pang L, Chen J, He Q, Zhang J, Luo Y, Li J, Fu C, Fu Q. Metabolomics combined with network pharmacology to study the mechanism of Shentong Zhuyu decoction in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114846. [PMID: 34826542 DOI: 10.1016/j.jep.2021.114846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong Zhuyu decoction (STZYD) was first recorded in the classic of "Yilin Gaicuo" written by Wang Qingren, and recognized by the Chinese National Administration of Traditional Chinese Medicine as one of the 100 classic formulas. The formula has been widely used in the treatment of rheumatoid arthritis (RA) with significant clinical effects. However, its mechanism of action is not completely clear. AIM OF THE STUDY This study aimed to explore the mechanism of STZYD in the treatment of RA by network pharmacology and metabolomics. MATERIALS AND METHODS The effects of STZYD anti-RA were investigated by paw swelling, arthritis score, cytokine level, histopathological and micro-CT analysis in adjuvant-induced arthritis (AIA) rats. The chemical constituents of STZYD and absorbed constituents in AIA rat serum were analyzed by UPLC-Q-Exactive MS/MS. Based on the characterized chemical components, the network pharmacology was used to find potential targets and signaling pathways of STZYD in RA treatment. Meanwhile, the predicted pathway was determined by the Western blot (WB). Subsequently, non-targeted metabolomics of serum was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of STZYD in the treatment of RA based on LC-MS technology. RESULTS STZYD significantly alleviated RA symptoms by improving paw redness and swelling, bone and cartilage damage, synovial hyperplasia, and infiltration of inflammatory cells, and decreased the generation of pro-inflammatory cytokines IL-1β, IL-6, IL-17A and TNF-α in AIA rats. Totally, 59 chemical components of STZYD and 24 serum migrant ingredients were identified. A total of 655 genes of potential bioactive components in STZYD and 1025 related genes of RA were obtained. TNF signaling pathway was considered to one of the main signaling pathways of STZYD anti-RA by KEGG analysis, including a wide range intracellular signaling pathways. NF-κB signaling pathway regulates inflammation and immunity in the TNF signaling pathway. STZYD markedly inhibited the expression of NF-κB signaling pathway. Ten potential biomarkers were found in metabolomics based on LC-MS technology. Alanine, aspartate and glutamate metabolism, arachidonic acid metabolism are the most related pathways of STZYD anti-RA. CONCLUSION The study based on serum pharmacochemistry, network pharmacology and metabolomics indicated that STZYD can improve RA through regulating inflammation and immunity related pathways, and provided a new possibility for treatment of RA.
Collapse
Affiliation(s)
- Yanping Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yongfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qinman He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuanhong Luo
- Chengdu Jingze Biopharmaceutical Co.,Ltd, Chengdu, 611100, China.
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
20
|
Nornberg AB, Martins CC, Cervi VF, Sari MHM, Cruz L, Luchese C, Wilhelm EA, Fajardo AR. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. Int J Pharm 2022; 611:121285. [PMID: 34774696 DOI: 10.1016/j.ijpharm.2021.121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is a common drug used for rheumatoid arthritis (RA) treatment; however, a series of adverse effects associated with its oral or subcutaneous administration is reported. Transdermal delivery of MTX is an alternative to abate these issues, and the use of drug delivery systems (DDS) based on polymeric films presents an impressive potential for this finality. Based on this, in this study, we report the preparation of films made by cationic starch (CSt), poly(vinyl alcohol) (PVA), and chondroitin sulfate (ChS) to incorporate and release MTX, as well as the in vivo evaluation in model of rheumatoid arthritis in mice. CSt/PVA and CSt/PVA/ChS-based films (with and without MTX) were prepared using a simple protocol under mild conditions. The films loaded with 5 w/w-% of MTX exhibited appreciable drug loading efficiency and distribution. The MTX permeation through the layers of porcine skin demonstrated that most of the drug permeated was detected in the medium, suggesting that the formulation can provide a systemic absorption of the MTX. In vivo studies performed in an arthritis-induced model in mice demonstrated that the MTX-loaded films were able to treat and attenuate the symptoms and the biochemical alterations related to RA (inflammatory process, oxidative stress, and nociceptive behaviors). Besides, the pharmacological activity of MTX transdermally delivery by the CSt/PVA and CSt/PVA/ChS films was comparable to the MTX orally administered. Based on these results, it can be inferred that both films are prominent materials for incorporation and transdermal delivery of MTX in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Verônica F Cervi
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Marcel H M Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil.
| |
Collapse
|
21
|
Nawaz T, Iqbal M, Khan BA, Nawaz A, Hussain T, Hosny KM, Abualsunun WA, Rizg WY. Development and Optimization of Acriflavine-Loaded Polycaprolactone Nanoparticles Using Box-Behnken Design for Burn Wound Healing Applications. Polymers (Basel) 2021; 14:polym14010101. [PMID: 35012125 PMCID: PMC8747314 DOI: 10.3390/polym14010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box-Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be -3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug-polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.
Collapse
Affiliation(s)
- Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Muhammad Iqbal
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
- Correspondence: or
| | - Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| |
Collapse
|
22
|
Suri R, Neupane YR, Mehra N, Nematullah M, Khan F, Alam O, Iqubal A, Jain GK, Kohli K. Sirolimus loaded chitosan functionalized poly (lactic-co-glycolic acid) (PLGA) nanoparticles for potential treatment of age-related macular degeneration. Int J Biol Macromol 2021; 191:548-559. [PMID: 34536476 DOI: 10.1016/j.ijbiomac.2021.09.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022]
Abstract
The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route. Both the nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR and XRD analysis. Quality by Design (QbD) approach was employed during the preparation of nanoparticles and the presence of chitosan coating was confirmed through thermogravimetric analysis and contact angle studies. Cationic polymer modification showed sustained in-vitro SIR release and enhanced ex-vivo scleral permeation and penetration. Further, SIR-CH-PLGA-NP revealed enhanced cellular uptake and thus, reduced lipopolysaccharide (LPS)-induced free-radicals generation by RAW 264.7 cells. The prepared nanoparticles were devoid of residual solvent and were found to be safe in HET-CAM analysis, RBCs damage analysis and histopathology studies. Moreover, high anti-angiogenic potential was observed in SIR-CH-PLGA-NP compared with SIR-PLGA-NP in chorioallantoic membrane (CAM) test. Overall, the current work opens up an avenue for further investigation of CH-PLGA-NP as SIR nanocarrier in the treatment of AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore.
| | - Nikita Mehra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
23
|
Gorantla S, Gorantla G, Saha RN, Singhvi G. CD44 receptor-targeted novel drug delivery strategies for rheumatoid arthritis therapy. Expert Opin Drug Deliv 2021; 18:1553-1557. [PMID: 34190674 DOI: 10.1080/17425247.2021.1950686] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Ganesh Gorantla
- Urban Primary Health Center (UPHC) under National Urban Health Mission (NUHM), Addanki, Andhra Pradesh, India
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India.,Birla Institute of Technology and Science (BITS), Pilani, Dubai, UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
24
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|
25
|
Pandey S, Rai N, Mahtab A, Mittal D, Ahmad FJ, Sandal N, Neupane YR, Verma AK, Talegaonkar S. Hyaluronate-functionalized hydroxyapatite nanoparticles laden with methotrexate and teriflunomide for the treatment of rheumatoid arthritis. Int J Biol Macromol 2021; 171:502-513. [PMID: 33422513 DOI: 10.1016/j.ijbiomac.2020.12.204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune inflammatory disorder is currently incurable. Methotrexate and Teriflunomide are routinely prescribed drugs but their uses are limited due to severe hepatotoxicity. Hyaluronic acid (HYA) is a targeting ligand for CD44 receptors overexpressed on inflamed macrophages. The present investigation aimed at design and fabrication of HYA coated hydroxyapatite nanoparticles (HA-NPs) loaded with Methotrexate (MTX) and Teriflunomide (TEF) (HAMT-NPs) to form HYA-HAMT-NPs for the treatment of RA. HYA-HAMT-NPs showed the nanoscale size of 274.9 ± 64 nm along with a zeta potential value of -26.80 ± 6.08 mV. FTIR spectra of HYA and HYA-HAMT-NPs proved the coating of HYA on HYA-HAMT-NPs. HYA-HAMT-NPs showed less cell viability compared to drugs on RAW 264.7 macrophage cells. A biodistribution study by gamma scintigraphy imaging further strengthened the results by revealing significantly higher (p<0.05) percentage radioactivity (76.76%) of HYA-HAMT-NPs in the synovial region. The results obtained by pharmacodynamic studies ensured the better efficacy of HYA-HAMT-NPs in preventing disease progression and promoting articular regeneration. Under hepatotoxicity evaluation, liver histopathology and liver enzyme assay revealed ~29% hepatotoxicity was reduced by HYA-HAMT-NPs when compared to conventional FOLITRAX-10 and AUBAGIO oral treatments. Overall, the results suggest that HYA-HAMT-NP is a promising delivery system to avoid drug-induced hepatotoxicity in RA.
Collapse
Affiliation(s)
- Shweta Pandey
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Nishant Rai
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Asiya Mahtab
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Disha Mittal
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110 007, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Nidhi Sandal
- Department of Nuclear Medicine, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Government of India, Ministry of Defence, Delhi 110054, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore.
| | - Anita Kamra Verma
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110 007, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi 110017, India..
| |
Collapse
|
26
|
Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight Into Nanoliposomes as Smart Nanocarriers for Greening the Twenty-First Century Biomedical Settings. Front Bioeng Biotechnol 2020; 8:579536. [PMID: 33384988 PMCID: PMC7770187 DOI: 10.3389/fbioe.2020.579536] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
The necessity to develop more efficient, biocompatible, patient compliance, and safer treatments in biomedical settings is receiving special attention using nanotechnology as a potential platform to design new drug delivery systems (DDS). Despite the broad range of nanocarrier systems in drug delivery, lack of biocompatibility, poor penetration, low entrapment efficiency, and toxicity are significant challenges that remain to address. Such practices are even more demanding when bioactive agents are intended to be loaded on a nanocarrier system, especially for topical treatment purposes. For the aforesaid reasons, the search for more efficient nano-vesicular systems, such as nanoliposomes, with a high biocompatibility index and controlled releases has increased considerably in the past few decades. Owing to the stratum corneum layer barrier of the skin, the in-practice conventional/conformist drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. The current advancement at the nanoscale has transformed the drug delivery sector. Nanoliposomes, as robust nanocarriers, are becoming popular for biomedical applications because of safety, patient compliance, and quick action. Herein, we reviewed state-of-the-art nanoliposomes as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of nanoliposomes is discussed with suitable examples for the treatment of numerous diseases with a brief emphasis on fungal infections. The latter half of the work is focused on the applied perspective and clinical translation of nanoliposomes. Furthermore, a detailed overview of clinical applications and future perspectives has been included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
27
|
Selective Binding of Cyclodextrins with Leflunomide and Its Pharmacologically Active Metabolite Teriflunomide. Int J Mol Sci 2020; 21:ijms21239102. [PMID: 33265979 PMCID: PMC7730839 DOI: 10.3390/ijms21239102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The selectivity of encapsulation of leflunomide and teriflunomide by native α-, β- and γ-cyclodextrins was investigated through 1H NMR and molecular modeling. Thermodynamic analysis revealed the main driving forces involved in the binding. For α-cyclodextrin, the partial encapsulation was obtained while deep penetration was characterized for the other two cyclodextrins, where the remaining polar fragment of the molecule is located outside the macrocyclic cavity. The interactions via hydrogen bonding are responsible for high negative enthalpy and entropy changes accompanying the complexation of cyclodextrins with teriflunomide. These results were in agreement with the molecular modeling calculations, which provide a clearer picture of the involved interactions at the atomic level.
Collapse
|