1
|
Kulkarni A, Michel S, Butler JE, Ziegler KJ. Gelation and large thermoresponse of cranberry-based xyloglucan. Carbohydr Polym 2024; 339:122189. [PMID: 38823897 DOI: 10.1016/j.carbpol.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
Cranberry waste contains potentially valuable components, such as proanthocyanidins, flavanols, and xyloglucan. Highly-purified xyloglucan (XG) from cranberries were studied through steady and oscillatory shear rheology at various concentrations and temperatures. At room temperature, an apparent yield stress is observed and the storage modulus exceeds the loss modulus ( [Formula: see text] ) for concentrations of 0.5 wt% and higher, indicating that the XG solution has formed a physical hydrogel. Thermoresponsive gelation is observed with a five-order of magnitude increase in shear moduli as it undergoes a weak to strong gel transition around 52 °C. The gelation time was 5 min with an observed storage moduli up to 3500 Pa. Cranberry-based XG exhibits thermoresponsive behavior at concentrations as low as 0.1 wt% (w/v), which is significantly lower than prior gelation studies of XG from other sources. The formation of a weak gel at room temperature and large storage moduli observed at room temperature is likely associated with the low level of impurities and small amount of galactose present in the XG chains.
Collapse
Affiliation(s)
- Aniruddha Kulkarni
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Stephen Michel
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Jason E Butler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Kirk J Ziegler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
2
|
Zhu Y, Dong C, Chi F, Gu X, Liu L, Yang L. Effects of Cactus Polysaccharide on Pasting, Rheology, Structural Properties, In Vitro Digestibility, and Freeze-Thaw Stability of Rice Starch. Foods 2024; 13:2420. [PMID: 39123611 PMCID: PMC11311433 DOI: 10.3390/foods13152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study combined rice starch (RS) with cactus polysaccharide (CP) at different composites (0.6%, 1.2%, 1.8%, 2.4%, and 3.0%, w/w), and analyzed the variations in the complex gelatinization properties, rheological properties, thermal properties, structural properties, digestibility, and freeze-thaw stability. As a result, the pasting parameters (p < 0.05) and storage modulus (G') together with the loss modulus (G″) decreased as the CP concentration increased; meanwhile, the RS and the CP-RS gels were pseudoplastic fluids. As revealed by differential scanning calorimetry (DSC), incorporating CP into the starch elevated the starch gelatinization temperature while decreasing gelatinization enthalpy, revealing that CP effectively retarded long-term retrogradation in RS. The gel microstructure and crystallization type altered after adding CP. Typically, CP inclusion could enhance the proportion of resistant starch and slowly digestible starch (SDS), thereby slowing RS hydrolysis. Concurrently, adding CP promoted the RS freeze-thaw stability. These findings could potentially aid in the innovation of CP-based food products.
Collapse
Affiliation(s)
- Yahui Zhu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Chuang Dong
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Fumin Chi
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lei Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lin Yang
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| |
Collapse
|
3
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Structural characterization and immune-enhancing effects of a novel polysaccharide extracted from Sargassum fusiforme. Int J Biol Macromol 2024; 270:132497. [PMID: 38763236 DOI: 10.1016/j.ijbiomac.2024.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.2, with an average molecular weight of 16.5 kDa. Its structure was primarily characterized by →4)-α-GulA-(1 → and →4)-β-ManA-(1 → linkages confirmed by FT-IR, methylation, and NMR analyses. The absence of a triple-helix structure was in SFP-αII was confirmed using circular dichroism and Congo red dye assays. The dimensions varied with lengths ranging from 20 nm up to 3 μm revealed by atomic force microscopy (AFM). SFP-αII has been found to enhance immunomodulatory activity in cyclophosphamide (CTX)-induced immunosuppressed mice. This was evidenced by improvements in immune organ indices, cytokine levels, and the release of nitric oxide (NO). Specifically, SFP-αII mitigated immunosuppression by upregulating the secretion of IL-1β (167.3 %) and TNF-α (227.1 %) at a dose of 400 mg/kg, compared with the CTX group in macrophages. Ultimately, SFP-αII may serve as a mechanism for immune enhancement through modulation of TLR4-mediated NF-κB and MAPK signaling pathways. This integration of traditional Chinese and Western medicine, leveraging SFP-αII as a potential functional food could be pivotal in alleviating immunosuppressive side effects in CTX treatment.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| | - Yan Zhao
- Medical Imaging Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| |
Collapse
|
4
|
Wu H, Wang M, Ren X, Li Z, Ai L, Xie F, Sun Z. Preparation of type 3 rice resistant starch using high-pressure homogenous coenzyme treatment and investigating its potential therapeutic effects on blood glucose and intestinal flora in db/db mice. Int J Biol Macromol 2024; 264:130552. [PMID: 38442835 DOI: 10.1016/j.ijbiomac.2024.130552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Resistant starch from rice was prepared using high-pressure homogenization and branched chain amylase treatment. The yield, starch external structure, thermal properties, and crystal structure of rice-resistant starch prepared in different ways were investigated. The results showed that the optimum homogenizing pressure was 90 MPa, the optimum digestion time was 4 h, the optimum concentration of branched-chain amylase was 50 U/g and the yield of resistant starch was 38.58 %. Scanning electron microscopy results showed a rougher surface and more complete debranching of the homogenized coenzyme rice-resistant starch granules. FT-IR and X-ray diffraction results showed that the homogenization treatment exhibited a spiral downward trend on rice starch relative crystallinity and a spiral upward trend on starch debranching and recrystallization. The 4-week dietary intervention in db/db type 2 diabetic mice showed that homogeneous coenzyme rice-resistant starch had a better glycemic modulating effect than normal debranched starch and had a tendency to interfere with the index of liver damage in T2DM mice. Additionally, homogeneous coenzyme rice-resistant starch proved more effective in improving intestinal flora disorders and enhancing the abundance of probiotics in T2DM mice.
Collapse
Affiliation(s)
- Haoming Wu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 201499 Shanghai, China; Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Man Wang
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 201499 Shanghai, China
| | - Xiaolong Ren
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhipeng Li
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 201499 Shanghai, China.
| |
Collapse
|
5
|
Xie F, Zhu Z, Zeng J, Xia Y, Zhang H, Wu Y, Song Z, Ai L. Fabrication of zein-tamarind seed polysaccharide-curcumin nanocomplexes: their characterization and impact on alleviating colitis and gut microbiota dysbiosis in mice. Food Funct 2024; 15:2563-2576. [PMID: 38353040 DOI: 10.1039/d3fo04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
In this work, a zein-tamarind seed polysaccharide (TSP) co-delivery system was fabricated using an anti-solvent precipitation method. The formation mechanism, characterization, and effect on alleviating colitis and gut microbiota dysbiosis in mice of zein-TSP-curcumin (Z/T-Cur) nanocomplexes were investigated. Hydrogen bonding and the hydrophobic effect played a key role in the formation of Z/T-Cur nanocomplexes, and the interactions were spontaneous and driven by enthalpy. The encapsulation efficiency, loading capacity, and bioavailability increased from 60.8% (Zein-Cur) to 91.7% (Z/T-Cur1:1), from 6.1% (Zein-Cur) to 18.3% (Z/T-Cur1:1), and from 4.7% (Zein-Cur) to 20.0% (Z/T-Cur1:1), respectively. The Z/T-Cur significantly alleviated colitis symptoms in DSS-treated mice. Additionally, the prepared nanocomplexes rebalanced the gut microbiota composition of colitis mice by increasing the abundance of Akkermansia. Odoribacter and Monoglobus were rich in the Z-T-Cur treatment group, and Turicibacter and Bifidobacterium were rich in the zein-TSP treatment group. This study demonstrated that the TSP could be helpful in the targeted drug delivery system.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zengjin Zhu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jingyi Zeng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
6
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Lin X, Liu Y, Wang R, Dai J, Wang L, Zhang J. Extraction of pectins from renewable grapefruit (Citrus paradisi) peels using deep eutectic solvents and analysis of their structural and physicochemical properties. Int J Biol Macromol 2024; 254:127785. [PMID: 37931867 DOI: 10.1016/j.ijbiomac.2023.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
This study presents an innovative attempt to extract high-quality pectins from grapefruit (Citrus paradisi) peels by using deep eutectic solvents (DESs) as extraction agents. The maximum yield of betaine-citric acid (BC)-extracted pectin (BC-P) reached 36.47 % under the optimum process conditions: an L/S ratio of 25 mL/g, a pH of 2.0, and a temperature of 85 °C for 120 min. The yield of BC-P was significantly higher than HCl-extracted pectin (HCl-P, 8.76 %) under a pH of 2.0. In addition, the structural, physicochemical, and emulsifying properties of the purified pectins (BC-P and HCl-P) and commercial pectin (CP) were comparatively analyzed. Results showed that BC-P exhibited higher RG-I value, more arabinan side-chains, bigger Mw and Mn value than HCl-P. Moreover, the viscosity, G' and G'' of BC-P were significantly higher than those of HCl-P and CP. More importantly, BC-P demonstrated better emulsifying activity and stability compared to HCl-P and CP. When the concentration of BC-P was increased to 1.50 %, a stable emulsion containing a 50 % soybean oil fraction could be obtained. Our results confirmed that DESs can be considered as high-effective agents for pectin extraction. Pectins extracted from grapefruit peels can be as a promising natural emulsifiers that can be used in the food industry.
Collapse
Affiliation(s)
- Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yuezhe Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Kou Y, Guo R, Li X, Sun X, Song H, Song L, Guo Y, Song Z, Yuan C, Wu Y. Synthesis, physicochemical and emulsifying properties of OSA-modified tamarind seed polysaccharides with different degrees of substitution. Int J Biol Macromol 2023; 253:127102. [PMID: 37769765 DOI: 10.1016/j.ijbiomac.2023.127102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.
Collapse
Affiliation(s)
- Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalong Guo
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Meng Y, Hu C, Cheng J, Qiu W, Wang Q, Chen X, Chang C, Hu J, Qiu Z, Zheng G. The extraction, structure characterization and hydrogel construction of a water-insoluble β-glucan from Poria cocos. Carbohydr Res 2023; 534:108960. [PMID: 37769376 DOI: 10.1016/j.carres.2023.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Most reported polysaccharides from Poria cocos (PCPs) in traditional Chinese medicine decoctions were water-soluble heteropolysaccharides while the water-insoluble PCPs were scarcely researched due to the poor water-solubility. In this study, a water-insoluble polysaccharide with high yield of 59%, and high purity with a glucan content of 98.8%, was isolated by diluted sodium hydroxide at low temperature and coded as PCPA. The chemical structure of PCPA was identified as a liner β-glucan with 1, 3-linked glycosidic bond by the fourier infrared spectrum (FT-IR), ion chromatography (ICP), gas chromatography and mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) measurements. Importantly, PCPA was successfully used to construct hydrogels (PCPA-Gs) with good thermal stability, water retention ability and swelling property through simple physical cross-linking, due to the abundance of hydroxyl groups on glucan chains. Moreover, the rheology analysis of PCPA-Gs showed a rapid transition between gel and sol as well as the shear-thinning property. The hydrogel developed in this study holds promise for applications in the food, pharmaceutical, and cosmetic fields.
Collapse
Affiliation(s)
- Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cheng Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jingjing Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wenxiu Qiu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
10
|
Ren X, Zheng W, Li L, Feng S, Zhang H, Xiong Z, Wu Y, Song Z, Ai L, Xie F. Effects of tamarind seed polysaccharides on physicochemical characteristics of frozen dough: structure-function relationship. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6574-6583. [PMID: 37243337 DOI: 10.1002/jsfa.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Recently, frozen dough has become more popular because of its ability to be quickly transformed into freshly baked foods. During the storage and transport process, frozen dough can suffer some degree of damage caused by ice crystallization and recrystallization. Adding polysaccharides to frozen dough is a good way to solve this problem. Tamarind seed polysaccharide (TSP) has excellent ice crystal steady ability and has also been widely used in frozen foods. However, there is no study on the use of TSP in frozen dough. RESULTS TSP can stabilize the bound water content, inhibit the freezable water content, and increase elasticity. However, the dough with different structures of TSP added was less firm after 30 days of freezing compared to the dough without TSP, and the porosity and stomatal density of the prepared steamed bread gradually decreased. The addition of TSP reduced gluten deterioration during the freezing process, thus decreasing the collapse and uneven porosity of the steamed bread. CONCLUSIONS The results could provide new insights into the structure of TSP and its effect on the quality characteristics of frozen dough. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolong Ren
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weiqi Zheng
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lin Li
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuo Feng
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi, China
| | - Lianzhong Ai
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- Department of Food Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Shen Y, Ma J, Fan Q, Gao D, Yao H. Strategical development of chrome-free tanning agent by integrating layered double hydroxide with starch derivatives. Carbohydr Polym 2023; 304:120511. [PMID: 36641159 DOI: 10.1016/j.carbpol.2022.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
The development of sustainable and eco-friendly leather industry requires green tanning agents because of unbounded chromium (easily converted into hazardous Cr-VI) in chrome tanned leather. In this study, a chrome-free tanning agent (OS-LDHs) was established by integrating layered double hydroxide (magnesium aluminum zirconium hydrotalcite, LDHs) with starch derivatives. A series of oxidized starch (OS) were prepared as masking agents for LDHs tanning process. Among them, the weight-average molecular weight (Mw) of 1685 g/mol could be reached, which will promise the well-distribution of OS. The SEM and EDS analysis confirmed the uniform penetration of OS-LDHs, avoiding accumulation on the surface of crust leather. Notably, leather tanned by OS-LDHs achieved shrinkage temperature of 66.7 °C, porosity of 75.51 % and tear strength of 66.7 N/mm. Not only the hydrogen bond but also the coordination between NH2, COOH in collagen and OS-2-LDHs improved the thermal stability of leather without destroying the collagen triple helix.
Collapse
Affiliation(s)
- Yiming Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| | - Qianqian Fan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Han Yao
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| |
Collapse
|
12
|
Guo R, Sun X, Kou Y, Song H, Li X, Song L, Zhao T, Zhang H, Li D, Liu Y, Song Z, Wu J, Wu Y. Hydrophobic aggregation via partial Gal removal affects solution characteristics and fine structure of tamarind kernel polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
13
|
Huang J, Yu M, Wang S, Shi X. Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physiochemical properties of jicama starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Gallic acid and heat moisture treatment improve pasting, rheological, and microstructure properties of Chinese yam starch-chitosan gels: A comparative study. Int J Biol Macromol 2022; 222:114-120. [PMID: 36113602 DOI: 10.1016/j.ijbiomac.2022.09.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Nowadays,It is difficult for the polysaccharide-starch system to meet demand of practical production owing to the poor gel properties. Therefore, aiming to further improve the practical application of polysaccharide-starch gel, the effects of gallic acid (GA) and heat moisture treatment (HMT) on the gel properties and microstructure of yam starch/chitosan (YS/CS) composite gels were investigated. Swell power (SP) results showed that GA and HMT treatment respectively reduced the SP of YS gel by 3.24 g/g and 6.03 g/g, given that GA and HMT decrease the rheology of the water phase inhibiting the entry of water into the swollen starch. In the pasting process, HMT reduced pasting viscosity of the HMT/YS system because only little amylose was leached in the medium for elevating its viscosity after HMT. The rheological properties suggested that high temperature treatment of HMT facilitated the disruption and disintegration of starch granules resulting dynamic modulus had a decline trend. The elastic properties of GA/YS gels were enhanced with the addition of GA, which could be supported by the thicken lamellar observed in its microstructure. In general, GA and HMT effectively alter the gel properties of YS/CS gel system, and facilitate its practical application in food industry.
Collapse
|
15
|
Zhou C, Huang Y, Chen J, Chen H, Wu Q, Zhang K, Li D, Li Y, Chen Y. Effects of high-pressure homogenization extraction on the physicochemical properties and antioxidant activity of large-leaf yellow tea polysaccharide conjugates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wu J, Xu S, Huang Y, Zhang X, Liu Y, Wang H, Zhong Y, Bai L, Liu C. Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chem 2022; 386:132819. [PMID: 35366635 DOI: 10.1016/j.foodchem.2022.132819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Superheated steam (SST) at different moisture contents (10% ∼ 30%) was used to prevent the agglomeration of kudzu starch during rapid pasting with hot water. Changes in pasting-related properties and multi-scale structures were investigated. At moisture content of 20%, SST dramatically reduced the agglomeration rate from 42.20% to 2.97% without destroying the microstructure of kudzu starch or deteriorating the rheological properties of kudzu starch paste, which was superior to the conventional pre-gelatinization treatment. The agglomeration was prevented mainly by decreasing the swelling power and increasing the pasting temperature of kudzu starch. The slight disruption of multi-scale structures may facilitate faster water absorption by kudzu starch, but it was not the primary prevention mechanism. Moreover, the solubility of kudzu starch was not related to the agglomeration, since it was significantly decreased by SST. Our findings could provide new insights into the rapid pasting of starchy powders or flours with hot water.
Collapse
Affiliation(s)
- Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shunqian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ying Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China
| | - Haoqiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yejun Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
17
|
Keivanfard N, Nasirpour A, Barekat S, Keramat J. Effects of heat and high-pressure homogenization processes on rheological and functional properties of gum tragacanth. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Hu J, Yao W, Chang S, You L, Zhao M, Chi-Keung Cheung P, Hileuskaya K. Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Res Int 2022; 157:111267. [PMID: 35761578 DOI: 10.1016/j.foodres.2022.111267] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022]
Abstract
In this study, a purified algal polysaccharide (P1) was isolated from Sargassum fusiforme and its structural characteristics and anti-photoaging activity were studied. Results showed that P1 had a molecular weight of 289 kDa and was mainly composed of mannuronic acid, guluronic acid and fucose with molar ratio of 7.67:2.35:1.00. The backbone of P1 was →4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→3,4)-β-ManA-(1→ with a terminal group of α-Fucp-(1→ linked to O-3 position of →3,4)-β-ManA-(1→. In addition, P1 could inhibit the expressions of MMPs (MMP-1, MMP-3 and MMP-9) in the UVB-irradiated HaCaT cells, indicating that P1 could reduce collagen loss caused by UVB irradiation. It also reduced the contents of ROS and inflammatory factors (TNF-α, IL-6 and IL-1β), indicating that P1 could reduce the oxidative stress and inflammation response. Thus, Sargassum fusiforme polysaccharide P1 could be used as a potential functional food to relieve skin photoaging.
Collapse
Affiliation(s)
- Jinhong Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Skaryna str., Minsk 220141, Belarus
| |
Collapse
|
19
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
20
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wang P, Li D, Hou C, Yang T, Yang R, Gu Z, Jiang D. Tailormade Wheat Arabinoxylan Reveals the Role of Substitution in Regulating Gelatinization and Retrogradation Behavior of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1659-1669. [PMID: 35099184 DOI: 10.1021/acs.jafc.1c07722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To elucidate the role of substitution of arabinoxylan (AX) in the characteristics of wheat starch, this study prepared AX with a well-defined structure by targeted enzymatic hydrolysis and comparatively investigated the effects of AX with different degrees of substitution on gelatinization and retrogradation behavior of starch. Removal of major arabinofuranosyl (Araf) of mono- or disubstituted xylopyranosyl (Xylp) of both low-molecular-weight (Mw: 62.5 kDa, Araf/Xylp: 0.61) and high-molecular-weight AX (Mw: 401.2 kDa, Araf/Xylp: 0.61) reversed the decreased gelatinization viscosity and recrystallization of amylose induced by AX to a similar extent. Upon retrogradation for 30 days, the Araf of mono- and disubstituted Xylp contributed to the water distribution and the effect depended on the molecular chain length. The C3-linked Araf of disubstituted Xylp was more involved in prohibiting the retardation of recrystallization of amylopectin, while the presence of Araf of monosubstituted Xylp might hinder the interactions between AX and amylopectin.
Collapse
Affiliation(s)
- Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Cuidan Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tao Yang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
24
|
Guo R, Li X, Sun X, Kou Y, Zhang J, Li D, Liu Y, Zhao T, Zhang H, Song Z, Wu Y. Molecular aggregation via partial Gal removal affects physicochemical and macromolecular properties of tamarind kernel polysaccharides. Carbohydr Polym 2022; 285:119264. [DOI: 10.1016/j.carbpol.2022.119264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
|
25
|
Fanxiao K, Huazhong Y, Weidong X. Study on Structural Characteristics of Composite Smart Grille Based on Principal Component Analysis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4712041. [PMID: 35035459 PMCID: PMC8754626 DOI: 10.1155/2022/4712041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
In recent years, many scholars have conducted in-depth and extensive research on the mechanical properties, preparation methods, and structural optimization of grid structural materials. In this paper, the structural characteristics of composite intelligent grid are studied by combining theoretical analysis with experiments. According to the existing conditions in the laboratory, the equilateral triangular grid structure experimental pieces were prepared. In this paper, principal component analysis combined with nearest neighbor method was used to detect the damage of composite plates. On this basis, the multiobjective robustness optimization of the structure is carried out based on artificial intelligence algorithm, which makes the structure quality and its sensitivity to uncertain parameters lower. Particle swarm optimization (PSO) is used in neural network training. The damage characteristics of different grid structures, different impact positions, and different impact energies were studied. The results show that the structural damage types, areas, and propagation characteristics are very different when the structure is impacted at different positions, which verifies that the grid structure has a good ability to limit the damage diffusion and shows that the grid structure has a good ability to resist damage.
Collapse
Affiliation(s)
- Kong Fanxiao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- School of Mechanical and Transportation Engineering of Guangxi University of Science, Guangxi, China
| | - Yao Huazhong
- Research Institute of Science and Technology of Chinalco, Beijing, China
| | - Xie Weidong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Xie F, Zhang H, Wu Y, Xia Y, Ai L. Effects of tamarind seed polysaccharide on physicochemical properties of corn starch treated by high pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Zeng W, Wang J, Shan X, Yu S, Zhou J. Efficient Production of Scleroglucan by Sclerotium rolfsii and Insights Into Molecular Weight Modification by High-Pressure Homogenization. Front Bioeng Biotechnol 2021; 9:748213. [PMID: 34540818 PMCID: PMC8448344 DOI: 10.3389/fbioe.2021.748213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Scleroglucan is a non-ionic water-soluble polysaccharide, and has been widely used in the petroleum, food, medicine and cosmetics industries. Currently, scleroglucan is mainly produced by Sclerotium rolfsii. A higher level of scleroglucan (42.0 g/L) was previously obtained with S. rolfsii WSH-G01. However, the production of scleroglucan was reduced despite a higher glucose concentration remaining. Additionally, the molecular weight of scleroglucan was large, thus restricted its application. In this study, by adjusting the state of seeds inoculated, the degradation issue of scleroglucan during the fermentation process was solved. By comparing different fed-batch strategies, 66.6 g/L of scleroglucan was harvested by a two-dose fed-batch mode, with 53.3% glucose conversion ratio. To modify the molecular weight of scleroglucan, a combination method with HCl and high-pressure homogenization treatment was established. Finally, scleroglucan with molecular weight of 4.61 × 105 Da was obtained. The developed approaches provide references for the biosynthesis and molecular weight modification of polysaccharides.
Collapse
Affiliation(s)
- Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junyi Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Xie F, Wang Z, Liu J. Effects of Pectins with Different Structural and Conformational Characteristics on Gelatinization and Retrogradation of Corn Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fan Xie
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
- Shanghai Engineering Research Center of Food Microbiology School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Zhengwu Wang
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jianhua Liu
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
| |
Collapse
|