1
|
Chumpon P, M N P, Lee DW, Soodpakdee K, Song JI. Sustainable chitosan bio-resin composites reinforced with flax fibers for high-performance food packaging. Int J Biol Macromol 2025; 309:142990. [PMID: 40210033 DOI: 10.1016/j.ijbiomac.2025.142990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
This study proposes an innovative strategy for developing chitosan-based bio-resin composites as sustainable alternatives to address the environmental impacts of petroleum-derived plastics in food packaging. The chitosan matrix was enhanced using a synergistic formulation of sorbitol (50 % w/v) as a plasticizer and genipin (0.1 % w/v) as a cross-linking agent, which significantly improved its mechanical and functional performance. Further reinforcement with short flax fibers (5 wt%) resulted in a chitosan-flax fiber (CS/FF) composite with a remarkable 220 % increase in tensile strength, reaching 11.20 MPa, and an enhanced thermal stability with an onset degradation temperature of 350 °C. The composite demonstrated exceptional functional properties, including 98 % UV-blocking efficiency, superior antibacterial activity with a 90 % reduction in microbial growth, and complete biodegradability within 30 days. Additionally, preservation trials on bananas showed a broad extension in shelf life compared with conventional packaging materials. These findings highlight the potential of CS/FF composites as high-performance, biodegradable alternatives for smart food packaging applications, offering an environmentally sustainable solution that combines advanced mechanical and functional properties with effective food preservation capabilities.
Collapse
Affiliation(s)
- Pawarit Chumpon
- Department of Mechanical Engineering Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Prabhakar M N
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Bristol Composite Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol BS8 1UP, United Kingdom.
| | - Dong Woo Lee
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Kanjana Soodpakdee
- Microbial Products and Innovation Research Group, School of Science, Mae Fah Luang University, 333 Tha Sut, Mueang Chiang Rai District, Chiang Rai 57100, Thailand
| | - Jung-Il Song
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| |
Collapse
|
2
|
Zhang W, Liu Y, Zhang L, Shen X. Development of hyaluronic acid-based hydrogels for chronic diabetic wound healing: A review. Int J Biol Macromol 2025; 308:142273. [PMID: 40112998 DOI: 10.1016/j.ijbiomac.2025.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
This research delves into the advancements in chronic skin wound treatment, with a particular focus on diabetic foot ulcers, utilizing hyaluronic acid (HA)-based hydrogels. Hyaluronic acid, an integral component of the skin's extracellular matrix, plays a crucial role in process such as inflammation, angiogenesis, and tissue regeneration. Due to their three-dimensional network structure, biocompatibility, hydrophilicity, and gas exchange capabilities, HA-based hydrogels are considered highly suitable for promoting wound healing. Nonetheless, pure HA hydrogels exhibit limitations including insufficient mechanical strength and rapid release of encapsulated substances. To address these limitations, the incorporation of bioactive materials such as chitosan and collagen was investigated. This combination not only optimized mechanical strength and degradation rates but also enhanced antibacterial and anti-inflammatory properties. Furthermore, responsive hydrogel dressings were developed to adapt to the specific characteristics of the diabetic wound microenvironment, enabling on-demand drug release. These advancements present new perspectives for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Wenhao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Xinni Shen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
3
|
Askari M, Keshavarz Zarjani A, Sayyahi A, Badpa R, Naghizadeh A. Chitosan Nanoparticles: A Promising Candidate in Wound Healing. INT J LOW EXTR WOUND 2025:15347346251325057. [PMID: 40096054 DOI: 10.1177/15347346251325057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The wound healing process is really interesting, dynamic, and complex, captivating researchers for a long time. With the growing worldwide concern regarding the prevalence of wounds and the associated healthcare challenges, efforts to expedite this natural process have intensified. Fortunately, with a particular focus on improving wound dressings, significant advancements have been made in wound care management including using of nanoparticle-based delivery systems. These nanoparticles, similar to molecular messengers, purchase vast promise for revolutionizing wound treatment. Among them, chitosan nanoparticles stand out as remarkable candidates. Their safety profile, biocompatibility, and bioactivity make them particularly appealing for wound care. In this article, we will delve into the intricacies of wound healing and then discuss the wound-healing properties of chitosan nanoparticles, supported by comprehensive study results. Current evidence highlights the wound-healing effects of chitosan nanoparticles, which can be considered independent agents for wound management. In conclusion, the utilization of chitosan nanoparticles for wound healing presents significant opportunities and potential.Graphical abstract [Formula: see text].
Collapse
Affiliation(s)
- Masoumeh Askari
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhesam Keshavarz Zarjani
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sayyahi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Raziye Badpa
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Naghizadeh
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Guan W, Zhang L. Applications and prospects of biomaterials in diabetes management. Front Bioeng Biotechnol 2025; 13:1547343. [PMID: 40124248 PMCID: PMC11926158 DOI: 10.3389/fbioe.2025.1547343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetes is a widespread metabolic disorder that presents considerable challenges in its management. Recent advancements in biomaterial research have shed light on innovative approaches for the treatment of diabetes. This review examines the role of biomaterials in diabetes diagnosis and treatment, as well as their application in managing diabetic wounds. By evaluating recent research developments alongside future obstacles, the review highlights the promising potential of biomaterials in diabetes care, underscoring their importance in enhancing patient outcomes and refining treatment methodologies.
Collapse
Affiliation(s)
- Wenhe Guan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Liu Y, Shang J, Chen Y, Feng X. Potential Applications of Chitosan in Seborrheic Dermatitis and Other Skin Diseases: A Comprehensive Review. Clin Cosmet Investig Dermatol 2025; 18:533-542. [PMID: 40071198 PMCID: PMC11894430 DOI: 10.2147/ccid.s504778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
This review article explores the potential applications of chitosan, a natural polysaccharide derived from crustacean shells, in the treatment of seborrheic dermatitis (SD) and other skin diseases. SD is a common chronic inflammatory skin condition characterized by erythema, scaling, itching, and an oily appearance, predominantly affecting areas rich in sebaceous glands. Current treatments, including antifungal agents, corticosteroids, and calcineurin inhibitors, offer symptomatic relief but have limitations in long-term use due to side effects and resistance issues. Chitosan exhibits excellent biocompatibility, biodegradability, and broad-spectrum antibacterial properties, making it a promising candidate for SD treatment. This review highlights chitosan's multifunctional properties such as antimicrobial, anti-inflammatory, sebum-regulating, and barrier-enhancing effects, which are closely related to the pathogenesis of SD. Additionally, the article summarizes the applications of chitosan in other skin conditions, including wound healing, infectious skin diseases, and atopic dermatitis, demonstrating its broad therapeutic potential. Through this comprehensive evaluation, the review aims to provide a theoretical foundation for clinical research on chitosan in SD and support the development of new, safer, and more effective treatment options for various skin conditions.
Collapse
Affiliation(s)
- Youting Liu
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Jianli Shang
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
| | - Yong Chen
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| | - Xiaoyue Feng
- Beijing Uproven Medical Technology Co., LTD., Beijing, People’s Republic of China
- Beijing Uproven Institute of Dermatology, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Fahimirad S, Memarzadeh M, Jafari H, Isfahani MS, Almasi-Hashiani A, Abtahi H. Enhanced wound healing and antibacterial efficacy of a novel chitosan quaternary ammonium salt gel incorporating Echinacea purpurea extract. Carbohydr Res 2025; 552:109445. [PMID: 40081116 DOI: 10.1016/j.carres.2025.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Wound healing is a complex and dynamic process involving hemostasis, inflammation, proliferation, and remodeling. This study introduces Chitagel, a novel wound-healing gel formulated with 4 % (w/w) chitosan quaternary ammonium salt, 0.1 % (w/w) polyhexamethylene biguanide (PHMB), and 6 % (w/w) Echinacea purpurea extract, designed to provide antibacterial and antioxidant properties. To enhance hydration, 2 % (w/w) dexpanthenol, 10 % (w/w) glycerin, and 4 % (w/w) sorbitol were incorporated as humectants. In vitro analysis demonstrated 92.3 % inhibition of methicillin-resistant Staphylococcus aureus (MRSA) and 89.63 % antioxidant activity via the DPPH assay. Water content analysis confirmed a 62.9 % hydration level, facilitating a moist wound environment. Zeta potential measurement (+44.9 mV) indicated colloidal stability, ensuring sustained antimicrobial activity. In an MRSA-infected rat wound model, Chitagel significantly accelerated wound closure, achieving 82.5 % healing by day 15, compared to 54.3 % in the untreated group. The MTT assay showed enhanced fibroblast proliferation, with 400 μg/mL stimulating the highest cell viability. Histological analysis confirmed improved re-epithelialization, reduced inflammation, and granulation tissue formation. These findings highlight Chitagel as a promising therapeutic for infected wounds, combining antibacterial, antioxidant, and regenerative properties. Further clinical studies are required to validate its efficacy and safety in human applications and to establish its role as a novel wound-healing agent.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | | | - Hasan Jafari
- Sepahan Wound Health Specialty Clinic, Isfahan, Iran
| | | | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
7
|
Huang Q, Hu Y, Chen Y, Zhou M, Zhang Y, Sun Z, Chen Z. An antimicrobial and adhesive conductive chitosan quaternary ammonium salt hydrogel dressing for combined electrical stimulation and photothermal treatment to promote wound healing. Carbohydr Polym 2025; 351:123136. [PMID: 39779038 DOI: 10.1016/j.carbpol.2024.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe3+ (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe3+) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF600 hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF600 was selected for subsequent in vitro and in vivo healing promotion studies. PQTF600 had good adhesion and conductive ability, which was suitable for human motion monitoring and wound treatment. Notably, the PQTF600 showed and controllable human safety temperature thresholds (~44.8 °C) under near-infrared light (NIR). Meanwhile, PQTF600 achieved nearly 100 % antibacterial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas putida (P. putida), methicillin-resistant Staphylococcus aureus (MRSA). In addition, the PQTF600 hydrogel dressing was demonstrated to achieve 99.59 ± 4.11 % would healing rate in a mouse trauma model under the dual stimulation of NIR (808 nm) and electricity (1.5 V direct current). The versatile PQTF600 hydrogel is a promising dressing for enhancing wound closure integrating with electrical stimulation (ES) and photothermal therapy.
Collapse
Affiliation(s)
- Qiaoyu Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yige Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Man Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhengguang Sun
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhaoxia Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Massana Roquero D, Holton GH, Ge TJ, Kornberg Z, Mach KE, Rodriguez G, La V, Lau H, Sun R, Chang TC, Conti S, Liao JC. Disrupting Biofilms on Human Kidney Stones-A Path Toward Reducing Infectious Complications During Stone Surgery. Adv Healthc Mater 2025:e2403470. [PMID: 40012448 DOI: 10.1002/adhm.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Indexed: 02/28/2025]
Abstract
Kidney stones are a common disorder associated with significant morbidity and often requires surgical intervention. Pathogenic bacteria are found in almost 40% of stones, where they form biofilms that are protected from systemic antibiotic treatments. Stone surgeries disperse biofilms resulting in up to 30% of patients developing postoperative urinary tract infections and 15% developing sepsis. This work is based on the hypothesis that chitosan, an antimicrobial polymer, can eradicate bacterial biofilms present in the stone and potentially serve as an adjunct to irrigation during stone surgery. First, fresh patient-derived kidney stone fragments (n = 56) are collected from stone surgeries. A total of 32% of stones are colonized, predominantly with Enterococcus faecalis, Escherichia coli, and Proteus mirabilis. A short, clinically relevant, chitosan treatment reduces the bacterial burden on colonized stones by over 90% in all specimens tested, regardless of stone composition and bacterial strain. To assess this approach toxicity, ex vivo human ureters and in vivo porcine bladders are exposed to topical chitosan irrigation. No toxic or pathological abnormalities other than urothelial exfoliation are noted. In conclusion, chitosan effectively disrupts kidney stone-associated bacterial biofilms with minimal urothelial toxicity and may provide an effective and safe approach to reducing postoperative complications.
Collapse
Affiliation(s)
- Daniel Massana Roquero
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Grace H Holton
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - T Jessie Ge
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zachary Kornberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Gabriella Rodriguez
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Vinh La
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hubert Lau
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ryan Sun
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Timothy C Chang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Simon Conti
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| |
Collapse
|
9
|
Li Y, Wang Z. Biomaterials for Corneal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408021. [PMID: 39739318 PMCID: PMC11809424 DOI: 10.1002/advs.202408021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Collapse
Affiliation(s)
- Yimeng Li
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
10
|
Karami F, Namdar Ahmadabad H, Shaheli M. CpG oligodeoxynucleotide-coated chitosan nanoparticles enhance macrophage proinflammatory phenotype in vitro. Clin Exp Immunol 2025; 219:uxae081. [PMID: 39250756 PMCID: PMC11754863 DOI: 10.1093/cei/uxae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/30/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to investigate the effects of CpG oligodeoxynucleotide (CpG-ODNs)-coated chitosan nanoparticles (CNP) on the phenotype of murine macrophages and their proinflammatory cytokine profile in vitro. CNP-CpG-ODNs loaded with FITC-scrambled siRNA were prepared using the ionotropic gelation method. Peritoneal macrophages were isolated and exposed to CNP-CpG-ODNs. Treated macrophages were assessed for uptake capacity. Flow cytometry was used to evaluate the expression levels of MHC-II, CD40, and CD86 costimulatory molecules in treated macrophages. Furthermore, the secretion levels of proinflammatory cytokines (TNF-α and IL-6) and the release of nitric oxide (NO) were measured in the culture supernatant of treated macrophages using sandwich ELISA and the Griess reaction, respectively. These in vitro studies showed that CNP-CpG-ODNs had no cytotoxic effect on macrophages and were efficiently taken up by them. Additionally, CNP-CpG-ODNs significantly increased the production of TNF-α, IL-6, and NO in the culture supernatant compared to CNP alone. Moreover, CNP-CpG-ODNs enhanced the expression of MHC-II, CD40, and CD86 costimulatory molecules on macrophages. These findings indicate that incorporating CpG-ODNs into CNPs promotes macrophage maturation and a proinflammatory phenotype. Therefore, CNP-CpG-ODNs may serve as an effective system for targeted gene delivery to macrophages, enhancing immune responses.
Collapse
Affiliation(s)
- Fatemeh Karami
- Biology, Arsanjan Branch, Azad University, Arsanjan, Iran
| | - Hassan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Science, Bojnurd, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Marjan Shaheli
- Biology, Arsanjan Branch, Azad University, Arsanjan, Iran
| |
Collapse
|
11
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
12
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Salazar Ariza JF, Lux F, Da Cruz-Boisson F, Resende de Azevedo J, Vera R, Tillement O, Montembault A, David L. Chitosan based hydrogel for iron (III) chelation in biological conditions. Carbohydr Polym 2025; 347:122670. [PMID: 39486926 DOI: 10.1016/j.carbpol.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 11/04/2024]
Abstract
In this study, a chitosan derivative with strong iron (III) chelating capabilities was developed by grafting the Deferoxamine (DFO) chelator to achieve a substitution degree of 3.8 ± 0.2 %. Through blending with ungrafted chitosan of low degree of acetylation (DA), a formulation able to form a physical hydrogels was formed in aqueous media, without the requirement of a cross-linking agent. The functionalization of chitosan with DFO led to xerogels exhibiting superior iron (III) chelation capacity and higher swelling when exposed to aqueous solutions, in comparison with to an unmodified chitosan xerogel. Notably, this material extracts iron (III) even against the strong iron chelator deferiprone. Furthermore, the material demonstrates selectivity for iron (III) chelation even in the presence of competing cations like copper (II) and zinc (II).
Collapse
Affiliation(s)
- Juan Felipe Salazar Ariza
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France; Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - François Lux
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France; Institut Universitaire de France (IUF), 75231 Paris, France
| | - Fernande Da Cruz-Boisson
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- Universite Claude Bernard Lyon 1, CNRS, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), UMR5007, 3, rue Victor Grignard, Bâtiment CPE, F-69100 Villeurbanne Cedex, France
| | - Ruben Vera
- Universite Claude Bernard Lyon 1, Centre de Diffractométrie Henri Longchambon, 5 rue de La Doua, F-69100 Villeurbanne, France
| | - Olivier Tillement
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Alexandra Montembault
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France.
| |
Collapse
|
14
|
Liu S, Ju R, Zhang Z, Jiang Z, Cui J, Liu W, Han B, Wang S. Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection. Int J Biol Macromol 2024; 282:136566. [PMID: 39414205 DOI: 10.1016/j.ijbiomac.2024.136566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Endoscopic submucosal dissection (ESD) is an effective treatment for polyps and early gastrointestinal cancers, but requires a high level of operator skill. Injecting submucosal materials (SIM) helps create a fluid cushion between the mucosal and muscular layers, making the procedure easier and reducing associated risks. However, SIMs commonly used in current clinical practice tend to spread quickly and fail to provide long-lasting submucosal fluid cushions (SFC). Thus, there is a critical need for a material that is easy to inject while also maintaining a durable barrier. We prepared succinylated hydroxybutyl chitosan (HBC-SA) by adding succinic anhydride (SA) to hydroxybutyl chitosan (HBC). The hydrogel had excellent temperature-sensitive properties and was able to be injected via an endoscopic injection needle even after gel formation. In vitro and in vivo studies showed that it has satisfactory biocompatibility. Functional experiments showed that the submucosal lifting properties of this hydrogel were significantly better than that of normal saline (NS) and sodium hyaluronate (SH), two commonly used clinical materials. In addition, the hydrogel possessed excellent hemostatic properties. Based on these results, HBC-SA is a promising candidate for submucosal injection during ESD.
Collapse
Affiliation(s)
- Shourui Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Ruibao Ju
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhenguo Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhen Jiang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Jingzhao Cui
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| |
Collapse
|
15
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
16
|
Weng C, Xia Y. Constructing Conjugated Polymer Composite Fluorescent Nanodrug Materials for Treating Abdominal Aortic Aneurysm. J Fluoresc 2024:10.1007/s10895-024-04047-3. [PMID: 39556247 DOI: 10.1007/s10895-024-04047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
The abdominal aortic aneurysm (AAA) is a dilation of the lower part of the body aorta. AAA has no obvious symptoms in the early stages until the aortic wall ruptures suddenly, resulting in massive blood loss and flow into the abdominal cavity. Currently, there is no effective drug treatment for AAA, and the development of effective drugs is crucial. In this study, a novel approach utilizing chitosan/genipin/zinc oxide (CH/G-ZnO) composite nanoparticles as a drug delivery system is proposed. Compound 1 was loaded onto these nanoparticles to form CH/G-ZnO@1 composite. The composite material exhibited light-triggered and rapid gelation properties, and its structure and performance were comprehensively characterized. Subsequently, by treating vascular smooth muscle cells (VSMCs), we found that CH/G-ZnO@1 was able to significantly reduce metalloproteinase (MMP) and increase the expression of COL4A1, thereby increasing the proliferative activity of VSMCs.
Collapse
Affiliation(s)
- Chao Weng
- General Surgery, Cancer Center, Department of Vascular Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Xia
- General Surgery, Cancer Center, Department of Vascular Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
18
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Chitosan Derivatives: Preparation, Properties and Applications in Pharmacy and Medicine. Gels 2024; 10:701. [PMID: 39590057 PMCID: PMC11593520 DOI: 10.3390/gels10110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan (CS) derivatives have been extensively investigated to enhance the physicochemical and biological properties of CS, such as its solubility, biocompatibility, and bioactivity, which are required in various areas of pharmacy and medicine. The present work emphasizes the ongoing research and development in this field, suggesting that the further exploration of CS derivatives could lead to innovative solutions that benefit society. The physicochemical properties, biological activities, methods of preparation, advantages, limitations, intended application areas, and realized practical implementations of particular CS derivatives are summarized and discussed herein. Despite the numerous promising attributes of CS derivatives as reported in this paper, however, challenges like target selectivity, standardization (purity, chitosan structural variability), and cost-effectiveness still need addressing for widespread implementation, especially in drug delivery. Therefore, basic research studies still prevail in CS drug delivery systems. However, for specific applications such as wound healing and tissue engineering, implementations of CS derivatives in practice are found to be more frequent. To obtain a more complex view of the topic, information from the scientific papers reviewed is supplemented with information from actual patents and clinical studies. Both basic research advances and the most successful and important medical implementations of CS derivatives are discussed concerning further challenges and future perspectives.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
20
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
21
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
22
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
23
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
24
|
Maddeppungeng NM, Syahirah NA, Hidayati N, Rahman FUA, Mansjur KQ, Rieuwpassa IE, Setiawati D, Fadhlullah M, Aziz AYR, Salsabila A, Alsayed AR, Pamornpathomkul B, Permana AD, Hasyim R. Specific delivery of metronidazole using microparticles and thermosensitive in situ hydrogel for intrapocket administration as an alternative in periodontitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1726-1749. [PMID: 38769614 DOI: 10.1080/09205063.2024.2349414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by the prevalence of bacterial overgrowth resulting in the development of an inflammatory condition that destroys the tooth's supporting tissues and eventual tooth loss. Comparatively, to other treatment methods, it is difficult for topical antibacterial drugs to effectively permeate the biofilm's physical barrier, making conventional therapy for periodontitis more challenging. This novel study combines thermosensitive in situ hydrogel with microparticles (MPs) to enhance the targeted delivery of metronidazole (MET) to the periodontal pocket. Polycaprolactone (PCL) polymer was utilized to produce bacteria-sensitive MPs. Additionally, the study assessed the attributes of MPs and demonstrated an enhancement in the in vitro antibacterial efficacy of MPs towards Staphylococcus aureus (SA) and Escherichia coli (EC). Subsequently, we incorporated MET-MPs into thermosensitive in situ hydrogel formulations using chitosan. The optimized formulations exhibited stability, appropriate gelation temperature, mucoadhesive strength, and viscosity. In vitro permeation tests showed selective and prolonged drug release against SA and EC. Ex vivo experiments demonstrated no significant differences between in situ hydrogel containing pure MET and MET-MPs in biofilm quantity, bacterial counts, and metabolic activity in biofilms. According to in vitro tests and the effectiveness of the antibacterial activity, this study has exhibited a novel methodology for more efficacious therapies for periodontitis. This study aims to utilize MET in MPs to improve its effectiveness, enhance its antibacterial activity, and improve patient treatment outcomes. In further research, the efficacy of the treatment should be investigated in vivo using an appropriate animal model.
Collapse
Affiliation(s)
- Nurul Muhlisah Maddeppungeng
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Alauddin Islamic State University, Samata Gowa, Indonesia
| | | | - Nasyrah Hidayati
- Department of Orthodontic, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Fadhlil U A Rahman
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Karima Qurnia Mansjur
- Department of Orthodontic, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Irene E Rieuwpassa
- Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dian Setiawati
- Department of Periodontology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Fadhlullah
- Veterinary Paramedic Study Program, Faculty of Vocational Study, Hasanuddin University, Makassar, Indonesia
| | | | | | - Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | | | | | - Rafikah Hasyim
- Department of Oral Biology, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
25
|
Lele M, Kapur S, Hargett S, Sureshbabu NM, Gaharwar AK. Global trends in clinical trials involving engineered biomaterials. SCIENCE ADVANCES 2024; 10:eabq0997. [PMID: 39018412 PMCID: PMC466960 DOI: 10.1126/sciadv.abq0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Engineered biomaterials are materials specifically designed to interact with biological systems for biomedical applications. This paper offers the comprehensive analysis of global clinical trial trends involving such materials. We surveyed 834 studies in the ClinicalTrials.gov database and explored biomaterial types, their initiation points, and durations in clinical trials. Predominantly, synthetic and natural polymers, particularly silicone and collagen, are used. Trials, focusing on ophthalmology, dentistry, and vascular medicine, are primarily conducted in the United States, Canada, and Italy. These trials encompass a broad demographic, and trials enrolled fewer than 100 participants. The study duration varied ranging from 0.5 to 4.5 years. These biomaterials are mainly bioresorbable or bioinert, with the integration of cells in biomaterials remaining an underexplored area. Our findings shed light on current practices and future potentials of engineered biomaterials in clinical research, offering insights for advancing this dynamic field globally.
Collapse
Affiliation(s)
- Mahim Lele
- Bridgeland High School, 10707 Mason Rd., Cypress, TX 77433, USA
| | - Shaunak Kapur
- Seven Lakes High School, 9251 S Fry Rd., Katy, TX 77494, USA
| | - Sarah Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nivedhitha Malli Sureshbabu
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Lee JS, Oh E, Oh H, Kim S, Ok S, Sa J, Lee JH, Shin YC, Bae YS, Choi CY, Lee S, Kwon HK, Yang S, Choi WI. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int J Biol Macromol 2024; 273:133005. [PMID: 38866268 DOI: 10.1016/j.ijbiomac.2024.133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunjeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Subin Ok
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junseo Sa
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Yong Chul Shin
- SKINMED Co Ltd., Daejeon 34028, Republic of Korea; Amicogen Inc, 64 Dongburo 1259, Jinsung, Jinju 52621, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
27
|
Antoniou V, Mourelatou EA, Galatou E, Avgoustakis K, Hatziantoniou S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024; 16:868. [PMID: 39065565 PMCID: PMC11280172 DOI: 10.3390/pharmaceutics16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan's positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Varvara Antoniou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
| | - Elena A. Mourelatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Eleftheria Galatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| |
Collapse
|
28
|
Cassano R, Perri P, Scarcello E, Piro P, Sole R, Curcio F, Trombino S. Chitosan Hemostatic Dressings: Properties and Surgical Applications. Polymers (Basel) 2024; 16:1770. [PMID: 39000626 PMCID: PMC11244242 DOI: 10.3390/polym16131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Wounds caused by trauma and/or surgery represent a significant challenge in contemporary medical practice, requiring innovative approaches to promote optimal healing and reduce the risk of bleeding and complications resulting from it. In this context, chitosan, a natural polysaccharide derived from chitin, represents an ideal material for the study and application of medical devices, in the form of dressings, in wound management for pre- and/or post-operative wounds due to its ability to induce hemostasis and its high biocompatibility with biological tissues. The aim of this work was to discuss the structural characteristics, properties and application of chitosan-based hemostatic dressings in hemostatic processes resulting from pre- or post-surgical approaches.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Paolo Perri
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Edoardo Scarcello
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Paolo Piro
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| |
Collapse
|
29
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
30
|
de Azevedo MIG, Souza PFN, Monteiro Júnior JE, Grangeiro TB. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chem Biodivers 2024; 21:e202400044. [PMID: 38591818 DOI: 10.1002/cbdv.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.
Collapse
Affiliation(s)
| | - Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Foratelza, Ceará, Brazil
| | - José Edvar Monteiro Júnior
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
31
|
Mahmood A, Maher N, Amin F, Alqutaibi AY, Kumar N, Zafar MS. Chitosan-based materials for dental implantology: A comprehensive review. Int J Biol Macromol 2024; 268:131823. [PMID: 38677667 DOI: 10.1016/j.ijbiomac.2024.131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chitosan, a versatile biopolymer, has gained recognition in the discipline of dental implantology due to possessing salient properties. This comprehensive review explores the potential of chitosan in dental implants, focusing on its biocompatibility, bioactivity, and the various chitosan-based materials that have been utilized for dental implant therapy. The review also highlights the importance of surface treatment in dental implants to enhance osseointegration and inhibit bacterial biofilm formation. Additionally, the chemical structure, properties, and sources of chitosan are described, along with its different structural forms. The characteristics of chitosan particularly color, molecular weight, viscosity, and degree of deacetylation are discussed about their influence on its applications. This review provides valuable insights into the promising utilization of polymeric chitosan in enhancing the success and functionality of dental implants. This study highlights the potential applications of chitosan in oral implantology. Chitosan possesses various advantageous properties, including muco-adhesiveness, hemostatic action, biocompatibility, biodegradability, bioactivity, and antibacterial and antifungal activities, which enhance its uses in dental implantology. However, it has limited aqueous solubility at the physiological pH, which sometimes restricts its biological application, but this problem can be overcome by using modified chitosan or chitosan derivatives, which have also shown encouraging results. Recent research suggests that chitosan may act as a promising material for coating titanium-based implants, improving osteointegration together with antibacterial properties.
Collapse
Affiliation(s)
- Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
32
|
Chen Z, Yuan M, Li H, Li L, Luo B, Lu L, Xiang Q, Ding S. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-α and high glucose in vitro and enhanced wound healing. Int J Biol Macromol 2024; 265:130825. [PMID: 38492705 DOI: 10.1016/j.ijbiomac.2024.130825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The inflammation of chronic wounds plays a key hindering role in the wound healing process. Slowing down the inflammatory response is significant for the repair of chronic wounds. Studies have revealed that succinate can inactivate gastrin D (GSDMD) and prevent cell pyroptosis. Chitosan has anti-inflammatory properties and is commonly used as wound healing material. Therefore, we used succinic anhydride to modify chitosan and found that N-succinylated chitosan (NSC) was more effective in inhibiting inflammation. The results showed that the stimulation of TNF-α and high glucose induces overexpression of capase-1 and TNF-α in human umbilical vein endothelial cells (HUVEC), and down-expression of CD31. However, the expression of capase-1 and TNF-α decreased, while the expression of CD31, VEGF and IL-10 was up-regulated significantly in dysfunctional HUVEC cells after treated by NSC. Moreover, NSC can speed wound healing, histological examination results showed that wounds treated with NSC exhibited faster epithelial tissue regeneration and thicker collagen deposition. Overall, this study results suggested that NSC has the function of restoring the physiological functions of dysfunctional HUVEC cells induced by high glucose and TNF-α, and can accelerate wound healing, indicating that NSC has good potential to be applied in inflammatory chronic wounds such as diabetic foot.
Collapse
Affiliation(s)
- Zhiwan Chen
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Mengfei Yuan
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Haojing Li
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Lihua Li
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Lu Lu
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, PR China
| | - Shan Ding
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
33
|
Sierakowska-Byczek A, Radwan-Pragłowska J, Janus Ł, Galek T, Łysiak K, Tupaj M, Bogdał D. Environment-Friendly Preparation and Characterization of Multilayered Conductive PVP/Col/CS Composite Doped with Nanoparticles as Potential Nerve Guide Conduits. Polymers (Basel) 2024; 16:875. [PMID: 38611133 PMCID: PMC11013910 DOI: 10.3390/polym16070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Tissue engineering constitutes the most promising method of severe peripheral nerve injuries treatment and is considered as an alternative to autografts. To provide appropriate conditions during recovery special biomaterials called nerve guide conduits are required. An ideal candidate for this purpose should not only be biocompatible and protect newly forming tissue but also promote the recovery process. In this article a novel, multilayered biomaterial based on polyvinylpyrrolidone, collagen and chitosan of gradient structure modified with conductive nanoparticles is presented. Products were obtained by the combination of electrospinning and electrospraying techniques. Nerve guide conduits were subjected to FT-IR analysis, morphology and elemental composition study using SEM/EDS as well as biodegradation. Furthermore, their effect on 1321N1 human cell line was investigated by long-term cell culture. Lack of cytotoxicity was confirmed by XTT assay and morphology study. Obtained results confirmed a high potential of newly developed biomaterials in the field of nerve tissue regeneration with a special focus on injured nerves recovery.
Collapse
Affiliation(s)
- Aleksandra Sierakowska-Byczek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Tomasz Galek
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Karol Łysiak
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Mirosław Tupaj
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| |
Collapse
|
34
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
35
|
Morici L, Gonzalez-Fernandez P, Jenni S, Porcello A, Allémann E, Jordan O, Rodríguez-Nogales C. Nanocrystal-chitosan particles for intra-articular delivery of disease-modifying osteoarthritis drugs. Int J Pharm 2024; 651:123754. [PMID: 38163526 DOI: 10.1016/j.ijpharm.2023.123754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is the most common chronic joint disease and a major health care concern due to the lack of efficient treatments. This is mainly related to the local and degenerative nature of this disease. Kartogenin was recently reported as a disease-modifying osteoarthritis drug that promotes cartilage repair, but its therapeutic effect is impeded by its very low solubility. Therefore, we designed a unique nanocrystal-chitosan particle intra-articular delivery system for osteoarthritis treatment that merges the following formulation techniques: nanosize reduction of a drug by wet milling and spray drying. The intermediate formulation (kartogenin nanocrystals) increased the solubility and dissolution rates of kartogenin. The final drug delivery system consisted of an easily resuspendable and ready-to-use microsphere powder for intra-articular injection. Positively charged chitosan microspheres with a median size of approximately 10 µm acted as a mothership drug delivery system for kartogenin nanocrystals in a simulated intra-articular injection. The microspheres showed suitable stability and a controlled release profile in synovial fluid and were nontoxic in human synoviocytes. The cartilage retention skills of the microspheres were also explored ex vivo using cartilage. This drug delivery system shows promise for advancement to preclinical stages in osteoarthritis therapy and scale-up production.
Collapse
Affiliation(s)
- Luca Morici
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Sébastien Jenni
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
36
|
Lee G, Han SB, Kim SH, Jeong S, Kim DH. Stretching of porous poly (l-lactide-co-ε-caprolactone) membranes regulates the differentiation of mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1303688. [PMID: 38333594 PMCID: PMC10850303 DOI: 10.3389/fcell.2024.1303688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Background: Among a variety of biomaterials supporting cell growth for therapeutic applications, poly (l-lactide-co-ε-caprolactone) (PLCL) has been considered as one of the most attractive scaffolds for tissue engineering owing to its superior mechanical strength, biocompatibility, and processibility. Although extensive studies have been conducted on the relationship between the microstructure of polymeric materials and their mechanical properties, the use of the fine-tuned morphology and mechanical strength of PLCL membranes in stem cell differentiation has not yet been studied. Methods: PLCL membranes were crystallized in a combination of diverse solvent-nonsolvent mixtures, including methanol (MeOH), isopropanol (IPA), chloroform (CF), and distilled water (DW), with different solvent polarities. A PLCL membrane with high mechanical strength induced by limited pore formation was placed in a custom bioreactor mimicking the reproducible physiological microenvironment of the vascular system to promote the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells (SMCs). Results: We developed a simple, cost-effective method for fabricating porosity-controlled PLCL membranes based on the crystallization of copolymer chains in a combination of solvents and non-solvents. We confirmed that an increase in the ratio of the non-solvent increased the chain aggregation of PLCL by slow evaporation, leading to improved mechanical properties of the PLCL membrane. Furthermore, we demonstrated that the cyclic stretching of PLCL membranes induced MSC differentiation into SMCs within 10 days of culture. Conclusion: The combination of solvent and non-solvent casting for PLCL solidification can be used to fabricate mechanically durable polymer membranes for use as mechanosensitive scaffolds for stem cell differentiation.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Deng B, Gu J, Zhang S, Huang J, Zhang X, Zhou J, Wang W, Fan B, Liu J, Li L, Su M, Li B. Low-Cytotoxicity, Broad-Spectrum Corn Starch-Based Antibacterial Particles that Inhibit Multidrug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:256-268. [PMID: 38109849 DOI: 10.1021/acsabm.3c00848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Antimicrobial resistance is a serious problem in biomedical applications that seriously increases the risk of medical failure. Therefore, developing highly efficient antibacterial agents that inhibit the growth of multidrug-resistant bacteria is a long-standing research goal. In this report, a low-cytotoxicity and highly efficient alternative to antibiotics was designed and prepared using edible corn starch as the scaffold and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) as the antimicrobial agent. The HTCC/starch particles were found to have a positively charged surface over a wide pH range and to possess broad-spectrum and highly efficient antimicrobial properties. These particles inhibited the growth of standard Gram-positive and Gram-negative bacteria from the China Pharmacopoeia and a clinical multidrug-resistant bacterial strain. Moreover, after treating the HTCC/starch particles with simulated gastric fluid (SGF, pH 1.2) for 4 h, the growth of clinical multidrug-resistant Escherichia coli (NT 2036) was inhibited effectively, indicating that these particles tolerate a gastric acid environment. Although the mass of SGF-treated HTCC/starch particles required to achieve similar antibacterial activity was ∼20-fold that of chloramphenicol or ampicillin, antibiotic-containing products require considerable amounts of pharmaceutical excipients to prepare. Therefore, the HTCC/starch particles described herein are potentially cost-effective alternatives to antibiotics that resolve the antimicrobial resistance issue, especially for inhibiting the growth of pathogenic intestinal bacteria.
Collapse
Affiliation(s)
- Bin Deng
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Gu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuaifeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jin Huang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junming Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wei Wang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| |
Collapse
|
38
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
40
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
41
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
42
|
Eskandarinia A, Gharakhloo M, Kermani PK, Navid S, Salami MA, Khodabakhshi D, Samadi A. Antibacterial self-healing bilayer dressing for epidermal sensors and accelerate wound repair. Carbohydr Polym 2023; 319:121171. [PMID: 37567712 DOI: 10.1016/j.carbpol.2023.121171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to investigate the effect of the bilayer hydrogel as a wound dressing on the wound-healing rate. We synthesized a self-healing hydrogel with optimized formulation by introducing natural polymer (chitosan) and arginine to the hydrogel composition. We then characterized the hydrogels using FT-IR, thermal analysis, mechanical testing, and in vitro and in vivo assay. The resulting bilayer wound dressing offers a lot of desirable characteristics, including good self-healing and repeatable adhesiveness. Likewise, the conductive bilayer wound dressing could be used to analyze the patient's healthcare data in real-time as epidermal sensors. Bilayer wound dressings remarkably have broad antibacterial efficacy against Gram-positive and Gram-negative bacteria. The potential applications of this bilayer wound dressing are illustrated by detectable body movement and conductivity. The wound-healing rate of bilayer wound dressings containing chitosan and arginine was higher, but those without the aforementioned ingredients had lower wound-healing efficacy. Additionally, promoting collagen synthesis and reducing wound infection has a considerable therapeutic impact on wounds. These results could have significant implications for the development of high-performance wound dressings.
Collapse
Affiliation(s)
- Asghar Eskandarinia
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mosayeb Gharakhloo
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Paria Khaloo Kermani
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepehr Navid
- Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Salami
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Darioush Khodabakhshi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
43
|
Ciulla MG, Massironi A, Sugni M, Ensign MA, Marzorati S, Forouharshad M. Recent Advances in the Development of Biomimetic Materials. Gels 2023; 9:833. [PMID: 37888406 PMCID: PMC10606425 DOI: 10.3390/gels9100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics.
Collapse
Affiliation(s)
- Maria G. Ciulla
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Matthew A. Ensign
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Mahdi Forouharshad
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
45
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
46
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
47
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
48
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
49
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
50
|
Wang C, Liu C, Liang C, Qu X, Zou X, Du S, Zhang Q, Wang L. Role of Berberine Thermosensitive Hydrogel in Periodontitis via PI3K/AKT Pathway In Vitro. Int J Mol Sci 2023; 24:6364. [PMID: 37047340 PMCID: PMC10094121 DOI: 10.3390/ijms24076364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a long-term inflammatory illness and a leading contributor to tooth loss in humans. Due to the influence of the anatomic parameters of teeth, such as root bifurcation lesions and the depth of the periodontal pocket, basic periodontal treatment on its own often does not completely obliterate flora microorganisms. As a consequence, topical medication has become a significant supplement in the treatment of chronic periodontitis. Berberine (BBR) has various pharmacological effects, such as hypoglycemic, antitumor, antiarrhythmic, anti-inflammatory, etc. The target of our project is to develop a safe and non-toxic carrier that can effectively release berberine, which can significantly reduce periodontal tissue inflammation, and to investigate whether berberine thermosensitive hydrogel can exert anti-inflammatory and osteogenic effects by modulating phosphatifylinositol-3-kinase/Protein Kinase B (PI3K/AKT) signaling pathway. Consequently, firstly berberine temperature-sensitive hydrogel was prepared, and its characterizations showed that the mixed solution gelated within 3 min under 37 °C with a hole diameter of 10-130 µm, and the accumulation of berberine release amounted to 89.99% at 21 days. CCK-8 and live-dead cell staining results indicated that this hydrogel was not biotoxic, and it is also presumed that the optimum concentration of berberine is 5 µM, which was selected for subsequent experiments. Real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB)results demonstrated that inflammatory factors, as well as protein levels, were significantly reduced in the berberine-loaded hydrogel group, and LY294002 (PI3K inhibitor) could enhance this effect (p < 0.05). In the berberine-loaded hydrogel group, osteogenesis-related factor levels and protein profiles were visibly increased, along with an increase in alkaline phosphatase expression, which was inhibited by LY294002 (p < 0.05). Therefore, berberine thermosensitive hydrogel may be an effective treatment for periodontitis, and it may exert anti-inflammatory and osteogenic effects through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chang Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Chang Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chen Liang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Xingyuan Qu
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Xinying Zou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Du
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Qian Zhang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| | - Lei Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, 1500 Tsinghua Road, Chaoyang District, Changchun 130021, China; (C.W.)
| |
Collapse
|