1
|
Wang L, Zhang Z, Zeng Z, Lin Y, Xiong B, Zheng B, Zhang Y, Pan L. Structural characterization of polysaccharide from an edible fungus Dictyophora indusiata and the remodel function of gut microbiota in inflammatory mice. Carbohydr Polym 2025; 351:123141. [PMID: 39779040 DOI: 10.1016/j.carbpol.2024.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Dictyophora indusiata is an edible fungus, which is known as bamboo fungus. D. indusiata polysaccharide is considered as the most important bioactive component. The aim of this study was to investigate the structure of a polysaccharide fraction from D. indusiata and the effects of D. indusiata polysaccharide on gut microbiota and metabolites in inflammatory mice. Here, the DIP1p, a polysaccharide fraction from D. indusiata, was obtained by isolation and purification using Cellulose DE-52 column and Sephadex G-200 gel column. The results showed that DIP1p is a heteropolysaccharide consisting of glucose, mannose, galactose and xylose in the ratio of 55.2 %, 28.6 %, 10.3 % and 5.9 %, which mainly linked by →3)-Glcp-(1 → glycosidic bonds. In addition, D. indusiata polysaccharide restored the colonic length reduction, modulated the secretion of cytokine and mitigated histological damage. It is remarkable that D. indusiata polysaccharide enhanced the abundance of beneficial bacteria Blautia and Roseburia, and increased the levels of short-chain fatty acids including acetic acid and propionic acid. Our findings indicated that D. indusiata polysaccharide remodeled gut microbiota and enhanced short-chain fatty acids levels to alleviate the inflammation.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Yan M, Liu G, Liu S, Liu J, Li H, Wang H, Zou Y, Pan C, Zhou F, Zeng X, Yu Y, Wu Y, Yang S, Duan S, Yuan P. Ultrasonic-assisted enzymatic extraction, physicochemical properties and prebiotic activities of polysaccharides from Saccharomyces cerevisiae spore wall. ULTRASONICS SONOCHEMISTRY 2025; 114:107258. [PMID: 39952164 PMCID: PMC11874524 DOI: 10.1016/j.ultsonch.2025.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Yeast wall polysaccharides (YWPs) are a bioactive compound found in the vegetative cells of Saccharomyces cerevisiae, contributing to its applications in food and medicine. YWPs have been extensively studied because of their diverse biological activities. Although the yeast spore wall of S. cerevisiae also contains polysaccharides, the biological activities of the components of the spores have received limited attention. In this study, yeast spore wall polysaccharides (YSWPs) were extracted from chs3Δ spores with exposed β-glucan layers via an ultrasonic-assisted enzymatic extraction (UAE) method, and the optimal extraction process was determined through single-factor and orthogonal experiments. The physicochemical properties of YWPs and YSWPs were compared under identical extraction conditions, and the effects of YSWPs on the abundance of the intestinal microflora and short-chain fatty acids (SCFAs) production in vitro were investigated. The results revealed that the optimal UAE process for YSWPs involves an ultrasonic power of 300 W, an ultrasonic duration of 60 min, an enzyme concentration of 1 % (w/w), and an enzymatic hydrolysis time of 4 h. The total sugar content of the extract was found to be 89.20 ± 0.52 %. The primary monosaccharides present in YSWPs are mannose and glucose, which are consistent with those found in the vegetative cell wall polysaccharides. Both YWPs and YSWPs exhibit similar physical properties, however, YSWPs has a smaller particle size, resulting in superior water-holding and oil-holding capacities. In simulations of in vitro colon fermentation, YSWPs can increased the population of beneficial microorganisms in the human intestine while reducing the number of harmful microbial populations. Additionally, it can effectively produced propionate and butyrate. These findings suggest that YSWPs can help maintain the intestinal ecological balance and promote intestinal health.
Collapse
Affiliation(s)
- Mengqing Yan
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Guoyu Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Shiwei Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Jia Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Haizhi Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, PR China
| | - Haotian Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | - Yan Zou
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Cong Pan
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Fang Zhou
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Xueying Zeng
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Youqiang Yu
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Yimin Wu
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Shuheng Yang
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China
| | - Shenglin Duan
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China.
| | - Peng Yuan
- China National Research Institute of Food and Fermentation Industries, Beijing 100020, PR China.
| |
Collapse
|
3
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
4
|
Yi HJ, Kang YR, Chang YH. Structural, physicochemical, and in vitro digestion properties of microgel-reinforced synbiotic hydrogel beads filled with pectic oligosaccharides as a delivery system for Limosilactobacillus reuteri. Food Chem 2025; 464:141764. [PMID: 39476583 DOI: 10.1016/j.foodchem.2024.141764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Pea protein microgel (MG)-reinforced synbiotic low methoxyl pectin (LMP) hydrogel beads filled with different concentrations (0 %, 0.2 %, and 0.4 %) of pectic oligosaccharides (POS) were developed as a delivery system for Limosilactobacillus reuteri (L. reuteri). SEM results revealed that incorporating POS into the hydrogel beads made the gel matrix smoother and more compact, reducing probiotic leakage and higher encapsulation efficiency. FT-IR analysis observed new ionic crosslinking between LMP and calcium ions. In vitro digestion results suggested that MG-reinforced synbiotic hydrogel beads showed higher survival rates throughout the upper gastrointestinal tract than MG, and the highest values were observed in the hydrogel beads with 0.4 % of POS. Most L. reuteri was released from the developed system after exposure to simulated colonic conditions for 48 h. MG-reinforced synbiotic hydrogel beads showed higher thermal and storage stability than MG alone, indicating that adding hydrogel bead layer to MG can efficiently protect L. reuteri from environmental stresses.
Collapse
Affiliation(s)
- Hee Jin Yi
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yu-Ra Kang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Silva GS, Nunes Moreira FI, Rodrigues de Albuquerque TM, Abreu TL, Torres de Souza EG, da Silva LR, Jenyffer de Farias Marques AD, de Sousa Galvão M, Dos Santos Lima M, de Souza EL, Madruga MS, Kurozawa LE, Alencar Bezerra TK. Microencapsulated phenolic compounds from organic coffee husk: Impacts on human gut microbiota and in vitro prebiotic potential. Food Res Int 2025; 201:115597. [PMID: 39849730 DOI: 10.1016/j.foodres.2024.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media. The PCs, especially when encapsulated, promoted an increase in the abundance of Lactobacillus spp./Enterococcus spp., Bifidobacterium spp., and Ruminococcus albus/R. flavefaciens, and a reduction in the abundance of Bacteroides spp./Prevotella spp., Clostridium histolyticum, and Eubacterium rectale/Clostridium cocoides. The results suggest that the PCs exhibited prebiotic potential, with their efficacy enhanced by microencapsulation, particularly when WPC was used exclusively as the encapsulating agent.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Flávia Izabely Nunes Moreira
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Thaianaly Leite Abreu
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Campus Cuiabá, 78068-600 Cuiabá, Mato Grosso, Brazil
| | - Eike Guilherme Torres de Souza
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Layane Rosa da Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Mércia de Sousa Galvão
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Wan X, Wang J, Zhang S, Zhang X, Shi X, Chen G. New insights into adlay seed bran polysaccharides: Effects of enzyme-assisted Aspergillus niger solid-state fermentation on its structural features, simulated gastrointestinal digestion, and prebiotic activity. Int J Biol Macromol 2025; 284:138101. [PMID: 39608551 DOI: 10.1016/j.ijbiomac.2024.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Adlay seed bran, typically discarded or used as animal feed, represents a significant resource waste. This study investigates the structural and physicochemical properties, in vitro digestive behavior, and fecal fermentation profiles of adlay seed bran polysaccharides (ASBPs) prepared using different methods. These methods include hot water extraction, Aspergillus niger solid-state fermentation (SSF), and enzyme-assisted SSF with β-glucosidase, cellulase, and xylanase, referred to as ASBP, ASBP-F, ASBP-GF, ASBP-CF, and ASBP-XF, respectively. Results showed that enzyme-assisted SSF with A. niger improved extraction efficiency and uniformity of ASBPs, increasing total neutral sugars, uronic acids, mannose, and galactose while reducing glucose content, molecular weight, and particle size. ASBP-CF had the best extraction rate, sugar content, lowest molecular weight, finest uniformity, and smallest particle size. In simulated digestion tests, all ASBP variants were stable in stomach and small intestine conditions but degradable by human fecal microbiota, showing varying fermentability levels. ASBPs increased Bacteroidetes populations, inhibited Proteobacteria growth, and enhanced short-chain fatty acid (SCFAs) production, with ASBP-CF showing the highest fermentability and prebiotic efficacy. ASBP-CF was particularly effective in promoting beneficial bacteria like Bacteroides and restraining harmful bacteria such as Escherichia_Shigella, producing more SCFAs during fermentation. These findings suggest that ASBP-CF has potential as a dietary supplement to improve gut health, presenting a high-value utilization strategy for adlay seed bran.
Collapse
Affiliation(s)
- Xiuping Wan
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Juxiang Wang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengyan Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
7
|
Li H, Fan L, Yang S, Tan P, Lei W, Yang H, Gao Z. Lactobacillus acidophilus 6074 Fermented Jujube Juice Ameliorated DSS-induced Colitis via Repairing Intestinal Barrier, Modulating Inflammatory Factors, and Gut Microbiota. Mol Nutr Food Res 2024:e202400568. [PMID: 39676427 DOI: 10.1002/mnfr.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Lactobacillus acidophilus L. acidophilus Lactobacillus, Bifidobacterium, and Akkermansia, This study aimed to explore the ameliorative effects and underlying mechanisms of oral administration Lactobacillus acidophilus 6074 fermented jujube juice (LAFJ) on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, jujube juice was used as a substrate and fermented by L. acidophilus 6074 to investigate its effects on gut microbiota, intestinal barrier function, oxidative stress, inflammatory factors, and short-chain fatty acids (SCFAs) in mice with colitis and to reveal its potential mechanism for alleviating colitis. The results demonstrated that fermentation caused significant changes in the nutrients and nonnutrients of jujube juice, mainly in organic acids (malic acid, lactic acid, citric acid, and succinic acid) and free amino acids (Thr, Met, Ser, Ile, and Lys). High-dose LAFJ (20 mL/kg/day) significantly reduced the disease activity index (DAI), improved histopathological morphology, and increased colon length in colitis mice. LAFJ alleviated colon damage and preserved the integrity of the colonic mucosal barrier by promoting the expression of colonic tight junction proteins occludin, claudin-1, and zonula occluden-1 (ZO-1). Furthermore, LAFJ inhibited the production of proinflammatory factors and attenuated oxidative stress. Gut microbiota of mice revealed that LAFJ increased beneficial bacteria such as Lactobacillus, Bifidobacterium, and Akkermansia, promoted the production of SCFAs, and inhibited the growth of harmful microorganisms. Overall, LAFJ could reshape and restore gut microbiota imbalance caused by intestinal inflammation and alleviate the development of colitis, which may become a novel dietary intervention.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
8
|
Zapico A, Salazar N, Arboleya S, González del Rey C, Diaz E, Alonso A, Gueimonde M, de los Reyes-Gavilán CG, Gonzalez C, González S. Potential of Fiber and Probiotics to Fight Against the Effects of PhIP + DSS-Induced Carcinogenic Process of the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25161-25172. [PMID: 39470985 PMCID: PMC11565705 DOI: 10.1021/acs.jafc.4c07366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
We determined the in vivo counteracting effect of fiber and probiotic supplementation on colonic mucosal damage and alterations in gut microbiota caused by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) and sodium dextran sulfate (DSS). Male Fischer-344 rats were randomly divided into 4 groups: control (standard diet), PhIP + DSS group (standard diet + PhIP + DSS), fiber (fiber diet + PhIP + DSS), and probiotic (probiotic diet + PhIP + DSS). The intake of PhIP + DSS for 3 weeks induced colonic mucosal erosion, crypt loss, and inflammation, and the distal colon was more severely damaged. Fiber alleviated colonic mucosal damage by reducing crypt loss and inflammation, while the probiotic increased colon length. The intake of PhIP + DSS increased the fecal relative abundance of Clostridia UCG014 along the intervention, in contrast to the lower abundances of these taxa found after PhIP + DSS administration in the rats supplemented with probiotics or fiber. Fiber supplementation mitigated the histological damage caused by PhIP + DSS shifting the gut microbiota toward a reduction of pro-inflammatory taxa.
Collapse
Affiliation(s)
- Aida Zapico
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Nuria Salazar
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Silvia Arboleya
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Carmen González del Rey
- Anatomical
Pathology Service, Central University Hospital of Asturias (HUCA), Oviedo 33011, Spain
| | - Elena Diaz
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Ana Alonso
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Miguel Gueimonde
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Celestino Gonzalez
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
9
|
Lubis AR, Linh NV, Srinual O, Fontana CM, Tayyamath K, Wannavijit S, Ninyamasiri P, Uttarotai T, Tapingkae W, Phimolsiripol Y, Van Doan HV. Effects of passion fruit peel (Passiflora edulis) pectin and red yeast (Sporodiobolus pararoseus) cells on growth, immunity, intestinal morphology, gene expression, and gut microbiota in Nile tilapia (Oreochromis niloticus). Sci Rep 2024; 14:22704. [PMID: 39349558 PMCID: PMC11442623 DOI: 10.1038/s41598-024-73194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
This study explores the effects of dietary supplementation with passion fruit peel pectin (Passiflora edulis) and red yeast cell walls (Sporidiobolus pararoseus) on growth performance, immunity, intestinal morphology, gene expression, and gut microbiota of Nile tilapia (Oreochromis niloticus). Nile tilapia with an initial body weight of approximately 15 ± 0.06 g were fed four isonitrogenous (29.09-29.94%), isolipidic (3.01-4.28%), and isoenergetic (4119-4214 Cal/g) diets containing 0 g kg-1 pectin or red yeast cell walls (T1 - Control), 10 g kg-1 pectin (T2), 10 g kg-1 red yeast (T3), and a combination of 10 g kg-1 pectin and 10 g kg-1 red yeast (T4) for 8 weeks. Growth rates and immune responses were assessed at 4 and 8 weeks, while histology, relative immune and antioxidant gene expression, and gut microbiota analysis were conducted after 8 weeks of feeding. The results showed that the combined supplementation (T4) significantly enhanced growth performance metrics, including final weight, weight gain, specific growth rate, and feed conversion ratio, particularly by week 8, compared to T1, T2, and T3 (P < 0.05). Immunological assessments revealed increased lysozyme and peroxidase activities in both skin mucus and serum, with the T4 group showing the most pronounced improvements. Additionally, antioxidant and immune-related gene expression, including glutathione peroxidase (GPX), glutathione reductase (GSR), and interleukin-1 (IL1), were upregulated in the gut, while intestinal morphology exhibited improved villus height and width. Gut microbiota analysis indicated increased alpha and beta diversity, with a notable rise in beneficial phyla such as Actinobacteriota and Firmicutes in the supplemented groups. These findings suggest that the combined use of pectin and red yeast cell walls as prebiotics in aquaculture can enhance the health and growth of Nile tilapia, offering a promising alternative to traditional practices. Further research is needed to determine optimal dosages for maximizing these benefits.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Centre (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khambou Tayyamath
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Punika Ninyamasiri
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Toungporn Uttarotai
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Hien V Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Feed Innovation Centre (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Liu P, Fei L, Wu D, Zhang Z, Chen W, Li W, Yang Y. Progress in the metabolic kinetics and health benefits of functional polysaccharides from plants, animals and microbes: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 7:100526. [DOI: 10.1016/j.carpta.2024.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
11
|
An L, Chang G, Zhang L, Wang P, Gao W, Li X. Pectin: Health-promoting properties as a natural galectin-3 inhibitor. Glycoconj J 2024; 41:93-118. [PMID: 38630380 DOI: 10.1007/s10719-024-10152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, 300402, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Pengwang Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| |
Collapse
|
12
|
Martins ACS, Medeiros GKVDV, de Oliveira SPA, de Albuquerque TMR, Sampaio KB, Dos Santos Lima M, do Nascimento YM, da Silva EF, Tavares JF, da Silva MS, de Souza EL, de Oliveira MEG. Unrevealing the in vitro impacts of Cereus jacamaru DC. cladodes flour on potentially probiotic strains, selected bacterial populations, and metabolic activity of human intestinal microbiota. Food Res Int 2023; 174:113658. [PMID: 37981375 DOI: 10.1016/j.foodres.2023.113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.
Collapse
Affiliation(s)
- Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | | | | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE 56302-100, Brazil
| | - Yuri Mangueira do Nascimento
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | |
Collapse
|
13
|
Ren Y, Mao S, Zeng Y, Chen S, Tian J, Ye X. Pectin from Citrus unshiu Marc. Alleviates Glucose and Lipid Metabolism by Regulating the Gut Microbiota and Metabolites. Foods 2023; 12:4094. [PMID: 38002152 PMCID: PMC10670317 DOI: 10.3390/foods12224094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Yujun Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Y.R.); (S.M.); (Y.Z.); (S.C.); (J.T.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
14
|
Cao W, Guan S, Yuan Y, Wang Y, Mst Nushrat Y, Liu Y, Tong Y, Yu S, Hua X. The digestive behavior of pectin in human gastrointestinal tract: a review on fermentation characteristics and degradation mechanism. Crit Rev Food Sci Nutr 2023; 64:12500-12523. [PMID: 37665605 DOI: 10.1080/10408398.2023.2253547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pectin is widely spread in nature and it develops an extremely complex structure in terms of monosaccharide composition, glycosidic linkage types, and non-glycosidic substituents. As a non-digestible polysaccharide, pectin exhibits resistance to human digestive enzymes, however, it is easily utilized by gut microbiota in the large intestine. Currently, pectin has been exploited as a novel functional component with numerous physiological benefits, and it shows a promising prospect in promoting human health. In this review, we introduce the regulatory effects of pectin on intestinal inflammation and metabolic syndromes. Subsequently, the digestive behavior of pectin in the upper gastrointestinal tract is summarized, and then it will be focused on pectin's fermentation characteristics in the large intestine. The fermentation selectivity of pectin by gut bacteria and the effects of pectin structure on intestinal microecology were discussed to highlight the interaction between pectin and bacterial community. Meanwhile, we also offer information on how gut bacteria orchestrate enzymes to degrade pectin. All of these findings provide insights into pectin digestion and advance the application of pectin in human health.
Collapse
Affiliation(s)
- Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Stuttgart, Germany
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Ayakdaş G, Ağagündüz D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon 2023; 9:e19888. [PMID: 37809641 PMCID: PMC10559293 DOI: 10.1016/j.heliyon.2023.e19888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The gut microbiota has a significant role in human health and is affected by many factors. Diet and dietary components have profound impacts on the composition of the gut microbiome and largely contribute to the change in bacterial flora. A high-fiber diet increased dietary fiber (DF) fermentation and the production of short-chain fatty acids (SCFAs), which increased the number of microorganisms. Microbiota-accessible carbohydrates (MACs), a subgroup of fermentable carbohydrates such as DF, are defined as indigestible carbohydrates metabolized by microbes. These carbohydrates are important components to sustain the microbial environment of the complicated digestive tract and avoid intestinal dysbiosis. Each MAC has a unique property and can therefore be used as a sensitive output microbiota modulator to support host homeostasis and modulate health. In addition to the overall health-developing effects, MACs are thought to have a promising effect on the prevention of non-communicable diseases (NCDs), which are major health problems worldwide. The aim of the manuscript was to describe microbiota-accessible carbohydrates and summarize their effects on gut modulation and NCDs.
Collapse
Affiliation(s)
- Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, Ataşehir, İstanbul, 34755, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| |
Collapse
|
16
|
Ren T, Xu M, Zhou S, Ren J, Li B, Jiang P, Li H, Wu W, Chen C, Fan M, Jiao L. Structural characteristics of mixed pectin from ginseng berry and its anti-obesity effects by regulating the intestinal flora. Int J Biol Macromol 2023; 242:124687. [PMID: 37146855 DOI: 10.1016/j.ijbiomac.2023.124687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Ginseng berry is the mature berry of ginseng and its polysaccharide has hypolipidaemic effect, but its mechanism remains unclear. A pectin (GBPA) with a molecular weight of 3.53 × 104 Da was isolated from ginseng berry, it was mainly composed of Rha (25.54 %), GalA (34.21 %), Gal (14.09 %) and Ara (16.25 %). Structural analysis showed that GBPA is a mixed pectin containing rhamnogalacturonan-I and homogalacturonan domains and has a triple helix structure. GBPA distinctly improved lipid disorders in obese rats, and changed intestinal flora with enrichments of Akkermansia, Bifidobacterium, Bacteroides and Prevotella, improved the levels of acetic acid, propionic acid, butyric acid and valeric acid. Serum metabolites which involved in the lipid regulation-related pathway, including cinnzeylanine, 10-Hydroxy-8-nor-2-fenchanone glucoside, armillaribin, 24-Propylcholestan-3-ol, were also greatly changed after GBPA treatment. GBPA activated AMP-activated protein kinase, phosphorylated acetyl-CoA carboxylase, and reduced the expression of lipid synthesis-related genes sterol regulatory element-binding protein-1c and fatty acid synthases. The regulatory effects of GBPA on lipid disorders in obese rats are related to the regulation of intestinal flora and activation of AMP-activated protein kinase pathway. Ginseng berry pectin could be considered in the future as a health food or medicine to prevent obesity.
Collapse
Affiliation(s)
- Ting Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Bo Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Peng Jiang
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Meiling Fan
- The Affiliated Hospital of ChangChun University of Chinese Medicine, Changchun, Jilin 130021, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
17
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
18
|
Zhao R, Zhang C, Yu L, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function. Polymers (Basel) 2023; 15:2103. [PMID: 37177246 PMCID: PMC10180753 DOI: 10.3390/polym15092103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Hyaluronan (HA) has various biological functions and is used extensively as a dietary supplement. Previous studies have shown that the probiotic effects of polysaccharides are closely associated with their molecular properties. The intestinal microbiota has been demonstrated to degrade HA; however, the regulatory effects of different molecular weights (MW) of HA on gut microbiota and metabolites are unknown. In the present study, we performed in vitro fermentation of human-derived feces for three MWs of HA (HA1, 32.3 kDa; HA2, 411 kDa; and HA3, 1510 kDa) to investigate the differences in the fermentation properties of HA with different MWs. We found that gut microbiota can utilize all HAs and, consequently, produce large amounts of short-chain fatty acids (SCFAs). In addition, we showed that all three HA MWs promoted the growth of Bacteroides, Parabacteroides, and Faecalibacterium, with HA1 being more effective at promoting the growth of Bacteroides. HAs have various regulatory effects on the structure and metabolites of the gut microbiota. Spearman's correlation analysis revealed that alterations in gut microbiota and their metabolites were significantly correlated with changes in metabolic markers. For instance, HA1 enriched α-eleostearic acid and DL-3-aminoisobutyric acid by regulating the abundance of Bacteroides, and HA3 enriched Thymidin by regulating Faecalibacterium. Collectively, the fermentation properties of HA vary across MW, and our results provide insights into the potential association between the MW of HA and its fermentation characteristics by the gut microbiota. These findings provide insights into the influence of the gut microbiota and HAs on the health of the host.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
20
|
Dang G, Wen X, Zhong R, Wu W, Tang S, Li C, Yi B, Chen L, Zhang H, Schroyen M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J Anim Sci Biotechnol 2023; 14:38. [PMID: 36882874 PMCID: PMC9993796 DOI: 10.1186/s40104-023-00838-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chong Li
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
21
|
Yu C, Chen Y, Ahmadi S, Wu D, Wu J, Ding T, Liu D, Ye X, Chen S, Pan H. Goji berry leaf exerts a comparable effect against colitis and microbiota dysbiosis to its fruit in dextran-sulfate-sodium-treated mice. Food Funct 2023; 14:3026-3037. [PMID: 36861301 DOI: 10.1039/d2fo02886g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Goji berry and mulberry are both popular berries with anti-colitis effects, but their leaves have received less attention. In this study, the anti-colitis effects of goji berry leaf and mulberry leaf were investigated in dextran-sulfate-sodium-induced colitis C57BL/6N mice compared with their fruits. Goji berry leaf and goji berry reduced colitic symptoms and ameliorated tissue damage, while mulberry leaf did not. ELISA and western blotting analysis suggested that goji berry showed the best performance in inhibiting the overproduction of pro-inflammatory cytokines (TNF-α, IL-6 and IL-10) and improving damaged colonic barrier (occludin and claudin-1). Besides, goji berry leaf and goji berry reversed the gut microbiota dysbiosis by increasing the abundance of beneficial bacteria like Bifidobacterium and Muribaculaceae, and decreasing the abundance of harmful bacteria like Bilophila and Lachnoclostridium. Goji berry, mulberry and goji berry leaf could restore acetate, propionate, butyrate and valerate to ameliorate inflammation, while mulberry leaf could not restore butyrate. To the best of our knowledge, this is the first report on the comparison of the anti-colitis effects of goji berry leaf, mulberry leaf and their fruits, which is meaningful for the rational utilization of goji berry leaf as a functional food.
Collapse
Affiliation(s)
- Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Yihao Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
22
|
Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers (Basel) 2023; 15:polym15030745. [PMID: 36772046 PMCID: PMC9921167 DOI: 10.3390/polym15030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cocoa bean shells (CBS), a by-product of the cocoa industry, from two cacao varieties and obtained after selected processing conditions (fermentation, drying, roasting) were characterized in terms of their chemical composition, where they were found to be a great source of carbohydrates, specifically dietary fiber, protein, ash, and polyphenols, namely quercetin, epicatechin, and catechin. Cell wall polysaccharides were isolated by alkaline extraction (0.5 M or 4 M KOH) and were found to be enriched primarily in pectic polysaccharides (80.6-86%) namely rhamnogalacturonan and arabinogalactan as well as hemi- cellulosic polysaccharides (13.9-19.4%). Overall, 0.5 M KOH polysaccharides were favored having provided a diverse profile of neutral sugars and uronic acids. When tested for the promotion of the growth of selected probiotic strains, CBS cell wall polysaccharides performed similarly or more than inulin and rhamnogalacturonan based on the prebiotic activity scores. The short-chain fatty acid profiles were characterized by high amounts of lactic acid, followed by acetic and propionic acid.
Collapse
|
23
|
Yuan W, Tian Y, Lin C, Wang Y, Liu Z, Zhao Y, Chen F, Miao X. Pectic polysaccharides derived from Hainan Rauwolfia ameliorate NLR family pyrin domain-containing 3-mediated colonic epithelial cell pyroptosis in ulcerative colitis. Physiol Genomics 2023; 55:27-40. [PMID: 36440907 DOI: 10.1152/physiolgenomics.00081.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pectic polysaccharides (PPs) could exert functions on ulcerative colitis (UC), which is classified as a nonspecific inflammatory disorder. This study investigated the molecular mechanism of PPs derived from Rauwolfia in UC. First, the dextran sodium sulfate (DSS)-induced mouse colitis models and lipopolysaccharide (LPS)-treated colonic epithelial cell (YAMC) models were established and treated with PP. Subsequently, the effects of PPs on mucosal damages in DSS mice were detected, and the levels of inflammatory cytokines, pyroptosis-related factors, oxidative stress-related markers, and the tight junction-related proteins in the tissues or cells were examined, and the results suggested that PPs ameliorated colonic mucosal damages and cell pyroptosis in DSS mice, and limited colonic epithelial cell pyroptosis in in vitro UC models. Subsequently, the binding relations of retinol-binding protein 4 (RBP4) to miR-124-3p and NLR pyrin domain-containing 3 (NLRP3) were analyzed. miR-124-3p targeted RBP4 and reduced the binding of RBP4 to NLRP3, thus inhibiting NLRP3-mediated pyroptosis. Finally, functional rescue experiments revealed that miR-124-3p suppression or RBP4 overexpression promoted colonic epithelial cell pyroptosis. Collectively, Rauwolfia-derived PPs limited miR-124-3p and targeted RBP4 and reduced the binding potency of RBP4 to NLRP3 to inhibit NLRP3-mediated pyroptosis, resulting in the alleviation of colonic epithelial cell pyroptosis and mucosal damages in UC.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Tian
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuxuan Wang
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengying Chen
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins. Foods 2022; 11:foods11233877. [PMID: 36496685 PMCID: PMC9739951 DOI: 10.3390/foods11233877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within Lachnospiraceae in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.
Collapse
|
25
|
Brito Sampaio K, Luiz de Brito Alves J, Mangueira do Nascimento Y, Fechine Tavares J, Sobral da Silva M, dos Santos Nascimento D, dos Santos Lima M, Priscila de Araújo Rodrigues N, Fernandes Garcia E, Leite de Souza E. Nutraceutical formulations combining Limosilactobacillus fermentum, quercetin, and or resveratrol with beneficial impacts on the abundance of intestinal bacterial populations, metabolite production, and antioxidant capacity during colonic fermentation. Food Res Int 2022; 161:111800. [DOI: 10.1016/j.foodres.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
26
|
Fu YP, Li CY, Peng X, Wangensteen H, Inngjerdingen KT, Zou YF. Pectic polysaccharides from Aconitum carmichaelii leaves protects against DSS-induced ulcerative colitis in mice through modulations of metabolism and microbiota composition. Biomed Pharmacother 2022; 155:113767. [DOI: 10.1016/j.biopha.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
27
|
Song H, Zhang Z, Li Y, Zhang Y, Yang L, Wang S, He Y, Liu J, Zhu D, Liu H. Effects of different enzyme extraction methods on the properties and prebiotic activity of soybean hull polysaccharides. Heliyon 2022; 8:e11053. [PMID: 36339765 PMCID: PMC9634275 DOI: 10.1016/j.heliyon.2022.e11053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, five different processes, including hot water (HW-ASP), single enzyme (cellulase, pectinase and papain; C-ASP, PE-ASP, and P-ASP), and compound-enzyme (cellulose: pectinase: papain = 3:3:1; CE-ASP) for the extraction of soybean hull polysaccharides (ASPs) were employed, and the characterization and prebiotics activity of five polysaccharides were analyzed. These polysaccharides possessed different primary structural characteristics, including molecular weight distribution, monosaccharide composition, chemical composition, surface morphology, potential particle size, etc., while similar functional groups. In vitro digestibility assay indicated that C-ASP had strong resistance to gastric juice hydrolysis and α-amylase as compared with HW-ASP. Furthermore, C-ASP elevated the acidifying activity and promoted the growth of probiotics (Lactobacillus paracasei, Lactobacillus rhamnosus, and Lactobacillus acidophilus) during the fermentation (p < 0.05). C-ASP improved the levels of total short-chain fatty acids (SCFAs) and had better prebiotic activity than HW-ASP (p < 0.05). These findings denote that enzyme-assisted polysaccharides extracted from soybean hulls have the potential to be served as novel probiotics.
Collapse
|
28
|
Li W, Li J, Wang J, He Y, Hu YC, Wu DT, Zou L. Effects of various degrees of esterification on antioxidant and immunostimulatory activities of okra pectic-polysaccharides. Front Nutr 2022; 9:1025897. [PMID: 36337617 PMCID: PMC9630948 DOI: 10.3389/fnut.2022.1025897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2024] Open
Abstract
Pectic-polysaccharides are considered as one of the most abundant bioactive components in okra, which possess various promising health-promoting effects. However, the knowledge regarding the structure-bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited. In this study, effects of various degrees of esterification (DEs) on in vitro antioxidant and immunostimulatory activities of OPP were analyzed. Results displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE values were successfully prepared by mild alkaline de-esterification, and their primary chemical structures (compositional monosaccharide and glycosidic linkage) and molecular characteristics (molecular weight distribution, particle size, and rheological property) were overall stable. Additionally, results showed that the notable decrease of DE value did not significantly affect antioxidant activities [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical scavenging abilities as well as ferric reducing antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely related to its antioxidant activity. In fact, the slight decrease of antioxidant activity of OPP after the alkaline de-esterification might be attributed to the slight decrease of uronic acid content. Nevertheless, the immunostimulatory effect of OPP was closely related to its DE, and a suitable degree of acetylation was beneficial to its in vitro immunostimulatory effect. Besides, the complete de-acetylation resulted in a remarkable reduction of immune response. The findings are beneficial to better understanding the effect of DE value on antioxidant and immunomodulatory activities of OPP, which also provide theoretical foundations for developing OPP as functional foods or health products.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yuan He
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Wu DT, Fu MX, Guo H, Hu YC, Zheng XQ, Gan RY, Zou L. Microwave-Assisted Deep Eutectic Solvent Extraction, Structural Characteristics, and Biological Functions of Polysaccharides from Sweet Tea (Lithocarpus litseifolius) Leaves. Antioxidants (Basel) 2022; 11:antiox11081578. [PMID: 36009297 PMCID: PMC9405522 DOI: 10.3390/antiox11081578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022] Open
Abstract
The leaf of sweet tea (Lithocarpus litseifolius) is widely used as an edible and medicinal plant in China, which is rich in bioactive polysaccharides. In order to explore and promote the application of sweet tea polysaccharides in the functional food industry, the microwave-assisted deep eutectic solvent extraction (MDAE) of polysaccharides from sweet tea leaves was optimized, and the structural properties and biological functions of sweet tea polysaccharides prepared by MDAE (P-DM) were investigated and compared with that of hot water extraction (P-W). The maximum yield (4.16% ± 0.09%, w/w) of P-DM was obtained under the optimal extraction conditions (extraction time of 11.0 min, extraction power of 576.0 W, water content in deep eutectic solvent of 21.0%, and liquid–solid ratio of 29.0 mL/g). Additionally, P-DM and P-W possessed similar constituent monosaccharides and glycosidic bonds, and the homogalacturonan (HG) and arabinogalactan (AG) might exist in both P-DM and P-W. Notably, the lower molecular weight, higher content of total uronic acids, and higher content of conjugated polyphenols were observed in P-DW compared to P-W, which might contribute to its much stronger in vitro antioxidant, anti-diabetic, antiglycation, and prebiotic effects. Besides, both P-DW and P-W exhibited remarkable in vitro immunostimulatory effects. The findings from the present study indicate that the MDAE has good potential to be used for efficient extraction of bioactive polysaccharides from sweet tea leaves and P-DM can be developed as functional food ingredients in the food industry.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Meng-Xi Fu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiao-Qin Zheng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Correspondence: or (R.-Y.G.); (L.Z.); Tel./Fax: +86-28-80203191 (R.Y.-G.); +86-28-84616061 (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: or (R.-Y.G.); (L.Z.); Tel./Fax: +86-28-80203191 (R.Y.-G.); +86-28-84616061 (L.Z.)
| |
Collapse
|
30
|
Lv K, Yuan Q, Li H, Li T, Ma H, Gao C, Zhang S, Liu Y, Zhao L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022; 11:foods11050725. [PMID: 35267359 PMCID: PMC8908982 DOI: 10.3390/foods11050725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to investigate the prebiotic potential of Chlorella pyrenoidosa polysaccharides to provide useful information for developing C. pyrenoidosa as a green healthy food. C. pyrenoidosa polysaccharides were prepared and their physicochemical characteristics were determined. The digestibility and fermentation characteristics of C. pyrenoidosa polysaccharides were evaluated using in vitro models. The results revealed that C. pyrenoidosa polysaccharides were composed of five non-starch polysaccharide fractions with monosaccharide compositions of Man, Rib, Rha, GlcA, Glc, Gal, Xyl and Ara. C. pyrenoidosa polysaccharides could not be degraded under saliva and the gastrointestinal conditions. However, the molecular weight and contents of residual carbohydrates and reducing sugars of C. pyrenoidosa polysaccharides were significantly reduced after fecal fermentation at a moderate speed. Notably, C. pyrenoidosa polysaccharides could remarkably modulate gut microbiota, including the promotion of beneficial bacteria, inhibition of growth of harmful bacteria, and reduction of the ratio of Firmicutes to Bacteroidetes. Intriguingly, C. pyrenoidosa polysaccharides can promote growth of Parabacteroides distasonis and increase short-chain fatty acid contents, thereby probably contributing to the promotion of intestinal health and prevention of diseases. Thus, these results suggested that C. pyrenoidosa polysaccharides had prebiotic functions with different fermentation characteristics compared with conventional prebiotics such as fructooligosaccharide, and they may be a new prebiotic for improving human health.
Collapse
Affiliation(s)
- Kunling Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Siyuan Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (S.Z.); (L.Z.)
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
- Correspondence: (S.Z.); (L.Z.)
| |
Collapse
|
31
|
Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health. Carbohydr Polym 2022; 287:119363. [DOI: 10.1016/j.carbpol.2022.119363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
|