1
|
Gao Y, Sun L, Qiao C, Liu Y, Wang Y, Feng R, Zhang H, Zhang Y. Cyclodextrin-based delivery systems for chemical and genetic drugs: Current status and future. Carbohydr Polym 2025; 352:123174. [PMID: 39843078 DOI: 10.1016/j.carbpol.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs. It further summarizes the applications of CD-based delivery systems and offers insights for the rational design of drug delivery systems. In this review, CD-based delivery systems are categorized into several types, such as covalently modified CD derivatives, non-modified CD inclusion complexes, poly-cyclodextrins and others. The application of CD-based systems for the delivery of genetic therapeutic agents and co-delivery of gene and drug is also presented. Finally, this review discusses potential challenges and opportunities that may arise in the future. With the development of nanotechnology and optimization of preparation process, CD-based drug delivery systems will provide a more effective, precise and safe approach to drug therapy.
Collapse
Affiliation(s)
- Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Le Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuqing Liu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hong Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Youxi Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Oliveira AMS, Santos AM, Nascimento Júnior JAC, Júnior CCS, Brito JRLR, Dos Santos JS, Shanmugam S, Dos Passos Menezes P, Frank LA, Serafini MR. Pharmaceutical technological trends containing flavonoids: a patent review. Future Med Chem 2025; 17:363-379. [PMID: 39835701 DOI: 10.1080/17568919.2025.2453408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Flavonoids such as silibinin, hesperetin, and phloretin exhibit well-documented biological activities, including anti-inflammatory, cytoprotective, anticarcinogenic, and antioxidant effects. However, their clinical application remains limited due to challenges such as poor aqueous solubility, low bioavailability, and restricted intestinal absorption, which can significantly reduce their pharmacological efficacy. This review analyzed patents related to innovative pharmaceutical technologies for flavonoids. The analysis used databases from the World Intellectual Property Organization and the European Patent Office. Following a comprehensive screening process, 38 patents were selected for detailed examination. These patents highlighted numerous studies on novel formulations, characterizations, and proprietary conditions. This review highlights technologies, such as nanocapsules, nanoemulsions, solid dispersions, phospholipid carriers, inclusion complexes, microemulsions, and other advanced systems, which enhance bioactive molecules' water solubility and stability. Consequently, these technologies improve permeability and absorption through the intended administration route, demonstrating the potential of flavonoids as promising candidates for various treatments, particularly when integrated into pharmaceutical technologies.
Collapse
Affiliation(s)
- Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | | | - Saravanan Shanmugam
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
3
|
Kamath AJ, Donadkar AD, Nair B, Kumar AR, Sabitha M, Sethi G, Chauhan AS, Nath LR. Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review. Phytother Res 2024. [PMID: 39661005 DOI: 10.1002/ptr.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like "FDA-approved biomaterials," "stimuli-responsive polymer," "smart biomaterial," and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.
Collapse
Affiliation(s)
- Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Asawari Dilip Donadkar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - M Sabitha
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhay Singh Chauhan
- Biopharmaceutical Science Department, School of Pharmacy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
4
|
Li Y, Inam M, Hasan MW, Chen K, Zhang Z, Zhu Y, Huang J, Wu Z, Chen W, Li M. Optimizing Antitumor Effect of Triple-Negative Breast Cancer via Rosmarinic Acid-β-Cyclodextrin Inclusion Complex. Pharmaceutics 2024; 16:1408. [PMID: 39598532 PMCID: PMC11597731 DOI: 10.3390/pharmaceutics16111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Rosmarinic acid (ROS) has gained notable attention for its anticancer potential; however, its limited aqueous solubility hinders its effective delivery and application in pharmaceutical formulations. Methods: To overcome this limitation, an inclusion complex of ROS with β-cyclodextrin (β-CD) was prepared using the recrystallization method. The resultant ROS-β-CD complex was comprehensively characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Results: The ROS-β-CD complex showed a significant improvement in the solubility and dissolution profile of ROS, underscoring its potential for enhanced bioavailability and therapeutic efficacy in pharmaceutical applications. In vitro assays were performed to assess the effects on cell viability, proliferation, apoptotic pathways, and 3D spheroid tumor models. Conclusions: The results demonstrated that ROS-β-CD exhibited superior anticancer properties compared to free ROS, effectively reducing the viability and proliferation of the MD-MBA-231 cell line and inducing apoptosis. This research signifies a substantial advancement in developing therapeutic strategies for TNBC, leveraging the distinct properties of the ROS-β-CD inclusion complex.
Collapse
Affiliation(s)
- Yuan Li
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Muhammad Inam
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Medical Science and Technology Innovation Center, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Muhammad Waqqas Hasan
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Kaixin Chen
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Zhongqian Zhang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongcheng Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Jiayu Huang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Zhuowen Wu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Wenjie Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
| | - Min Li
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| |
Collapse
|
5
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Anitha A, Rajamohan R, Murugan M, Seo JH. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance-Current State and Future Perspectives. Molecules 2024; 29:4782. [PMID: 39407710 PMCID: PMC11477750 DOI: 10.3390/molecules29194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclodextrin (CD) derivatives have gained significant attention in biomedical applications due to their remarkable biocompatibility, unique inclusion capabilities, and potential for functionalization. This review focuses on recent advancements in CD-based assemblies, specifically their role in improving drug delivery, emphasizing remdesivir (RMD). The review introduces CD materials and their versatile applications in self-assembly and supramolecular assembly. CD materials offer immense potential for designing drug delivery systems with enhanced activity. Their inherent inclusion capabilities enable the encapsulation of diverse therapeutic agents, including RMD, resulting in improved solubility, stability, and bioavailability. The recent advances in CD-based assemblies, focusing on their integration with RMD have been concentrated here. Various strategies for constructing these assemblies are discussed, including physical encapsulation, covalent conjugation, and surface functionalization techniques. Furthermore, exploring future directions in these fields has also been provided. Ongoing research efforts are directed toward developing novel CD derivatives with enhanced properties, such as increased encapsulation efficiency and improved release kinetics. Moreover, the integration of CD-based assemblies with advanced technologies such as nanomedicine and gene therapy holds tremendous promise for personalized medicine and precision therapeutics.
Collapse
Affiliation(s)
- Arumugam Anitha
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India;
| | - Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Moorthiraman Murugan
- Department of Chemistry, IFET College of Engineering, Villupuram 605 108, Tamil Nadu, India;
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Ubhe A, Oldenkamp H, Wu K. Small Molecule Topical Ophthalmic Formulation Development-Data Driven Trends & Perspectives from Commercially Available Products in the US. J Pharm Sci 2024; 113:2997-3011. [PMID: 39117273 DOI: 10.1016/j.xphs.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Topical ophthalmic drug product development is a niche research domain as the drug formulations need to be designed to perform in the unique ocular physiological conditions. The most common array of small molecule drug formulations intended for topical ophthalmic administration include solutions, suspensions, emulsions, gels, and ointments. The formulation components such as excipients and container closure are unique to serve the needs of topical ophthalmic delivery compared to other parenteral products. The selection of appropriate formulation platform, excipients, and container closure for delivery of drugs by topical ophthalmic route is influenced by a combination of factors like physicochemical properties of the drug molecule, intended dose, pharmacological indication as well as the market trends influenced by the patient population. In this review, data from literature and packaging inserts of 118 reference listed topical ophthalmic medications marketed in the US are collected and analyzed to identify trends that would serve as a guidance for topical ophthalmic formulation development for small molecule drugs. Specifically, the topics reviewed include current landscape of the available small molecule topical ophthalmic drug products in the US, physicochemical properties of the active pharmaceutical ingredients (APIs), formulation platforms, excipients, and container closure systems.
Collapse
Affiliation(s)
- Anand Ubhe
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | | - Ke Wu
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
8
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
9
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
11
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
12
|
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chem Biol Drug Des 2023; 102:1618-1631. [PMID: 37705133 DOI: 10.1111/cbdd.14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.
Collapse
Affiliation(s)
- Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shijie Wei
- General Hospital, Ningxia Medical University, Yinchuan, China
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
13
|
Kfoury M, Fourmentin S. Cyclodextrins as building blocks for new materials. Beilstein J Org Chem 2023; 19:889-891. [PMID: 37377772 PMCID: PMC10291238 DOI: 10.3762/bjoc.19.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Miriana Kfoury
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), 59140 Dunkerque, France
| | - Sophie Fourmentin
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), 59140 Dunkerque, France
| |
Collapse
|
14
|
Jurtík M, Gřešková B, Prucková Z, Rouchal M, Dastychová L, Vítková L, Valášková K, Achbergerová E, Vícha R. Assembling a supramolecular 3D network with tuneable mechanical properties using adamantylated cross-linking agents and β-cyclodextrin-modified hyaluronan. Carbohydr Polym 2023; 313:120872. [PMID: 37182963 DOI: 10.1016/j.carbpol.2023.120872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Hydrogels based on the supramolecular host-guest concept can be prepared if at least one constituent is a polymer chain modified with supramolecular host or guest (or both) units. Low-molecular-weight multitopic counterparts can also be used, however, guest molecules in the role of cross-linking agents are seldom reported, although such an approach offers wide-ranging possibilities for tuning the system properties via easily achievable structural modifications. In this paper, a series of adamantane-based star-like guest molecules was used for cross-linking of two types of β-cyclodextrin-modified hyaluronan (CD-HA). The prepared 3D supramolecular networks were characterised using nuclear magnetic resonance, titration calorimetry and rheological measurements to confirm the formation of the host-guest complexes between adamantane moieties and β-cyclodextrin units, including their typical properties such as self-healing and dynamic nature. The results indicate that the nature of the cross-linker (amides versus esters) has a greater impact on mechanical properties than the length of the guest's arms. In addition, the results show that the length of the HA polymer chain is more important than the degree of modification with supramolecular units. In conclusion, it was proven that the modular concept employing low-molecular-weight cross-linking guests is valuable for the formulation of supramolecular networks, including hydrogels.
Collapse
|
15
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|