1
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Lv X, Huang Y, Hu M, Wang Y, Dai D, Ma L, Zhang Y, Dai H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int J Biol Macromol 2024; 277:134015. [PMID: 39038566 DOI: 10.1016/j.ijbiomac.2024.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Nanocellulose has been favored as one of the most promising sustainable nanomaterials, due to its competitive advantages and superior performances such as hydrophilicity, renewability, biodegradability, biocompatibility, tunable surface features, excellent mechanical strength, and high specific surface area. Based on the above properties of nanocellulose and the advantages of hydrogels such as high water absorption, adsorption, porosity and structural adjustability, nanocellulose based hydrogels integrating the benefits of both have attracted extensive attention as promising materials in various fields. In this review, the main fabrication strategies of nanocellulose based hydrogels are initially discussed in terms of different crosslinking methods. Then, the typical properties of nanocellulose based hydrogels are comprehensively summarized, including porous structure, swelling ability, adsorption, mechanical, self-healing, smart response performances. Especially, relying on these properties, the general application of nanocellulose based hydrogels in food field is also discussed, mainly including food packaging, food detection, nutrient embedding delivery, 3D food printing, and enzyme immobilization. Finally, the safety of nanocellulose based hydrogel is summarized, and the current challenges and future perspectives of nanocellulose based hydrogels are put forward.
Collapse
Affiliation(s)
- Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Difei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China.
| |
Collapse
|
4
|
Babaei-Ghazvini A, Patel R, Vafakish B, Yazdi AFA, Acharya B. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. Int J Biol Macromol 2024; 278:135200. [PMID: 39256122 DOI: 10.1016/j.ijbiomac.2024.135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Nanocellulose, a versatile biopolymer renowned for its exceptional physicochemical attributes including lightweight, biocompatibility, biodegradability, and higher mechanical strength properties has captured significant attention in biomedical research. This renewable material, extracted from widely abundant biosources including plants, bacteria, and algae, exists in three primary forms: cellulose-based nanocrystals (CNCs), nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are characterized by their highly crystalline, needle-shaped structure, while CNFs possess a blend of amorphous and crystalline regions. BNC stands out as the purest form of nanocellulose. Chemical functionalization enables precise tuning of nanocellulose properties, enhancing its suitability for diverse biomedical applications. In drug delivery systems, nanocellulose's unique structure and surface chemistry offer opportunities for targeted delivery of active molecules. Surface-modified nanocellulose can effectively deliver drugs to specific sites, utilizing its inherent properties to control drug release kinetics and improve therapeutic outcomes. Despite these advantages, challenges such as achieving optimal drug loading capacity and ensuring sustained drug release remain. Future research aims to address these challenges and explore novel applications of nano-structured cellulose in targeted drug delivery, highlighting the continued evolution of this promising biomaterial in biomedicine. Furthermore, the review delves into the impact of chemical, physical, and enzymatic methods for CNC surface modifications, showcasing how these approaches enhance the functionalization of CNCs for targeted delivery of different compounds in biological systems.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Abbas Fazel Anvari Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon S7K 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
5
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Liu Y, Zheng X. Bio-Inspired Double-Layered Hydrogel Robot with Fast Response via Thermo-Responsive Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3679. [PMID: 39124341 PMCID: PMC11312478 DOI: 10.3390/ma17153679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Bio-inspired hydrogel robots have become promising due to their advantage of the interaction safety and comfort between robots and humans, while current hydrogel robots mainly focus on underwater movement due to the hydration-dehydration process of thermo-responsive hydrogels, which greatly limits their practical applications. To expand the motion of the thermo-responsive hydrogel robot to the ground, we constructed a hydrogel robot inspired by a caterpillar, which has an anisotropic double-layered structure by the interfacial diffusion polymerization method. Adding PVA and SA to PNIPAm will cause different conformation transitions. Therefore, sticking the two layers of hydrogel together will form a double-layer anisotropic structure. The ultra-high hydrophilicity of PVA and SA significantly reduces the contact angle of the hydrogel from 53.1° to about 10° and reduces its hydration time. The responsive time for bending 30° of the hydrogel robot has been greatly reduced from 1 h to half an hour through the enhancement of photo-thermal conversion and thermal conductivity via the addition of Fe3O4 nanoparticles. As a result, the fabricated hydrogel robot can achieve a high moving speed of 54.5 mm·h-1 on the ground. Additionally, the fabricated hydrogel has excellent mechanical strength and can endure significant flexibility tests. This work may pave the road for the development of soft robots and expand their applications in industry.
Collapse
Affiliation(s)
- Yunsong Liu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116081, China
| | - Xiong Zheng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
| |
Collapse
|
8
|
Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH. A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system. Int J Biol Macromol 2024; 264:130525. [PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
Collapse
Affiliation(s)
- Jingwei Gong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Leilei Hou
- Department of Catalytic Chemistry and Engineering, State key-laboratory of fine chemicals, Dalian University of Technology, Dalian 116034, People's Republic of China
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Nguyen Dai Hai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, Department of Biomaterials & Bioengineering, Ho Chi Minh City, Viet Nam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Xu G, Onyianta AJ, Eloi JC, Harniman RL, Laverock J, Bond I, Diejomaoh OA, Koev TT, Khimyak YZ, Eichhorn SJ. Self-Healing Composite Coating Fabricated with a Cystamine Cross-Linked Cellulose Nanocrystal-Stabilized Pickering Emulsion. Biomacromolecules 2024; 25:715-728. [PMID: 38271957 PMCID: PMC10865351 DOI: 10.1021/acs.biomac.3c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence. Transmission electron microscopy images evidenced that cross-linking between cysCNCs took place. This cross-linking was utilized in a linseed oil-in-water Pickering emulsion system, creating a novel gelled Pickering emulsion system. The rheological properties of both DACNC suspensions and nanocellulose-stabilized Pickering emulsions were monitored during the cross-linking reaction. Dynamic light scattering and confocal laser scanning microscopy (CLSM) of the Pickering emulsion before gelling imaged CNC-stabilized oil droplets along with isolated CNC rods and CNC clusters, which had not been adsorbed to the oil droplet surfaces. Atomic force microscopy imaging of the air-dried gelled Pickering emulsion also demonstrated the presence of free CNCs alongside the oil droplets and the cross-linked CNC network directly at the oil-water interface on the oil droplet surfaces. Finally, these gelled Pickering emulsions were mixed with poly(vinyl alcohol) solutions and fabricated into self-healing composite coating systems. These self-healing composite coatings were then scratched and viewed under both an optical microscope and a scanning electron microscope before and after self-healing. The linseed oil was demonstrated to leak into the scratches, healing the gap automatically and giving a practical approach for a variety of potential applications.
Collapse
Affiliation(s)
- Guofan Xu
- Bristol
Composites Institute, School of Civil, Aerospace and Design Engineering
(CADE), University of Bristol, University
Walk, Bristol BS8 1TR, U.K.
| | - Amaka J. Onyianta
- Bristol
Composites Institute, School of Civil, Aerospace and Design Engineering
(CADE), University of Bristol, University
Walk, Bristol BS8 1TR, U.K.
| | | | | | - Jude Laverock
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Ian Bond
- Bristol
Composites Institute, School of Civil, Aerospace and Design Engineering
(CADE), University of Bristol, University
Walk, Bristol BS8 1TR, U.K.
| | - Onajite Abafe Diejomaoh
- Bristol
Composites Institute, School of Civil, Aerospace and Design Engineering
(CADE), University of Bristol, University
Walk, Bristol BS8 1TR, U.K.
| | - Todor T. Koev
- School
of Pharmacy, University of East Anglia, Norwich Research Park NR4 7TJ, U.K.
| | - Yaroslav Z. Khimyak
- School
of Pharmacy, University of East Anglia, Norwich Research Park NR4 7TJ, U.K.
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace and Design Engineering
(CADE), University of Bristol, University
Walk, Bristol BS8 1TR, U.K.
| |
Collapse
|
10
|
Li H, Dai C, Hu Y. Hydrogels for Chemical Sensing and Biosensing. Macromol Rapid Commun 2024; 45:e2300474. [PMID: 37776170 DOI: 10.1002/marc.202300474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The development and synthesis of hydrogels for chemical and biosensing are of great value. Hydrogels can be tailored to its own physical structure, chemical properties, biocompatibility, and sensitivity to external stimuli when being used in a specific environment. Herein, hydrogels and their applications in chemical and biosensing are mainly covered. In particular, it is focused on the manner in which hydrogels serve as sensing materials to a specific analyte. Different types of responsive hydrogels are hence introduced and summarized. Researchers can modify different chemical groups on the skeleton of the hydrogels, which make them as good chemical and biosensing materials. Hydrogels have great application potential for chemical and biosensing in the biomedical field and some emerging fields, such as wearable devices.
Collapse
Affiliation(s)
- Haizheng Li
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunai Dai
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Department of Physics, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
11
|
Leow Y, Boo YJ, Lin M, Tan YC, Goh RZR, Zhu Q, Loh XJ, Xue K, Kai D. Coconut husk-derived nanocellulose as reinforcing additives in thermal-responsive hydrogels. Carbohydr Polym 2024; 323:121453. [PMID: 37940313 DOI: 10.1016/j.carbpol.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has been widely used as a reinforcing agent for hydrogel systems, but its functions on thermal responsive hydrogels are rarely investigated. In this study, we extracted cellulose nanofibers (CNFs) from coconut biomass (coir fibers and piths, respectively) and aimed to study their effects on the material properties on a new class of thermogel (poly(PCL/PEG/PPG urethane). The CNFs extracted from fiber (FF) and piths (FP) showed different morphology and fiber lengths. FF are uniformed individual fibrous networks with a fiber length of 664 ± 416 nm, while FP display a hybrid structure consisting of individual fiber and large bundles with a relative shorter fiber length of 443 ± 184 nm. Integrating both CNFs into thermogels remained the thermal-responsive characteristics with an enhanced rheological property. The results showed that gels with FF resulted in a higher storage modulus and lower Tan δ value compared to those with FP, indicating that the CNFs with a longer length could form a more intertwined network interacting with the thermogel matrix. Furthermore, we demonstrated the improved capabilities of the nanocomposite thermogels for sustained drug delivery in vitro. This study not only value-adds lignocellulose valorization but also elevates the versatility of thermogels.
Collapse
Affiliation(s)
- Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Rubayn Zhi Rong Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
12
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
13
|
Pang J, Ke Z, Jiang T, Tang F, Zhang S, He K. Synthesis and catalytic performance of wood cellulose nanofibers grafted with polylactic acid in rare-earth complexes based on tetrazole carboxylic acids. Int J Biol Macromol 2023; 253:127218. [PMID: 37793529 DOI: 10.1016/j.ijbiomac.2023.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Stannous octanoate [Sn(Oct)2] and 4-dimethylamino pyridine (DMAP) were used to catalyze the synthesis of amphiphilic cellulose-based graft copolymers, but the acute toxicity of tin ions and DMAP prompts the need for the application of less harmful catalysts. Herein, green catalyst complexes 1-3 [M(H0.5L)2(H2O)5]·2(H2O) (M = Sm, 1; M = Nd, 2; M = Eu, 3; H2L = 4-(3-(tetrazol-5-yl)pyridin-5-yl)benzoic acid) were synthesized, and their properties were systematically investigated. Single-crystal X-ray diffraction showed that the complexes possessed a zero-dimensional structure, while the thermogravimetry and scanning electron microscopy results confirmed their stability after heating at 110 °C for 10 h. Using complexes 1-3 and DMAP as the catalysts, CNFs were grafted with l-lactide via homogeneous ring-opening polymerization to form wood cellulose nanofibers grafted with l-lactide (WGLAs), and the effects of the ratio of wood cellulose nanofibers (WCNFs) to l-lactide ([AGU]/[LA]) and catalyst dosage were studied. The polymerization followed the coordination-insertion mechanism. Under comparable reaction conditions, the grafting ratio of WGLA-1 reached 84.7 %, and the grafting ratio of complex 1 was found to be higher than those achieved using DMAP. WGLAs demonstrated good thermal stability without cytotoxicity, and the residual catalysts in the WGLAs exhibited fluorescence characteristics. Overall, amphiphilic cellulose-based materials with fluorescence emission offered a promising modification strategy to prepare high-performance polymer composites for agriculture and biomedical application.
Collapse
Affiliation(s)
- Jinying Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhilin Ke
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Tanlin Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Fushun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Kunhuan He
- College of petroleum and chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
14
|
Teng R, Sun J, Nie Y, Li A, Liu X, Sun W, An B, Ma C, Liu S, Li W. An ultra-thin and highly efficient electromagnetic interference shielding composite paper with hydrophobic and antibacterial properties. Int J Biol Macromol 2023; 253:127510. [PMID: 37865363 DOI: 10.1016/j.ijbiomac.2023.127510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Facing the increasing electromagnetic interference (EMI) pollution in the living environment, it is a new trend to explore an efficient EMI shielding material with facile fabrication and a wide range of application scenarios. A hydrophobic composite paper composed of silver nanowires (AgNWs) and kapok microfibers cellulose (MFC) was modified by methyl trimethoxy silane (MTMS) through a simple method. As a result, the composite paper has a good EMI shielding effectiveness (EMI SE) of 61.7 dB with electrical conductivity of 695.41 S/cm. The modification of MTMS improved the thermal stability performance of composite paper, which also increased its water contact angle to 113°. The free silver ions (Ag+) released from AgNWs can kill surrounding microbial bacteria, endowing the composite paper with good antibacterial property. Water resistance and antibacterial property enable MTMS/AgNWs/MFC composite paper to cope with complex application environments.
Collapse
Affiliation(s)
- Rui Teng
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jiaming Sun
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yuxia Nie
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Anqi Li
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xue Liu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenye Sun
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Bang An
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
15
|
Nocca G, Arcovito A, Elkasabgy NA, Basha M, Giacon N, Mazzinelli E, Abdel-Maksoud MS, Kamel R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023; 15:2738. [PMID: 38140079 PMCID: PMC10747844 DOI: 10.3390/pharmaceutics15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | | | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| |
Collapse
|
16
|
Tan W, Chen S, Xu Y, Chen M, Liao H, Niu C. Temperature-Sensitive Nanocarbon Hydrogel for Photothermal Therapy of Tumors. Int J Nanomedicine 2023; 18:6137-6151. [PMID: 37915748 PMCID: PMC10616783 DOI: 10.2147/ijn.s429626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Background Intelligent hydrogels continue to encounter formidable obstacles in the field of cancer treatment. A wide variety of hydrogel materials have been designed for diverse purposes, but materials with satisfactory therapeutic effects are still urgently needed. Methods Here, we prepared an injectable hydrogel by means of physical crosslinking. Carbon nanoparticle suspension injection (CNSI), a sentinel lymph node imaging agent that has been widely used in the clinic, with sodium β-glycerophosphate (β-GP) were added to a temperature-sensitive chitosan (CS) hydrogel (CS/GP@CN) as an agent for photothermal therapy (PTT). After evaluating the rheological, morphological, and structural properties of the hydrogel, we used 4T1 mouse breast cancer cells and B16 melanoma cells to assess its in vitro properties. Then, we intratumorally injected the hydrogel into BALB/c tumor-bearing mice to assess the in vivo PTT effect, antitumor immune response and the number of lung metastases. Results Surprisingly, this nanocarbon hydrogel called CS/GP@CN hydrogel not only had good biocompatibility and a great PTT effect under 808nm laser irradiation but also facilitated the maturation of dendritic cells to stimulate the antitumor immune response and had an extraordinary antimetastatic effect in the lungs. Discussion Overall, this innovative temperature-sensitive nanocarbon hydrogel, which exists in a liquid state at room temperature and transforms to a gel at 37 °C, is an outstanding local delivery platform with tremendous PTT potential and broad clinical application prospects.
Collapse
Affiliation(s)
- Wanlin Tan
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
17
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Yang W, Wang J, Jia L, Li J, Liu S. Stereo-Complex and Click-Chemical Bicrosslinked Amphiphilic Network Gels with Temperature/pH Response. Gels 2023; 9:647. [PMID: 37623102 PMCID: PMC10454454 DOI: 10.3390/gels9080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Stimulus-responsive hydrogels have been widely used in the field of drug delivery because of their three-dimensional pore size and the ability to change the drug release rate with the change in external environment. In this paper, the temperature-sensitive monomer 2-methyl-2-acrylate-2-(2-methoxyethoxy-ethyl) ethyl ester (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as well as the pH-sensitive monomer N,N-Diethylaminoethyl methacrylate (DEAEMA) were used to make the gel with temperature and pH response. Four kinds of physicochemical double-crosslinked amphiphilic co-network gels with different polymerization degrees were prepared by the one-pot method using the stereocomplex between polylactic acid as physical crosslinking and click chemistry as chemical crosslinking. By testing morphology, swelling, thermal stability and mechanical properties, the properties of the four hydrogels were compared. Finally, the drug release rate of the four gels was tested by UV-Vis spectrophotometer. It was found that the synthetic hydrogels had a good drug release rate and targeting, and had great application prospect in drug delivery.
Collapse
Affiliation(s)
| | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (W.Y.); (J.W.); (L.J.); (J.L.)
| |
Collapse
|
19
|
Wei K, Fang X, Tang C, Zhu L, Fang Y, Yang K, Yang R. Customizable single-layer hydrogel robot with programmable NIR-triggered responsiveness. LAB ON A CHIP 2023. [PMID: 37449371 DOI: 10.1039/d3lc00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hydrogel robots are widely used in biomedical fields due to their excellent biocompatibility and response to external stimuli. However, traditional processing methods cannot rapidly fabricate complex structures, and smart response strategies often rely on double-layer structures fabricated from two materials with significantly different swelling properties. In this study, we present a single-layer hydrogel robot that can be fabricated in one step using a high-precision digital light processing (H-P DLP) 3D printing system. The robot has structural differences and the ability to maintain a repetitive response. Additionally, we fabricated several robot grippers to demonstrate their potential for customization and programming, as well as their potential applications in cargo delivery. Our work provides a new approach to achieve the formation and response of various irregular hydrogels, which is expected to advance the development of biomedical applications.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuqiang Fang
- Department of Mechanics, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Runhuai Yang
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
20
|
Zhang D, Li L, Fang Y, Ma Q, Cao Y, Lei H. Ester Bonds for Modulation of the Mechanical Properties of Protein Hydrogels. Int J Mol Sci 2023; 24:10778. [PMID: 37445957 PMCID: PMC10341797 DOI: 10.3390/ijms241310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels are soft materials constructed of physically or chemically crosslinked polymeric net-works with abundant water. The crosslinkers, as the mechanophores that bear and respond to mechanical forces, play a critical role in determining the mechanical properties of hydrogels. Here, we use a polyprotein as the crosslinker and mechanophore to form covalent polymer hydrogels in which the toughness and fatigue fracture are controlled by the mechanical unfolding of polyproteins. The protein Parvimonas sp. (ParV) is super stable and remains folded even at forces > 2 nN; however, it can unfold under loading forces of ~100 pN at basic pH values or low calcium concentrations due to destabilization of the protein structures. Through tuning the protein unfolding by pH and calcium concentrations, the hydrogel exhibits differences in modulus, strength, and anti-fatigue fracture. We found that due to the partially unfolding of ParV, the Young's modulus decreased at pH 9.0 or in the presence of EDTA (Ethylene Diamine Tetraacetic Acid), moreover, because partially unfolded ParV can be further completely unfolded due to the mechanically rupture of ester bond, leading to the observed hysteresis of the stretching and relaxation traces of the hydrogels, which is in line with single-molecule force spectroscopy experiments. These results display a new avenue for designing pH- or calcium-responsive hydrogels based on proteins and demonstrate the relationship between the mechanical properties of single molecules and macroscopic hydrogel networks.
Collapse
Affiliation(s)
| | | | | | | | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
21
|
Xi J, Zhang Y, Lou Y, Chu Y, Dai H, Xu Z, Xiao H, Wu W. A smart gating nanocellulose membrane showing selective separation and self-cleaning performance. Int J Biol Macromol 2023:125236. [PMID: 37302630 DOI: 10.1016/j.ijbiomac.2023.125236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
A smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m-2·h-1·bar-1 to 1088 L·m-2·h-1·bar-1. The gating ratio of the membrane can reach 2.47. The photothermal effect of CNT rapidly warms up the membrane to the lowest critical solution temperature in the water, avoiding the constraint that the whole water phase cannot be heated throughout the practical use process. The membrane can precisely control the nanoparticles to concentrate at 25.3 nm, 47.7 nm or 102 nm by adjust the temperature. In addition, the water permeance can be restored to 370 L·m-2·h-1·bar-1 by washing the membrane under light. The smart gating membrane has a wide application in substance multi-stage separation and selective separation, and it can realize self-cleaning.
Collapse
Affiliation(s)
- Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Dong D, Chen R, Jia J, Zhao C, Chen Z, Lu Q, Sun Y, Huang W, Wang C, Li Y, He H. Tailoring and application of a multi-responsive cellulose nanofibre-based 3D nanonetwork wound dressing. Carbohydr Polym 2023; 305:120542. [PMID: 36737193 DOI: 10.1016/j.carbpol.2023.120542] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The rapid loss of drugs and the weak curative effects due to cyclical urination are the main reasons why wound heal with difficulty after bladder tumour resection. Here, a bioinspired cellulose nanofibre (CNF)-based magnetic 3D nanonetwork wound dressing with excellent tissue adhesion and biocompatibility is designed by the assembly of pH- and near infrared-responsive CNF nanoskeletons, magnetic switching Fe3O4 nanoparticles, and temperature switching Pluronic®F-127. The dressing with high loading capacity for mitomycin and indocyanine green can form a sticky 3D nanonetwork at the wound site and remain for a long time to release drugs through an external magnetic field. Interestingly, the dressing possessed excellent antibacterial activity, bacterial biofilm elimination, T24 tumour cell killing, and wound healing promotion through photothermal, photodynamic, and chemotherapy. Therefore, it has promising application for bladder postoperative infected wound healing to avoid rapid loss of drugs due to cyclical urination.
Collapse
Affiliation(s)
- Die Dong
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Jihong Jia
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Weiyi Huang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chunfang Wang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China.
| | - Yao Li
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
24
|
Polymeric Gel Systems Cytotoxicity and Drug Release as Key Features for their Effective Application in Various Fields of Addressed Pharmaceuticals Delivery. Pharmaceutics 2023; 15:pharmaceutics15030830. [PMID: 36986691 PMCID: PMC10054608 DOI: 10.3390/pharmaceutics15030830] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Modified polymeric gels, including nanogels, which play not only the role of a bioinert matrix, but also perform regulatory, catalytic, and transport functions due to the active fragments introduced into them, can significantly advance the solution to the problem of targeted drug delivery in an organism. This will significantly reduce the toxicity of used pharmaceuticals and expand the range of their therapeutic, diagnostic, and medical application. This review presents a comparative description of gels based on synthetic and natural polymers intended for pharmaceutical-targeted drug delivery in the field of therapy of inflammatory and infectious diseases, dentistry, ophthalmology, oncology, dermatology, rheumatology, neurology, and the treatment of intestinal diseases. An analysis was made of most actual sources published for 2021–2022. The review is focused on the comparative characteristics of polymer gels in terms of their toxicity to cells and the release rate of drugs from nano-sized hydrogel systems, which are crucial initial features for their further possible application in mentioned areas of biomedicine. Different proposed mechanisms of drug release from gels depending on their structure, composition, and application are summarized and presented. The review may be useful for medical professionals, and pharmacologists dealing with the development of novel drug delivery vehicles.
Collapse
|
25
|
Shang H, Yang X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr Polym 2023; 313:120875. [PMID: 37182965 DOI: 10.1016/j.carbpol.2023.120875] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The growth of plants is highly dependent on sufficient water and suitable fertilizer nutrients, but the soil often loses moisture and the fertilizers are low efficiency. To address this issue, the temperature-responsive hydrogels were developed using the N-vinylcaprolactam (NVCL) dispersed in water through the emulsification of carboxymethyl cellulose (CMC) and acrylamide (AM), and urea was loaded into the hydrogel as a fertilizer. The amount of CMC and monomer have an effect on the structure, mechanical properties, swelling ability, and temperature sensitivity of the hydrogel. Therefore, the maximum swelling ratio of the hydrogel can reach 2056 % with the increasing hydrophilic groups, and the hydrogel exhibits a deswelling behavior as the temperature rises to higher than LCST due to the temperature responsiveness. Moreover, the fertilizer can rapidly release when the temperature is higher than LSCT, and exhibits similar release behavior in water and soil. Thus, the temperature-responsive hydrogel shows a great potential application for the controlled release of water and fertilizer in agriculture and forestry.
Collapse
|
26
|
Zhang W, Chen S, Jiang W, Zhang Q, Liu N, Wang Z, Li Z, Zhang D. Double-network hydrogels for biomaterials: Structure-property relationships and drug delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Ganesan A, Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydr Polym 2022; 294:119803. [DOI: 10.1016/j.carbpol.2022.119803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022]
|
29
|
Ning L, Jia Y, Zhao X, Tang R, Wang F, You C. Nanocellulose-based drug carriers: Functional design, controllable synthesis, and therapeutic applications. Int J Biol Macromol 2022; 222:1500-1510. [PMID: 36195234 DOI: 10.1016/j.ijbiomac.2022.09.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
With rising living standards and environmental awareness, materials-oriented chemical engineering has increasingly transitioned from traditional rough models to more resource-saving and eco-friendly models, providing an avenue for bio-based materials in the drug carrier field. Because of its excellent physical and chemical properties, including high specific surface area, abundant accessible hydroxyl groups, biocompatibility, and degradability, nanocellulose (NC) is an emerging bio-based material that has been widely exploited as biomedical materials. The modification techniques of NC, as well as advancements in the design and applications of drug carriers, were primarily discussed in this study. First, the NC modification methods are described; second, the applications of NC and its derivatives as drug carriers are summarized, focusing on NC-based carrier models, types of loaded therapeutic agents, and controlled release stimulators; and finally, the current challenges of NC in the drug carrier field and the directions of future research are also discussed.
Collapse
Affiliation(s)
- Like Ning
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Jia
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinxu Zhao
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruoxu Tang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Wang Y, Wang Q, Hu X, He D, Zhao J, Sun G. A multi-functional zwitterionic hydrogel with unique micro-structure, high elasticity and low modulus. RSC Adv 2022; 12:27907-27911. [PMID: 36320261 PMCID: PMC9523660 DOI: 10.1039/d2ra04915e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Owing to their tissue-like softness and low modulus, hydrogels minimize the mechanical mismatch with biological tissues and have received wide attention as biomaterials. However, the development of soft hydrogels is often limited by their brittleness. Here, an ultra-soft and tough hydrogel based on zwitterionic poly(sulfobetaine methacrylate) (PSBMA) was designed and successfully prepared. The obtained PSBMA hydrogel exhibits a unique spike-like micro-structure, low modulus, good stretchability and excellent compressive elasticity, due to the formation of a dual-crosslinking structure. The obtained hydrogel also possesses self-healing properties and electromechanical responses to tensile and compressive deformations. Moreover, the hydrogel has good compatibility attributed to its outstanding anti-protein-adsorption properties.
Collapse
Affiliation(s)
- Yueyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa Macau SAR China
| | - Qiao Wang
- School of Civil and Transportation Engineering, Hebei University of Technology 5340 Xiping Road, Beichen District Tianjin 300401 China
| | - Xiaosai Hu
- College of Textiles and Clothing, Yancheng Institute of Technology Jiangsu Province China
| | - Dan He
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa Macau SAR China
| | - Juan Zhao
- School of Biotechnology and Health Sciences, Wuyi University 529020 Guangdong China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa Macau SAR China
| |
Collapse
|
31
|
Idumah CI. Recently emerging advancements in polymeric nanogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
32
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
33
|
Che QT, Charoensri K, Seo JW, Nguyen MH, Jang G, Bae H, Park HJ. Triple-conjugated photo-/temperature-/pH-sensitive chitosan with an intelligent response for bioengineering applications. Carbohydr Polym 2022; 298:120066. [DOI: 10.1016/j.carbpol.2022.120066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
34
|
Luo Y, Pauer W, Luinstra GA. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels 2022; 8:531. [PMID: 36135243 PMCID: PMC9498808 DOI: 10.3390/gels8090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Temperature response double network (DN) hydrogels comprising a network formed by polymerization of methacrylic acid (MA) modified PVA, N,N'-methylene bis(acrylamide), N-isopropylacryl amide (NIPAM), and one formed from crystalline polyvinyl alcohol (PVA) are prepared in a 3D printed tailor-made mold. The (PVA-MA)-g-PNIPAAm thermoset intermediate is formed in water by a radical, photo-initiated process, and in the presence of dissolved PVA polymers. A subsequent freezing-thawing sequence induces the crystallization of the PVA network, which forms a second network inside the thermoset NIPAM polymer. The prepared hydrogel is thermoresponsive by the phase transition of PNIPAAm segments (T ≈ 32 °C) and has good mechanical properties (tensile strength 1.23 MPa, compressive strength 1.47 MPa). Thermal cycling between room temperature at 40 or 50 °C shows the product converses from a virgin-state to a steady-state, which most likely involves the reorganization of PVA crystals. The swelling-deswelling cycles remain clear at a length change of about 13%.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
35
|
Xiao Q, Cui Y, Meng Y, Guo F, Ruan X, He G, Jiang X. PNIPAm hydrogel composite membrane for high-throughput adsorption of biological macromolecules. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
37
|
Zhang H, Zhang M, Zhang X, Gao Y, Ma Y, Chen H, Wan J, Li C, Wang F, Sun X. Enhanced postoperative cancer therapy by iron-based hydrogels. Biomater Res 2022; 26:19. [PMID: 35606838 PMCID: PMC9125885 DOI: 10.1186/s40824-022-00268-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractSurgical resection is a widely used method for the treatment of solid tumor cancers. However, the inhibition of tumor recurrence and metastasis are the main challenges of postoperative tumor therapy. Traditional intravenous or oral administration have poor chemotherapeutics bioavailability and undesirable systemic toxicity. Polymeric hydrogels with a three-dimensional network structure enable on-site delivery and controlled release of therapeutic drugs with reduced systemic toxicity and have been widely developed for postoperative adjuvant tumor therapy. Among them, because of the simple synthesis, good biocompatibility, biodegradability, injectability, and multifunctionality, iron-based hydrogels have received extensive attention. This review has summarized the general synthesis methods and construction principles of iron-based hydrogels, highlighted the latest progress of iron-based hydrogels in postoperative tumor therapy, including chemotherapy, photothermal therapy, photodynamic therapy, chemo-dynamic therapy, and magnetothermal-chemical combined therapy, etc. In addition, the challenges towards clinical application of iron-based hydrogels have also been discussed. This review is expected to show researchers broad perspectives of novel postoperative tumor therapy strategy and provide new ideas in the design and application of novel iron-based hydrogels to advance this sub field in cancer nanomedicine.
Collapse
|
38
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
39
|
Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. Int J Biol Macromol 2022; 209:1169-1178. [PMID: 35413317 DOI: 10.1016/j.ijbiomac.2022.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
In this study, cellulose-based superabsorbent hydrogel was synthesized from sodium carboxymethyl cellulose (CMC-Na), acrylic acid (AA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) to enhance its water absorbency and salt tolerance for soil-conditioning applications in areas suffering from drought and soil salinization. Superabsorbent hydrogels (SHs) were prepared by CMC-Na and AMPS successfully, using chemical graft technology. Structure, morphology, thermal stability, and water absorbency of SHs were deduced. The cellulose-based hydrogel showed a high salt tolerance that the maximum water absorbency reached 604 and 119% in distilled water and saline water, respectively. The swelling behavior in aqueous solvents indicated that the water absorption of hydrogels was improved with the increasing ratio of CMC-Na. All SHs exhibited adsorption of nitrogen with the maximum adsorption of ammonia nitrogen 30 mg·g-1 and the presence of hydrogels could slow down the loss of nutrients in the soil. This study provided a feasible strategy that AMPS was substituted by CMC-Na to synthesize SHs with strong water absorbency and high salt tolerance which could be efficiently applied in agriculture as a soil conditioner.
Collapse
|
40
|
Mitra S, Mateti T, Ramakrishna S, Laha A. A Review on Curcumin-Loaded Electrospun Nanofibers and their Application in Modern Medicine. JOM (WARRENDALE, PA. : 1989) 2022; 74:3392-3407. [PMID: 35228788 PMCID: PMC8867693 DOI: 10.1007/s11837-022-05180-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/23/2022] [Indexed: 05/04/2023]
Abstract
Herbal drugs are safe and show significantly fewer side effects than their synthetic counterparts. Curcumin (an active ingredient primarily found in turmeric) shows therapeutic properties, but its commercial use as a medication is unrealized, because of doubts about its potency. The literature reveals that electrospun nanofibers show simplicity, efficiency, cost, and reproducibility compared to other fabricating techniques. Forcespinning is a new technique that minimizes limitations and provides additional advantages to electrospinning. Polymer-based nanofibers-whose advantages lie in stability, solubility, and drug storage-overcome problems related to drug delivery, like instability and hydrophobicity. Curcumin-loaded polymer nanofibers show potency in healing diabetic wounds in vitro and in vivo. The release profiles, cell viability, and proliferation assays substantiate their efficacy in bone tissue repair and drug delivery against lung, breast, colorectal, squamous, glioma, and endometrial cancer cells. This review mainly discusses how polymer nanofibers interact with curcumin and its medical efficacy.
Collapse
Affiliation(s)
- Souradeep Mitra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Tarun Mateti
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Seeram Ramakrishna
- Center of Nanofibers and Nanotechnology, National University of Singapore, Singapore, 117581 Singapore
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| |
Collapse
|