1
|
Ma H, Yang Z, Xu D, Ding H, Liu H, Huang Y. PDMS-in-water emulsions stabilized by cellulose/chitin/starch nanoparticles for fabrication of oil adsorbents: A comparison study. Carbohydr Polym 2025; 352:123229. [PMID: 39843121 DOI: 10.1016/j.carbpol.2025.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Pickering emulsion template has aroused attention in the fabrication of porous composite materials. In this work, six nanoparticles including cellulose nanofiber/nanocrystal (CNF/CNC), chitin nanofiber/nanocrystals (ChNF/ChNC) and waxy/normal corn nanocrystal (WSNC/CSNC) were comparatively studied for their performance in fabricating porous composites with PDMS via Pickering emulsion templates. Among all, CNF and ChNF exhibited best emulsion stabilizing ability, while ChNF and ChNC at optimized concentrations enabled the formation of high internal phase emulsions with long-term stability of over 300 days. WSNC and CSNC with poorest emulsion stabilizing ability failed to obtain porous composites while the other four particles all formed porous composites with PDMS. The ChNF and ChNC composites displayed highest hydrophobicity, followed by the CNC composite. As adsorbents for diesel oil, the ChNF composite showed the highest adsorption capacity and adsorption selectivity, which could be easily recycled by simple mechanical squeezing. At optimized PDMS fractions, the ChNF composite could achieve continuous oil-water separation under vacuum with a highest separation efficiency of 98.9 % at high flux of 8862 L/h·m2. This study revealed the association between nanoparticles and their composite materials fabricated from Pickering emulsion template, hopefully broadening the application of natural polymers in water treatment and related fields.
Collapse
Affiliation(s)
- Haojie Ma
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Zheng Yang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haozhen Ding
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Hui Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China
| | - Yao Huang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
2
|
Zhang Y, Wu Y, Liu Z, Zhang Q, Lu J, Dong Z, Cao X, Li S. Preparation and properties of waterborne polyurethane/nanocellulose/sepiolite composite aerogel for sound absorption and heat insulation. Int J Biol Macromol 2025; 298:140015. [PMID: 39828160 DOI: 10.1016/j.ijbiomac.2025.140015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Faced with all kinds of serious ecological and environmental protection problems in today's society, development must take the sustainable and green road. Nanocellulose aerogels with the advantages of wide resource of raw materials, low cost, good biocompatibility and biodegradation, are good thermal and sound insulation materials. Herein, a versatile composite aerogel with good thermal stability and heat-insulating property was prepared by freeze-drying method using cellulose nanocrystals (CNCs), waterborne polyurethane (WPU) and sepiolite (SEP) as substrates. The initial degradation temperature is above 200 °C, the temperature difference is >35 °C after 30 min at 80 °C, and the thermal conductivity is between 0.03 and 0.05. Additionally, it has good compression performance and sound absorption performance, and the maximum compressive stress is slightly reduced from 0.0245 MPa to 0.0231 MPa after 10 cycles of compression at 40 % maximum strain. The average sound absorption coefficient of aerogel in band of 100-6000 is >0.7.
Collapse
Affiliation(s)
- Yang Zhang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuyang Wu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Paper Industry Productivity Promotion Center, Quzhou, China
| | - Zhijiang Liu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Quanjian Zhang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiarun Lu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zihao Dong
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xingwang Cao
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Shengyu Li
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Zeng H, Wang S, Zhao X, Liu B, Zhang Z, Qin C, Liang C, Huang C, Yao S. Preparation of hydrophobic and lipophilic carboxymethyl cellulose composite aerogel using ferrous ion/ persulfate and its directed oxidation for oil-water emulsion separation. Carbohydr Polym 2025; 348:122814. [PMID: 39562089 DOI: 10.1016/j.carbpol.2024.122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
In particular, efficient oxidative demulsification is an effective method for oil-water separation. However, the inactivation of free radicals owing to the rapid release of transition metals is the main factor that reduces the effectiveness. In this study, a hydrophobic and lipophilic CP/SiO2@Fe2+ composite aerogel was prepared using carboxymethyl cellulose as substrate, polyvinyl alcohol as reinforcement, and SiO2 nanoparticles as hydrophobic modifier. The resulting aerogel had a water contact angle of 139°, oil absorption yield of 99.9 %, higher specific surface area 132.13 m2·g-1, low density of 0.021 g·cm-3, and high porosity of 98.60 %. Fe2+ was slowly released from the composite aerogel after efficient Fe2+ loading of 65.77 mg·g-1. The drug exhibited a low release rate of 87.72 % after 9 h, which was higher than that of the composite aerogel. This promoted the efficient presence of SO4-· activated from persulfate oxidation in the catalytic oxidative demulsification system over a long period. The green and efficient separation of oily-water was achieved by the synergistic effect of the adsorption of the hydrophobic and lipophilic composite aerogel and targeted and efficient oxidative demulsification. These results demonstrate the advantages of high separation efficiency, durability, stability of the CP/SiO2@Fe2+ composite aerogel for oil-water separation.
Collapse
Affiliation(s)
- Huali Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiao Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhiwei Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
4
|
de Almeida NT, Pereira ALS, de Oliveira Barros M, Mattos ALA, Rosa MDF. Enhancing Starch Film Properties Using Bacterial Nanocellulose-Stabilized Pickering Emulsions. Polymers (Basel) 2024; 16:3346. [PMID: 39684090 DOI: 10.3390/polym16233346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to address issues related to hydrophilicity, barrier properties, and mechanical performance in starch-based films by incorporating Pickering emulsions stabilized with nano-fibrillated bacterial cellulose (BC). Emulsions were added to the film-forming suspension at varying concentrations (1.0%, 2.5%, 5.0%, and 7.5% v/v) for comparison. The films were evaluated using water vapor permeability (WVP), contact angle, Fourier Transform Infrared Spectroscopy (FTIR), and tensile tests. The results showed a significant reduction in film hydrophilicity, with the contact angle increasing from 49.7° ± 1.5 to 71.0° ± 1.4, and improved water vapor barrier properties, with WVP decreasing from 0.085 ± 0.04 to 0.016 ± 0.01 g·mm/h·m2·kPa. FTIR analysis confirmed the successful incorporation of the emulsion into the starch matrix. Among the tested concentrations, 2.5% provided an optimal balance, increasing hydrophobicity while maintaining mechanical strength. These findings demonstrate that Pickering emulsions are an effective strategy for enhancing the functional properties of starch films.
Collapse
Affiliation(s)
| | - André Luís Sousa Pereira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará (UFC), Block 940, Fortaleza 60455-760, CE, Brazil
| | - Matheus de Oliveira Barros
- Department of Chemical Engineering, Federal University of Ceará (UFC), Block 709, Fortaleza 60455-760, CE, Brazil
| | | | | |
Collapse
|
5
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
6
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. CHEMOSPHERE 2024; 362:142654. [PMID: 38901705 DOI: 10.1016/j.chemosphere.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Clean water is an integral part of industries, agricultural activities and human life, but water contamination by toxic dyes, heavy metals, and oil spills is increasingly serious in the world. Aerogels with unique properties such as highly porous and extremely low density, tunable surface modification, excellent reusability, and thermal stability can contribute to addressing these issues. Thanks to high purity, biocompatibility and biodegradability, bacterial cellulose can be an ideal precursor source to produce aerogels. Here, we review the modification, regeneration, and applications of bacterial cellulose-based aerogels for water treatment. The modification of bacterial cellulose-based aerogels undergoes coating of hydrophobic agents, carbonization, and incorporation with other materials, e.g., ZIF-67, graphene oxide, nanoparticles, polyaniline. We emphasized features of modified aerogels on porosity, hydrophobicity, density, surface chemistry, and regeneration. Although major limits are relevant to the use of toxic coating agents, difficulty in bacterial culture, and production cost, the bacterial cellulose aerogels can obtain high performance for water treatment, particularly, catastrophic oil spills.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
7
|
Chen Z, Wang B, Qi J, Liu T, Feng Y, Liu C, Shen C. Eco-friendly bacterial cellulose/MXene aerogel with excellent photothermal and electrothermal conversion capabilities for efficient separation of crude oil/seawater mixture. Carbohydr Polym 2024; 336:122140. [PMID: 38670764 DOI: 10.1016/j.carbpol.2024.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Developing novel absorbent materials targeting high-efficiency, low-energy-consumption, and environmental-friendly oil spill cleanup is still a global issue. Porous absorbents endowed with self-heating function are an attractive option because of that they are able to in-situ heat crude oil and dramatically reduce oil viscosity for efficient remediation. Herein, we facilely prepared an eco-friendly multifunctional bacterial cellulose/MXene aerogel (P-SBC/MXene aerogel) for rapid oil recovery. Thanks to excellent full solar spectrum absorption (average absorbance = 96.6 %), efficient photo-thermal conversion, and superior electrical conductivity (electrical resistance = 36 Ω), P-SBC/MXene aerogel exhibited outstanding photothermal and electrothermal capabilities. Its surface temperature could quickly reach 93 °C under 1.0 kW/m2 solar irradiation and 124 °C under 3.0 V voltage respectively, enabling effective heat transfer toward spilled oil. The produced heat significantly decreased crude oil viscosity, allowing P-SBC/MXene aerogel to rapidly absorb oil. By combining solar heating and Joule heating, P-SBC/MXene aerogel connected to a pump-assisted absorption device was capable of achieving all-weather crude oil removal from seawater (crude oil flux = 630 kg m-2 h-1). More notably, P-SBC/MXene aerogel showed splendid outdoor crude oil separation performance. Based on remarkable crude oil/seawater separation ability, the versatile aerogel provides a promising way to deal with large-area oil spills.
Collapse
Affiliation(s)
- Zhenfeng Chen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiahuan Qi
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianhui Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqing Feng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Pontes ER, de Souza Guedes L, da Silva TF, Barbosa FCB, de Souza BWS, de Freitas Rosa M, Vieira RS, Andrade FK. Development of silanized bacterial cellulose aerogels for the incorporation of natural oils with healing properties: Copaiba (Copaifera officinalis), bourbon geranium (Pelargonium X ssp.) essential oils and buriti (Mauritia flexuosa) vegetable oil. Int J Biol Macromol 2024; 269:132266. [PMID: 38777689 DOI: 10.1016/j.ijbiomac.2024.132266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.
Collapse
Affiliation(s)
- Evellheyn Rebouças Pontes
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Luciana de Souza Guedes
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Thamyres Freire da Silva
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | | | | | | | - Rodrigo Silveira Vieira
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| |
Collapse
|
9
|
Firouzi-Haji R, Aghajamali M, Hassanzadeh H, Lu Q, Zhang X, Veinot JGC, Meldrum A. Asphaltene-Derived Graphene Quantum Dots for Controllable Coatings on Glass, Fabrics, and Aerogels. ACS OMEGA 2023; 8:43610-43616. [PMID: 38027342 PMCID: PMC10666212 DOI: 10.1021/acsomega.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Graphene quantum dots (GQDs) derived from natural asphaltene byproducts can produce controlled hydrophobic or hydrophilic interfaces on glass, fabrics, and aerogels. A set of facile solvent extraction methods were used to isolate and chemically prepare materials with different surface functionalities from a commercially derived asphaltene precursor. The organic-soluble fraction was used to create hydrophobic and water-repellent surfaces on glass and cotton fabrics. The GQD solutions could also penetrate the pores of a silica aerogel, rendering it hydrophobic. Alternatively, by extracting the more polar fraction of the GQDs and oxidizing their surfaces, we also demonstrate strongly hydrophilic coatings. This work shows that naturally abundant GQD-containing materials can produce interfaces with the desired wettability properties through a straightforward tuning of the solvent extraction procedure. Owing to their natural abundance, low toxicity, and strong fluorescence, asphaltene-derived GQDs could thus be applied, in bulk, toward a wide range of tunable surface coatings. This approach, moreover, uses an important large-scale hydrocarbon waste material, thereby offering a sustainable alternative to the disposal of asphaltene wastes.
Collapse
Affiliation(s)
- Razieh Firouzi-Haji
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Maryam Aghajamali
- Department
of Chemical & Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassan Hassanzadeh
- Department
of Chemical & Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Qiuyun Lu
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuehua Zhang
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Alkiviathes Meldrum
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
10
|
Mubarak S, Kim Y, Elsayed I, Hassan EB. Cellulose Nanofibril Stabilized Pickering Emulsion Templated Aerogel with High Oil Absorption Capacity. ACS OMEGA 2023; 8:36856-36867. [PMID: 37841181 PMCID: PMC10568711 DOI: 10.1021/acsomega.3c03871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Nanocellulose-based aerogels, featuring a three-dimensional porous structure, are considered as a desirable green absorbent because of their exceptional absorption performance as well as the abundance and renewability of the raw material. However, these aerogels often require hydrophobic modification or carbonization, which is often environmentally harmful and energy-intensive. In this study, we introduce a Pickering-emulsion-templating approach to fabricate a cellulose nanofibril (CNF) aerogel with a hierarchical pore structure, allowing for high oil absorption capacity. n-Hexane-CNF oil-in-water Pickering emulsions are prepared as an emulsion template, which is further lyophilized to create a hollow microcapsule-based CNF (HM-CNF) aerogel with a density ranging from 1.3 to 6.1 mg/cm3 and a porosity of ≥99.6%. Scanning electron microscopy and Brunauer-Emmett-Teller analyses reveal the HM-CNF aerogel's hierarchical pore structure, originating from the CNF Pickering emulsion template, and also confirm the aerogel's very high surface area of 216.6 m2/g with an average pore diameter of 8.6 nm. Furthermore, the aerogel exhibits a maximum absorption capacity of 354 g/g and 166 g/g for chloroform and n-hexadecane, respectively, without requiring any surface modification or chemical treatment. These combined findings highlight the potential of the Pickering-emulsion-templated CNF aerogel as an environmentally sustainable and high-performance oil absorbent.
Collapse
Affiliation(s)
- Shuaib
A. Mubarak
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, Mississippi 39759, United States
| | - Yunsang Kim
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, Mississippi 39759, United States
| | - Islam Elsayed
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, Mississippi 39759, United States
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, 201 Locksley Way, Starkville, Mississippi 39759, United States
| |
Collapse
|
11
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
12
|
Ahmad H, Anguilano L, Fan M. Microstructural architecture and mechanical properties of empowered cellulose-based aerogel composites via TEMPO-free oxidation. Carbohydr Polym 2022; 298:120117. [DOI: 10.1016/j.carbpol.2022.120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
|
13
|
Zheng S, Jiang L, Chang F, Zhang C, Ma N, Liu X. Mechanically Strong and Thermally Stable Chemical Cross-Linked Polyimide Aerogels for Thermal Insulator. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50129-50141. [PMID: 36308398 DOI: 10.1021/acsami.2c14007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-performance thermal insulating materials are highly desirable in several fields, especially for thermal insulation of buildings to reduce energy consumption. Owing to the remarkable thermal stability, high porosity, low density, and outstanding mechanical features, polyimide (PI) aerogels have attracted great attention. In this work, chemical cross-linked PI (CCPI) aerogels were fabricated via freeze-drying and thermal imidization, which possess outstanding mechanical properties, good thermal stability, and excellent thermal insulation characteristics. The chemically cross-linked structure can effectively inhibit shrinkage, while retaining the structural integrity, resulting in the lower density and lower shrinkage of the materials. In this paper, completely imidized and highly cross-linked polyimide aerogels were synthesized by using p-phenylenediamine (PDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and the cross-linker 2,3,6,7,14,15-hexaaminotriptycene (HMT). The CCPI aerogels with excellent properties, such as covalently cross-linked chemical structure, low density (0.069 g/cm3), low volume shrinkage (10%), high decomposition temperature (Td5% = 587 °C), and low thermal conductivity (25 mW m-1K-1) are in high demand in the field of thermal insulation. This work furnishes a new method for the development of polymer-based thermal insulation materials for various prospective applications.
Collapse
Affiliation(s)
- Shuai Zheng
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Lei Jiang
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Fan Chang
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
- Institute of System Engineering, Beijing, China100010
| | - Changqi Zhang
- Institute of System Engineering, Beijing, China100010
| | - Ning Ma
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China150001
| | - Xueqiang Liu
- Institute of System Engineering, Beijing, China100010
| |
Collapse
|
14
|
Panaitescu DM, Stoian S, Frone AN, Vlăsceanu GM, Baciu DD, Gabor AR, Nicolae CA, Radiţoiu V, Alexandrescu E, Căşărică A, Damian C, Stanescu P. Nanofibrous scaffolds based on bacterial cellulose crosslinked with oxidized sucrose. Int J Biol Macromol 2022; 221:381-397. [PMID: 36058396 DOI: 10.1016/j.ijbiomac.2022.08.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
In this work, oxidized sucrose (OS), which is a safe bio-based and non-toxic polyaldehyde, was used as a crosslinker in defibrillated bacterial cellulose (BC) sponges obtained by freeze-drying. For mimicking the proteins' crosslinking, BC was first modified with an aminosilane to partially replace the OH groups on the BC surface with more reactive amino groups. Further, the aminosilane-grafted bacterial cellulose (BCA) was crosslinked with OS in different concentrations and thermally cured. Functionalized bacterial celluloses showed a good thermal stability, comparable to that of unmodified cellulose and much improved mechanical properties. A threefold increase in the compression strength was obtained for the BCA scaffold after crosslinking and curing. This was correlated with the uniform pore structure emphasized by the micro-CT and SEM analyses. The OS-crosslinked BCA scaffolds were not cytotoxic and showed a porosity of around 80 %, which was almost 100 % open porosity. This study shows that the crosslinking of aminated BC scaffolds with OS allows the obtaining of 3D cellulose structures with good mechanical properties and high porosity, suitable for soft tissue engineering. The results recommend this new method as an innovative approach to obtaining biomaterial scaffolds that mimic the natural extracellular matrix.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania.
| | - Sergiu Stoian
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | | | - Dora Domnica Baciu
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Augusta Raluca Gabor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Valentin Radiţoiu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Angela Căşărică
- National Institute for Chemical - Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Celina Damian
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Stanescu
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
15
|
Kamal T, Ul-Islam M, Fatima A, Ullah MW, Manan S. Cost-Effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels 2022; 8:552. [PMID: 36135264 PMCID: PMC9498321 DOI: 10.3390/gels8090552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials and Research, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Ma QG, Hao Y, Xue YF, Niu YL, Chang XL. Removal of Formaldehyde from Aqueous Solution by Hydrogen Peroxide. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
de Brito Soares AL, Maia MT, Gomes SDL, da Silva TF, Vieira RS. Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Shahriari-Khalaji M, Li G, Liu L, Sattar M, Chen L, Zhong C, Hong FF. A poly-l-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydr Polym 2022; 287:119266. [DOI: 10.1016/j.carbpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
|
19
|
Yang J, Zhang X, Chen L, Zhou X, Fan X, Hu Y, Niu X, Xu X, Zhou G, Ullah N, Feng X. Antibacterial aerogels with nano‑silver reduced in situ by carboxymethyl cellulose for fresh meat preservation. Int J Biol Macromol 2022; 213:621-630. [PMID: 35623462 DOI: 10.1016/j.ijbiomac.2022.05.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/20/2023]
Abstract
Bacterial cellulose (BC) was used as a reinforcing agent, citric acid (CA) as a cross-linking agent, and CMC@AgNPs as antibacterial nanomaterials, in which CMC@AgNPs were reduced from AgNO3 in situ by carboxymethyl cellulose (CMC) as a reducing agent and stabilizer to fight microbial corruption. Its potential application in packaging fresh meat has been investigated. Results showed that the antibacterial CMC@AgNPs/BC/CA aerogels with excellent structural integrity and outstanding water absorption were developed by adding 0.3% BC and 0.25% CA. The CMC@AgNPs/BC/CA aerogel significantly reduced the color change and the total viable bacterial counts (TVC) in fresh meat after 7 days of refrigerated storage. The results indicated that CMC@AgNPs/BC/CA aerogels can effectively extend the shelf life of fresh meat, and can be used for meat packaging as a biologically active absorption pad.
Collapse
Affiliation(s)
- Jingwen Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianhao Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xuening Niu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Sustainable Cross-Linkers for the Synthesis of Cellulose-Based Aerogels: Research and Application. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellulose aerogels with polyester resin as cross-linkers have attracted much attention. This study describes the route to produce a fully bio-based aerogel with high added value from waste paper and starch, cellulose acetate and starch–cellulose acetate mixture as cross-linkers for oil adsorption, instead of the environmentally harmful polyester resin. The manufacturing process is simple, sustainable and cost-efficient, without releasing harmful by-products into the environment. The effects of different cross-linkers on the oil adsorption, dynamic oil retention, reusability and morphology of the aerogels were studied in detail. Experimental results show that these environmentally friendly recycled aerogels have a very low density, i.e., —0.0110–0.0209 g cm−3, and highly porous structures, with a porosity of 96.74–99.18%. The synthesized hydrophobic aerogels showed contact angles of ∼124–129°. The compression moduli are lower than that of an aerogel with polyester as a cross-linker, but the compression modulus of the mixture of starch and cellulose acetate especially shows a higher value than expected. The sorption capacity of the aerogels with bio-based cross-linkers was significantly increased compared to the aerogels with polyester; it is now up to 56 times their own weight. The aerogels also have good oil-retention properties.
Collapse
|
21
|
Liu H, Guo F, Lv Q, Li A, Xu W, Zhang X. Facile Synthesis of Hydrophobic Loofah‐Chitin Aerogel for Efficient Removal of Benzene and Toluene. ChemistrySelect 2022. [DOI: 10.1002/slct.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Liu
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - Feng Guo
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - Qiang Lv
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - An‐ming Li
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - Wei‐chao Xu
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - Xue‐han Zhang
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| |
Collapse
|
22
|
Sanguanwong A, Flood AE, Ogawa M, Martín-Sampedro R, Darder M, Wicklein B, Aranda P, Ruiz-Hitzky E. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126068. [PMID: 34229386 DOI: 10.1016/j.jhazmat.2021.126068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl)-oxidized cellulose nanofibers (CNF) were assembled to fibrous clay sepiolite (SEP) by means of a high shear homogenizer and an ultrasound treatment followed by lyophilization using three different methods: normal freezing, directional freezing, and a sequential combination of both methods. Methyltrimethoxysilane (MTMS) was grafted to the foam surface by the vapor deposition method to introduce hydrophobicity to the resulting materials. Both the SEP addition (for the normal and directional freezing methods) and the refreezing preparation procedure enhanced the compressive strength of the foams, showing compressive moduli in the range from 28 to 103 kPa for foams loaded with 20% w/w sepiolite. Mercury intrusion porosimetry shows that the average pore diameters were in the range of 30-45 µm depending on the freezing method. This large porosity leads to materials with very low apparent density, around 6 mg/cm3, and very high porosity >99.5%. In addition, water contact angle measurement and Fourier-transform infrared spectroscopy (FTIR) were applied to confirm the foam hydrophobicity, which is suitable for use as an oil sorbent. The sorption ability of these composite foams has been tested using olive and motor oils as models of organophilic liquid adsorbates, observing a maximum sorption capacity of 138 and 90 g/g, respectively.
Collapse
Affiliation(s)
- Amaret Sanguanwong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand; Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Adrian E Flood
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Raquel Martín-Sampedro
- Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Margarita Darder
- Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, ICMM-CSIC, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Paulauskiene T, Uebe J, Ziogas M. Cellulose aerogel composites as oil sorbents and their regeneration. PeerJ 2021; 9:e11795. [PMID: 34414028 PMCID: PMC8344703 DOI: 10.7717/peerj.11795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023] Open
Abstract
Background With every oil tanker comes the risk of an accident and oil spill. Sorbents are the most suitable means to remove oil spills. Aerogels as sorbents have high porosity and can be made from cellulose from paper waste. The literature does not distinguish between paper and cardboard as sources of cellulose aerogels and little is known about composites of cellulose aerogels consisting of cellulose fibres and chemically untreated, unprocessed fibres or particles of straw, wool, macroalgae or cellulose acetate from cigarette butts. In this study, the sorption properties for marine diesel oil and biodiesel of such aerogels and their regenerative capacity with bioethanol were investigated. Methods Cellulose aerogels were prepared from office paper and cardboard waste without and with chemically untreated algae, straw, wool and cellulose acetate as a composite by freeze drying. All samples were hydrophobised with methylsilane. The density to calculate the porosity and the contact angle were determined. Then the sorption capacity was determined over five cycles of sorption of oil and regeneration with bioethanol. Results The average contact angle of all samples was 125°, indicating hydrophobicity. Paper-based aerogels were found to consistently have higher sorption capacities for biodiesel, marine diesel oil and bioethanol than cardboard-based aerogels. In particular, the wool/cellulose aerogel composite was found to have better sorption capacity for biodiesel, marine diesel oil and bioethanol than all other samples. The cellulose acetate/cellulose aerogel composite showed significantly higher sorption capacities than the paper and cardboard control samples (highest value is 32.25 g g−1) only when first used as a sorbent for biodiesel, but with a rapid decrease in the following cycles.
Collapse
Affiliation(s)
- Tatjana Paulauskiene
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| | - Jochen Uebe
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| | - Mindaugas Ziogas
- Department of Engineering/Faculty of Marine Technology and Natural Sciences, Klaipeda University, Klaipeda, Lithuania
| |
Collapse
|
24
|
Liu T, Cai C, Ma R, Deng Y, Tu L, Fan Y, Lu D. Super-hydrophobic Cellulose Nanofiber Air Filter with Highly Efficient Filtration and Humidity Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24032-24041. [PMID: 33978395 DOI: 10.1021/acsami.1c04258] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-air humidity, especially condensation into droplets under the influence of temperature, can pose a serious threat to air purification filters. This report introduces the use of methyltrimethoxysilane (MTMS) for the silanization hydrophobic modification of cellulose nanofibers (CNFs) and obtains an air filter with super-hydrophobicity (CA = 152.4°) and high-efficiency filtration of particulate matter (PM) through the freeze-drying technology. The antihumidity performance of CNFs filters that undergo hydrophobic modification in high-humidity air is improved. Especially in the case of high-humidity air forming condensed water droplets, the increase in the rate of filtration resistance of the hydrophobically modified CNFs filter is much lower than that of the unmodified filter. In addition, the water-vapor-transmission rate of the hydrophobically modified filter is improved. More importantly, adding MTMS can regulate the porous structure of CNFs filters and improve the filtration performance. The specific surface area and the porosity of the filter are 26.54 m2/g and 99.21%, respectively, and the filtering effects of PM1.0 and PM2.5 reach 99.31 and 99.75%, respectively, while a low-filtration resistance (42 Pa) and a quality factor of up to 0.122 Pa-1 are achieved. This work has improved the application potential of high-performance air-purification devices to remove particulate pollution and may provide useful insights to design next-generation air filters suitable for application in high-air humidity.
Collapse
Affiliation(s)
- Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruijia Ma
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
25
|
Numerical Modeling for the Photocatalytic Degradation of Methyl Orange from Aqueous Solution using Cellulose/Zinc Oxide Hybrid Aerogel: Comparison with Experimental Data. Top Catal 2021. [DOI: 10.1007/s11244-021-01451-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Shen Y, Li D, Wang L, Zhou Y, Liu F, Wu H, Deng B, Liu Q. Superelastic Polyimide Nanofiber-Based Aerogels Modified with Silicone Nanofilaments for Ultrafast Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20489-20500. [PMID: 33904301 DOI: 10.1021/acsami.1c01136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofiber membranes via electrospinning with layered structures are frequently used for oil/water separation, thanks to their unique properties. However, challenges that involve nanofibrous membranes still remain, such as high energy consumption and unfavorable transport properties because of the densely compact structure. In this study, superelastic and robust nanofiber-based aerogels (NFAs) with a three-dimensional (3D) structure as well as tunable porosity were prepared using polyimide (PI) nanofibers via a freeze-drying process followed by the solvent-vapor treatment. The porous NFAs were further modified using trichloromethylsilane (TCMS) to generate silicone nanofilaments (SiNFs) on the surface of the PI nanofibers, which could enhance the hydrophobicity (water contact angle 151.7°) of the NFAs. The corresponding superhydrophobic NFAs exhibited ultralow density (<10.0 mg m-3), high porosity (>99.0%), and rapid recovery under 80% compression strain. SiNFs-coated NFAs (SiNFs/NFAs) could also collect a wide range of oily solvents with high absorption capacities up to 159 times to their own weight. Moreover, surfactant-stabilized water-in-oil emulsions could also be efficiently separated (up to 100%) under the driving force of gravity, making it a promising energy-efficient technology. Additionally, SiNFs/NFAs maintained high separation efficiency throughout five separation-recovery cycles, indicating the potential of SiNFs/NFAs in the field of oil/water separation, sewage treatment, as well as oily fume purification.
Collapse
Affiliation(s)
- Ying Shen
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Lanlan Wang
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Yuqi Zhou
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Feng Liu
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Huiping Wu
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Qingsheng Liu
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|